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Recent comparative genomic analysis of alternative splicing has shown that protein modularity is an important
criterion for functional alternative splicing events. Exons that are alternatively spliced in multiple organisms are much
more likely to be an exact multiple of 3 nt in length, representing a class of ‘‘modular’’ exons that can be inserted or
removed from the transcripts without affecting the rest of the protein. To understand the precise roles of these
modular exons, in this paper we have analyzed microarray data for 3,126 alternatively spliced exons across ten mouse
tissues generated by Pan and coworkers. We show that modular exons are strongly associated with tissue-specific
regulation of alternative splicing. Exons that are alternatively spliced at uniformly high transcript inclusion levels or
uniformly low levels show no preference for protein modularity. In contrast, alternatively spliced exons with dramatic
changes of inclusion levels across mouse tissues (referred to as ‘‘tissue-switched’’ exons) are both strikingly biased to
be modular and are strongly conserved between human and mouse. The analysis of different subsets of tissue-
switched exons shows that the increased protein modularity cannot be explained by the overall exon inclusion level,
but is specifically associated with tissue-switched alternative splicing.
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Introduction

Recently, there has been great interest in characterizing the
functional selection pressures for alternative splicing by
evolutionary genomics [1–4]. Ancestral alternative splicing
events (i.e., alternative splicing events observed in multiple
organisms) show evidence for strong functional constraints:
these exons are more likely to be multiples of 3 nt in length
[4–6], so the inclusion or exclusion of an exon does not
disrupt the downstream protein reading frame or cause
premature protein truncation; they are often flanked by
highly conserved intronic sequences, suggesting increased
selection for preserving important splicing regulatory signals
[7,8]; the exon sequences are more conserved, indicated by
increased nucleotide sequence identity [8–10]. These features
have been explored extensively to discern functional alter-
native splicing events from splice variants generated by
random spliceosomal errors and have been used successfully
for predicting alternative splicing from raw genomic sequen-
ces [9,11,12].

In many of these studies, protein reading frame preserva-
tion has emerged as a valuable criterion for ‘‘functional’’
alternative splicing events [4,5,9,11], and it is interesting to
ask what the significance of this ‘‘modular’’ class of exons is:
that is, what general role they play in regulating the proteome
and what distinguishes them from other alternative splicing
events. Clearly, by maintaining the same protein reading
frame regardless of whether the alternatively spliced exon is
included or skipped, they enable a modular segment of amino
acid sequence to be added or deleted from the protein
product without altering the rest of the protein or inducing
nonsense-mediated decay [13]. This modular pattern is not
seen in constitutive exons and in alternatively spliced exons

that are included in the majority of a gene’s transcripts.
Instead, it is strikingly associated with ancestral alternative
splicing events (i.e., exons that are observed to be alter-
natively spliced in two or more species), most particularly
those exons that are only included in a minority of a gene’s
transcripts [5]. However, the precise role of these modular
alternative splicing events in genome evolution remains
unclear.
To better characterize this interesting class of exons, we

have analyzed microarray data for a large set of mouse genes
containing 3,126 alternatively spliced exons, generated by
Pan and coworkers [14]. Whereas previous analyses of
modular exons used expressed sequence tag (EST) data to
estimate each exon’s ‘‘inclusion level’’ (fraction of the gene’s
transcripts that include that exon) as a single value summed
over all tissue types (often based on only a small number of
EST counts [3]), these microarray data permit accurate
measurements of its varying inclusion levels in ten different
tissue types [14]. This opens up the interesting question of
tissue-specific regulation of alternative splicing [15,16].
Exons that are of particular interest in terms of tissue

variation of alternative splicing are those that are strongly
included in the transcripts in some tissues, but also are
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strongly excluded in some other tissues—suggesting that the
alternative splicing of these exons is under significant change
across different tissues and shows strong tissue specificity. In
this paper, we refer to these exons as ‘‘tissue-switched’’ exons.
We show that modular exons are strongly associated with
tissue-switched alternative splicing. Comparing the exon
sequences between human and mouse genomes, we demon-
strate that many tissue-switched alternative exons are ancient
and were under elevated selection pressure for both protein
modularity (frame preservation) and sequence conservation
during the recent mammalian evolution.

