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Emotions can be perceived through the face, body, and whole-person, while previous
studies on the abstract representations of emotions only focused on the emotions of the
face and body. It remains unclear whether emotions can be represented at an abstract
level regardless of all three sensory cues in specific brain regions. In this study, we used
the representational similarity analysis (RSA) to explore the hypothesis that the emotion
category is independent of all three stimulus types and can be decoded based on the
activity patterns elicited by different emotions. Functional magnetic resonance imaging
(fMRI) data were collected when participants classified emotions (angry, fearful, and
happy) expressed by videos of faces, bodies, and whole-persons. An abstract emotion
model was defined to estimate the neural representational structure in the whole-brain
RSA, which assumed that the neural patterns were significantly correlated in within-
emotion conditions ignoring the stimulus types but uncorrelated in between-emotion
conditions. A neural representational dissimilarity matrix (RDM) for each voxel was then
compared to the abstract emotion model to examine whether specific clusters could
identify the abstract representation of emotions that generalized across stimulus types.
The significantly positive correlations between neural RDMs and models suggested
that the abstract representation of emotions could be successfully captured by the
representational space of specific clusters. The whole-brain RSA revealed an emotion-
specific but stimulus category-independent neural representation in the left postcentral
gyrus, left inferior parietal lobe (IPL) and right superior temporal sulcus (STS). Further
cluster-based MVPA revealed that only the left postcentral gyrus could successfully
distinguish three types of emotions for the two stimulus type pairs (face-body and body-
whole person) and happy versus angry/fearful, which could be considered as positive
versus negative for three stimulus type pairs, when the cross-modal classification
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analysis was performed. Our study suggested that abstract representations of three
emotions (angry, fearful, and happy) could extend from the face and body stimuli
to whole-person stimuli and the findings of this study provide support for abstract
representations of emotions in the left postcentral gyrus.

Keywords: emotion, representational similarity analysis, fMRI, abstract representation, whole-brain searchlight

INTRODUCTION

The ability to understand the feelings of other people is part
of successful social interactions in our daily life. Emotions
can be perceived from various sensory cues, such as facial
expressions, hand gestures, body movements, emotional whole-
persons and vocal intonations (Gelder et al., 2006; Heberlein and
Atkinson, 2009). These different sensory cues could elicit very
similar emotions suggesting that the brain hosts “supramodal”
or abstract representations of emotions regardless of the sensory
cues. For example, fear can be recognized similarly from the
eye region of faces, or postures and movements of body parts,
suggesting that emotions might be represented at an abstract
level. Numerous considerable efforts have been devoted to
identify this kind of abstract representations that are invariant
to the sensory cues (Peelen et al., 2010; Aube et al., 2015; Kim
et al., 2015, 2017). Previous studies suggested that the medial
prefrontal cortex (MPFC) contained representations of emotions
that were invariant to perceptual modality (Peelen et al., 2010;
Chikazoe et al., 2014) and generalized to emotions inferred in the
absence of any overt display (Skerry and Saxe, 2014). And the
neural representations in the MPFC and left superior temporal
sulcus (STS) have been suggested to be modality-independent but
emotion-specific (Peelen et al., 2010). By examining the neural
representations of categorical valence (positive, neutral, and
negative) elicited by visual and auditory modalities, modality-
general representations were discovered in some specific regions,
including the precuneus, bilateral MPFC, left STS/postcentral
gyrus, right STS/middle frontal gyrus (MFG), inferior parietal
lobe (IPL), and thalamus (Kim et al., 2017). Moreover, emotions
were demonstrated to be indeed represented at an abstract level
and the abstract representations could also be activated by the
memories of an emotional event (Kim et al., 2015).

Although it has been demonstrated that facial and bodily
emotions can be represented at an abstract level regardless of
the sensory cue in specific brain regions (Peelen et al., 2010;
Klasen et al., 2011; Chikazoe et al., 2014; Skerry and Saxe, 2014;
Aube et al., 2015; Kim et al., 2017; Schirmer and Adolphs,
2017), the abstract representation is only elicited using one single
face or body parts for the visual cue, suggesting that emotions
could be similarly perceived by emotional faces or bodies.
However, behavioral studies have suggested that the human
brain can encode the whole-person expressions in a holistic
rather than part-based manner (Soria Bauser and Suchan, 2013).
Neuroimaging studies have also shown that body-selective areas
preferred the whole-person to the sum of their parts (McKone
et al., 2001; Maurer et al., 2002; Zhang et al., 2012). Another
recent study found a preference of the whole-body to the sums

of their scrambled parts in some body-sensitive areas (Brandman
and Yovel, 2016), indicating a holistic representation of the
whole-person expression. Therefore, the emotions of whole-
person expressions should be explored individually rather than in
an integrated way from the isolated emotional faces and bodies.
Further, one of our latest study has found that in the extrastriate
body area (EBA), the whole-person patterns were almost equally
associated with weighted sums of face and body patterns, using
different weights for happy expressions but equal weights for
angry and fearful ones (Yang et al., 2018). So, it remains unclear
how the whole-person’s emotion is represented in the human
brain and whether the representations of emotions of the face,
body, and whole-person expressions can be abstractly formed in
specific brain regions.