Results

Protein Reading Frame Preservation Is Associated with
Tissue-Switched Exons

Using the mouse microarray data of Pan and colleagues
[14], we analyzed the exon inclusion levels across ten tissues
for 3,126 alternatively spliced exons in mouse. From the total
set, 2,171 exons were assigned with a confident inclusion level
in at least three tissues. We identified a total of 237 (11%)
tissue-switched alternative exons according to our criteria
(see Defining Categories of Tissue-Switched Exons from

Microarray Data, in Materials and Methods), 605 exons that
were major-form in all the tissues (always major), and 120
exons that were minor-form in all the tissues (always minor)
(Table 1). These 962 exons were included in our further
analyses. The size of our dataset is comparable to or
substantially larger than a few other recent human–mouse
comparative studies of alternative splicing [6,7,10,17,18], with
information about these exons’ splicing patterns at a much
higher resolution (on average a confident inclusion level in
seven tissues) compared to EST-based studies [3,5].
Examining the frame-preservation ratio for these exons, we

observed that only tissue-switched exons had an overall
association with protein frame preservation. Previous studies
by Gilbert and colleagues [19,20] have shown that exons in the
human genome are slightly more likely to be frame-
preserving than expected by the random chance (0.5),
yielding a background frame-preservation ratio of 0.64 (i.e.,
39% of exons in the genome are frame-preserving [5]). The
frame-preservation ratios measured for always major and
always minor alternatively spliced exons were 0.68 and 0.69,
respectively, almost the same as the background ratio
observed for constitutive exons. By contrast, the frame-
preservation ratio for tissue-switched exons nearly doubled
(Table 1), a statistically significant result (p , 0.001 for tissue-
switched exons versus always major exons; p¼0.017 for tissue-
switched exons versus always minor exons; one-sided Fisher
exact test).

Tissue-Switched Exons Are Strongly Conserved
Since frame preservation has been observed to be

associated primarily with ancestral alternative splicing events
(i.e., alternative splicing events that have been observed in
more than one species [5]), we tested the conservation of
these exons between the mouse and human genomes (Table
1). Whereas always minor exons were conserved in only 10%
of cases (in agreement with previous analyses [3,14]), tissue-
switched exons showed a high rate of conservation (54%)
similar to that of always major exons (64%). To control for
the effect of exon length on our BLAST search, we restricted
our analysis to a set of exons longer than 90 nt, and obtained
similar results (data not shown).
To assess whether this pattern of conservation simply

reflects the overall inclusion level of an exon (summed over all
tissues), we further subdivided tissue-switched exons into
three classes: usually major, observed to be the major-form in
the majority of tissues; usually minor, observed to be a minor
form in the majority of tissues; intermediate, observed to be
neither the major-form in the majority of tissues, nor minor

Table 1. Frame Preservation Analysis for the Total and Conserved Sets of Always Major, Tissue-Switched, and Always Minor Exons

Mouse Alternative Exons Exon Category Number of Exons Frame-Preserving Frame-Switching Frame-Preservation Ratio

Total Always major 605 244 361 0.68

Tissue-switched 237 126 111 1.14

Always minor 120 49 71 0.69

Conserved exons Always major 387 (64.0%) 146 241 0.61

Tissue-switched 128 (54.0%) 83 45 1.84

Always minor 12 (10.0%) 9 3 3.00

DOI: 10.1371/journal.pgen.0010034.t001
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Synopsis

Alternative splicing is a biological process that generates multiple
mRNA and protein variants through alternative combinations of
protein-coding exons. It is a widespread mechanism of gene
regulation in higher eukaryotes. In recent years, scientists have
found that when an exon is observed to be alternatively spliced in
multiple species, its length is much more likely to be an exact
multiple of three nucleotides. Since each amino acid is encoded by
three nucleotides, these exons can be inserted or removed from the
transcript as a ‘‘modular’’ protein-coding unit, without affecting the
downstream protein translation. However, the precise roles of these
modular exons in gene regulation and genome evolution remain
unclear.

Xing and Lee have now investigated these modular exons using
high-throughput genomics data. They analyzed the mouse splicing
microarray data from the research group of Dr. Benjamin Blencowe
at University of Toronto. Exons whose alternative splicing levels vary
dramatically across multiple tissues are much more likely to be
modular exons and are highly conserved during human and mouse
evolution. This study establishes a strong link between protein
modularity of alternatively spliced exons and tissue-specific
regulation of alternative splicing. It provides new insights into the
function and regulation of alternative splicing and how it evolves.



form in the majority of tissues. It should be emphasized that
by definition all tissue-switched exons were major-form in at
least one tissue and minor form in at least one other tissue.
Among the 237 tissue-switched exons, we identified 40 usually
major exons, and 37 usually minor exons by these criteria.

Analysis of the conservation of these exon types shows that
tissue-switched alternative splicing, and not just a high overall
inclusion level, is associated with a high rate of conservation
(Figure 1A). Whereas always minor exons had a low rate of
conservation (10%), usually minor exons had a high rate of
conservation (62.2%) similar to that of always major exons
(64%), despite the fact that they had a low overall inclusion
level, only marginally higher than that of always minor exons.
Overall, all types of tissue-switched exons had high rates of
conservation similar to those of always major and constitutive
exons.

Protein Frame Preservation Is Strongly Associated with All
Types of Conserved Tissue-Switched Exons
We evaluated the frame-preservation ratio for conserved

tissue-switched exons, subdivided by different classes (Figure
1B). These data show that frame preservation is strongly
associated with all the different types of tissue-switched
exons. Intermediate and usually minor exons had a 3-fold
higher frame-preservation ratio than always major exons (p ,

0.001 for intermediate versus always major exons; p ¼ 0.009
for usually minor versus always major exons; one-sided Fisher
exact test). The largest increase was observed in usually major
exons (a 7-fold increase; p , 0.001 for usually major versus
always major exons), which differ in the microarray data only
slightly from always major exons (indeed, observation of the
exon to be minor-form in only a single tissue sample is
sufficient to move it from the always major to the usually
major category). These data suggest that frame preservation,

Figure 1. Increased Functional Constraints Are Associated with All Types of Tissue-Switched Exons

(A) The fraction of exons conserved between human and mouse for each exon category. All types of tissue-switched exons (usually major, intermediate,
usually minor) showed a high rate of conservation.
(B) The frame-preservation ratio for each category of exons. Protein reading frame preservation is associated with all types of tissue-switched exons and
conserved, always minor exons. Conserved, always major exons showed no evidence for increased protein reading frame preservation.
(C) The percent nucleotide substitution density for each exon category. All types of tissue-switched exons showed a reduced nucleotide-sequence
substitution density between human and mouse, similar to what is observed for conserved, always minor exons. Error bars represent 95% confidence
intervals obtained from nonparametric bootstrapping.
(D) The nucleotide substitution rate calculated for synonymous sites (Ks) from human and mouse orthologous exon sequences (see Materials and
Methods). All types of tissue-switched exons showed reduced Ks rates between human and mouse, similar to what is observed for conserved, always
minor exons. Error bars represent 95% confidence intervals obtained from nonparametric bootstrapping.
DOI: 10.1371/journal.pgen.0010034.g001
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like conservation, cannot be explained by the overall
inclusion level, but instead is strongly associated with tissue-
switched exons. Although 90% of the always minor exons
were not conserved between human and mouse, those that
were conserved also had a high frame-preservation ratio,
consistent with previous studies using EST data [5].

Unusually high sequence identity in conserved exons has
been observed to be another valuable indicator of functional
alternative splicing [8–11], indicative of the presence of
splicing regulatory elements within the exon sequence. We
therefore examined the level of sequence identity within the
different classes of conserved exons. Tissue-switched exons
displayed a dramatic decrease in the density of nucleotide
substitutions compared with always major exons, and similar
to what is observed in a small number of conserved always
minor exons (Figure 1C). To assess whether this difference
might be attributable to amino acid-level selection pressure,
we measured the nucleotide substitution density specifically
at synonymous sites (where substitutions cause no change to
the amino acid sequence). Tissue-switched exons displayed a
greater than 2-fold decrease in substitution density (relative
to always major exons), even at synonymous sites (Figure 1D).
These data indicate that the protein-level functional selection
pressure demonstrated by frame preservation is accompanied
in tissue-switched exons by an additional selection effect that
cannot be explained by amino acid selection, consistent with
an increased abundance of splicing regulatory elements as
previously demonstrated [8,21,22].

Discussion

Frame-preserving alternative splicing events are of great
functional interest because they produce a modular alteration
of the protein product—adding or removing a single peptide
segment without altering the rest of the protein sequence.
Frame preservation has been proposed as evidence that an
alternative splicing event is functional [4–6] and has proved
valuable for predicting which exons in a genomic sequence
are likely to be alternatively spliced [9,11,12]. Such alternative
splicing events can have surprisingly sophisticated effects on
protein structure, protein interactions, and function, as
illustrated recently in the Piccolo C2A domain [23].

Our data suggest that this pattern of modular alternative
splicing is strongly associated with tissue-switched exons.
Analysis of microarray data from ten mouse tissues indicates
that tissue-switched exons have the highest frame-preserva-
tion ratio, even for relatively subtle tissue-switching events.
For example, whereas always major exons had a frame-
preservation ratio near background (i.e., the ratio for
constitutive exons in the mouse genome), exons that were
usually major but observed to become the minor form in at
least one tissue showed a 7-fold increase in frame preserva-
tion. Overall, the vast majority of nonrandom frame-
preservation events (i.e., those above the number expected
by chance) displayed tissue-switched alternative splicing even
in the small panel of tissues (ten) analyzed here.

We have performed several control tests to evaluate the
possibility of bias or artifacts due to the confidence-rank
cutoff (recommended by Pan and colleagues) and classifiers
(e.g., inclusion-level cutoffs for major versus minor form)
applied to the dataset. Pan et al. recommended a cutoff of
top-16,000 confidence ranks to identify confident exon

inclusion levels [14]. To further exclude possible artifacts
due to noise in the microarray experiment, we tested a more
stringent filtering criterion (a cutoff of top-10,000 confidence
ranks). These data robustly reproduced our original results.
We also tested several different inclusion-level cutoffs for
defining major versus minor forms (60% versus 40%, 66%
versus 34%, and 75% versus 25%). These different cutoffs
yielded consistent results. These control analyses demon-
strate that our results are robust and are not artifacts of
microarray noise or arbitrary cutoff values.
Tissue-switched exons combine several interesting features.

On the one hand, they are strongly conserved, like con-
stitutive and always major exons. Even usually minor tissue-
switched exons showed a high frequency of conservation,
similar to that of always major exons. On the other hand,
tissue-switched exons display strong patterns of functional
selection characteristic of ancestral minor-form alternative
splicing, including strong frame preservation and reduced
nucleotide substitution density. Even usually major exons had
a frame-preservation ratio seven times that of always major
exons, and a nucleotide substitution density 2-fold less than
that of always major exons. This reduced level of substitution
cannot be attributed to amino acid selection pressure, since it
is also observed at synonymous codon positions. The fact that
this pattern is observed specifically in tissue-switched exons
suggests that it may reflect the presence of conserved
regulatory motifs important for tissue-specific regulation of
alternative splicing [24,25]. Increased sequence identity at
alternatively spliced exons compared to constitutive exons
has been reported as a predictive characteristic of alternative
splicing [9,11,12] and has been shown to be associated with
exonic splicing enhancer and splicing silencer sites
[7,8,10,22]. This pattern of reduced nucleotide substitution
appears to correlate quantitatively with the overall inclusion
level for each exon (Figure 1C and 1D). Usually major exons
had a synonymous substitution density of 0.223, intermediate
exons 0.20, and always minor exons 0.06. This implies that
restriction of an exon’s expression to fewer and fewer tissues
may require more regulatory sites.
These data also suggest several questions about ancestral

alternative splice forms previously characterized by many
groups [4–6,10,17,26]. Ancestral alternative splicing events
(defined as alternative splicing observed in more than one
species, and thus likely to be inherited from the common
ancestor) show a similar profile of strong frame preservation
[4,5], particularly for ancestral minor-form exons [5]. While
the previous analysis pooled ESTs from all tissues to estimate
the overall inclusion level of an alternative exon [5], in this
study we used microarray data to obtain tissue-specific
inclusion levels measured in ten different mouse tissues.
These data show that it is not simply the overall inclusion
level, but, more importantly, tissue-switched regulation of
alternative splicing that is highly correlated with protein
modularity. Therefore, our study reveals a strong link
between protein modularity of alternative exons and tissue-
specific regulation of alternative splicing. Consistent with
previous studies, we observed that a small fraction of always
minor mouse exons were conserved in the human genome
and had a high frame-preservation ratio (3.0). One obvious
question is whether many of these apparently always minor
exons might actually be tissue-specific. Since only a small
panel of ten mouse tissues was analyzed in the Pan et al. [14]
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microarray data, it is possible that some of these exons might
be expressed as a major-form in other mouse tissues or
individual cell types. A second possibility is that they are
associated with transient regulatory events (i.e., a specific
cellular activation state), rather than an individual tissue.
Finally, the fact that these exons are conserved between
human and mouse and have a high frame-preservation ratio
similar to that previously reported for ancestral alternative
splicing events [5] suggests that they may also be alternatively
spliced in other species (such as human).

A minority of tissue-switched exons was not conserved
between mouse and human, and these exons did not exhibit
an elevated frame-preservation ratio. This raises several
questions. What is the function of these mouse-specific
tissue-switched exons, and why do they not show a bias for
protein frame preservation as is seen in the conserved tissue-
switched exons? One possibility is that the evolution of frame
preservation for a given exon may be a slow process, so
recently created, mouse-specific exons might not have had
time to be converted in substantial numbers. Another
possibility is that some of these exons may regulate function
by inducing nonsense-mediated decay, as has been proposed
by Brenner and colleagues [13,27].

Materials and Methods

Identification of alternative exons from mouse splicing microarray
profile. We identified tissue-switched alternative exons using data
from a recent microarray analysis of alternative splicing in mouse
[14]. Starting from 4,892 candidate alternative splicing events
detected in ESTs, Pan and colleagues applied a set of filters to
exclude errors and artifacts in the EST libraries. A total of 3,126
candidate alternative splicing events were included in their micro-
array design. Their dataset is thus a large and comprehensive
collection of exon skipping events in the mouse genome, represent-
ing the vast majority of such events for which there was acceptable
evidence. The exon inclusion level for these alternatively spliced
exons was determined by microarray experiments across ten tissues
[14]. Pan and colleagues assigned a confidence rank to each exon
inclusion level, based on their statistical analyses of the splicing
microarray data. According to their subsequent RT-PCR validation of
the inclusion levels, they recommended a confidence rank of top
16,000 as a cutoff for confident exon inclusion levels. We followed
this recommendation throughout this study, although our tests show
that the use of a more stringent filter does not change our results
significantly (see Discussion). We restricted our analysis to inclusion-
level measurements within the top-16,000 confidence-rank cutoff and
excluded exons with less than three tissue measurements meeting this
criterion.

Defining categories of tissue-switched exons from microarray data.
An exon was defined as the major-form in a tissue if its inclusion level
was greater than 66% in that tissue, or as the minor form if its
inclusion level was less than 34% [3]. Because we were interested in
the variations of the exon inclusion levels across multiple tissues, we
referred to an exon as always major if it was the major-form in every
tissue (with a confident exon inclusion level). Similarly, we referred to
an exon as always minor if it was a minor-form exon everywhere. We
defined an exon to be a tissue-switched exon if its inclusion level was

higher than 66% in some tissues and less than 34% in other tissues.
For tissue-switched exons, we further defined an exon as usually
major if it was a major-form exon in the majority of the tissues.
Similarly, we defined an exon as usually minor if it was a minor-form
exon in the majority of the tissues. Finally, we defined a tissue-
switched exon as intermediate if it was neither usually major nor
usually minor.

Frame-preservation ratio analysis. We defined an exon as frame-
preserving if the length of the exon was a multiple of 3 nt, and as
frame switching if not [5]. Inclusion or exclusion of a frame-
preserving exon by alternative splicing leaves the downstream
protein reading frame unchanged; for this reason, frame preservation
has been proposed by several groups as evidence that an alternative
splicing event is functional [5,6]. We calculated the frame-preserva-
tion ratio for a given set of exons as the number of frame-preserving
exons divided by the number of frame-switching exons. We
performed the Fisher exact test to assess whether the frame-
preservation ratios for two groups of exons were significantly
different.

Comparative analysis of tissue-switched exons in human and
mouse genomes. To determine whether an exon was conserved
between human and mouse, we searched the human genome using
nucleotide BLAST [28]. We defined an exon as conserved in another
genome if we obtained a significant hit (BLAST expectation value less
than 10�4) from BLASTN, aligning to the full length of the mouse
exon, with no more than 12 nt deletion. It should be emphasized that
this differs somewhat from the criteria of Modrek and Lee, whose
dataset was constrained to the subset of genes where the exons
adjacent to the alternatively spliced exon were successfully mapped
to the orthologous gene in humans [3]. Since the dataset presented
here lacks that extra constraint, it gives somewhat lower conservation
estimates than Modrek & Lee and similar conservation estimates to
Pan and colleagues [14].

For alternative exons conserved across genomes, we calculated
their percent nucleotide sequence identity between human and
mouse. We also calculated their rates of synonymous divergence (Ks),
following the protocol of Nekrutenko and colleagues [29]. Briefly,
orthologous exon sequences from human and mouse were translated
and then aligned using CLUSTALW under default parameters [30].
This protein alignment was used to seed an alignment of corre-
sponding nucleotide sequences, and gaps in the alignment were
trimmed. We estimated the Ks rate from the codon-based nucleotide
sequence alignment using the yn00 program of the PAML package
[31,32]. This method takes into account the transition/transversion
bias and codon usage bias for estimating Ks. We performed the
Wilcoxon rank sum test to assess whether the nucleotide sequence
identity or Ks rate for different groups of exons showed a statistically
significant difference.
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