A series of previous neuroimaging studies have utilized
traditional univariate analyses to explore the cognitive
mechanism of emotions, such as the general linear model
(GLM). The GLM is voxel-based by estimating the activation
of each voxel from specific experimental conditions, and only
the statistically significant voxels were reported, which led to the
loss of the fine-grained pattern information (Haynes and Rees,
2006; Norman et al., 2006). At present, advanced approaches
such as multivoxel pattern analysis (MVPA) or representational
similarity analysis (RSA) (Nikolaus et al., 2008) allows us to
decode the pattern information across the whole brain. As
compared with the multivariate decoding method that extracted
features from multidimensional space and resorted to categorical
judgment, RSA can provide us richer information on neural
representations, which provides a framework for characterizing
representational structure and for testing computational models
of that structure (Hajcak et al., 2007; Kriegeskorte and Kievit,
2013). And it decodes neural information from the perspective
of multivariate patterns and bridges the gap between different
regions, subjects and species. In RSA, neural activity patterns
can be abstracted from specific brain regions and then the
dissimilarities of neural activity patterns elicited by different
stimuli or conditions are computed. The representational
dissimilarity matrices (RDMs) of the conditions characterize
the information carried by a given representation in the brain.
The neural RDMs can then be compared to the dissimilarity
space captured by a specific model to test whether specific brain
regions could match the representation of the model successfully.
The significant correlations between neural RDMs and models
suggested that the model could decode neural information
of specific brain regions. And RSA has also been used to go
beyond classification to test specific alternative models of the
dimensions that structure the representation of others’ emotions,
indicating that our knowledge of others’ emotions is abstract
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and high dimensional (Skerry and Saxe, 2015). Moreover, RSA
could provide a novel method to investigate the representational
structure down to the level of individual perspective rather than
broad categorical information.

Although the representation of the human emotional
expressions has been examined in many studies, it is not clear
how the brain forms abstract emotional representations from
whole-person’s stimuli and whether specific brain regions could
show emotion-specific but stimulus category-independent (body,
face, and whole-person) representations. Hence, in this study,
we hypothesized that the emotion category was independent
of three different perceptual cues (body, face, and whole-
person) and could be decoded based on the activity patterns
from different emotions. Functional magnetic resonance imaging
(fMRI) data were collected when participants classified emotions
(angry, fearful, and happy) expressed by videos of faces, bodies
and whole-persons. First, we conducted the RSA to examine
whether some specific brain regions contained emotion-specific
but stimulus category-independent representations of perceived
emotions. One possible abstract representation of emotions is
that the neural patterns are significantly correlated in within-
emotion conditions across stimulus types but uncorrelated
in between-emotion conditions. To test this hypothesis, the
dissimilarity matrix was first established for the abstract emotion
model and then the searchlight-based RSA was performed
to calculate the correlations between the dissimilarity matrix
capturing the model and the neural dissimilarity matrix of each
voxel across the whole brain. Then the cross-modal MVPA
was performed as the additional validation analysis on the data
to verify whether the clusters identified by whole-brain RSA
were truly informative to abstract representations of emotions.
A further univariate analysis was finally conducted to explore
the differences between the mean activation patterns of the
significant clusters in different conditions.

MATERIALS AND METHODS

Participants
Twenty-four healthy volunteers were recruited in this study.
All participants were right-handed, with normal or corrected-
to-normal vision, and all declared having no history of
neurological or psychiatric disorders. Four participants were
excluded due to movement artifacts and twenty participants
were finally included in the further analysis (10 females, mean
age 21.8 ± 1.83 years, range from 19 to 25 years). This study
was carried out in accordance with the recommendations of
Institutional Review Board (IRB) of Tianjin Key Laboratory of
Cognitive Computing and Application, Tianjin University with
written informed consent from all subjects. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by the IRB of Tianjin Key
Laboratory of Cognitive Computing and Application, Tianjin
University. A separate group of volunteers (n = 18) from
the same community participated in a preliminary behavioral
experiment to evaluate stimuli delivering emotional contents
most effectively.

Experiment Stimuli
Video clips with three emotions (happiness, anger and fear)
(Grezes et al., 2007; de Gelder et al., 2012, de Gelder et al., 2015)
were chosen from the GEMEP (GEneva Multimodal Emotion
Portrayals) corpus (Banziger et al., 2012). Twenty-four video
clips (four male and four female actors expressed each emotion)
were selected and processed in grayscale using MATLAB (Kaiser
et al., 2014; Soria Bauser and Suchan, 2015). Video clips of
emotional facial expressions and bodily expressions were cropped
using Adobe Premiere Pro CC 2014 by cutting out and masking
the irrelevant aspect with Gaussian blur masks (Kret et al.,
2011), so that non-facial body parts were not visible in clips of
emotional facial expressions and facial features and expressions
were not visible in clips of emotional bodily expressions. Also, the
face clips were magnified when necessary. All videos clips were
trimmed or combined to exactly fit the duration of 2000 ms (25
frame/s) by editing longer- or shorter-length clips, respectively.
The generated clips were finally resized to 720 pixel × 576 pixel
and presented on the center of the screen. Representative stimuli
for the main experiment were presented in Figure 1A.

The experiment included a total of seventy-two video clips
(3 emotions × 3 stimulus types × 8 videos per condition).
In advance of the current study, a behavioral experiment had
been conducted with another group of participants (8 females,
mean age: 21.9 years; 10 males, mean age: 22.4 years) without
any known difficulties in emotional processing for stimulus
validation. Raters were asked to categorize the emotional
materials with six labels (anger, surprise, happiness, sadness,
fear, and disgust) and rated the perceived emotion intensity
at a 9-point scale. For each condition, expressions were well
recognized (happy whole-person: 95%, angry whole-person: 95%,
fearful whole-person: 87%, happy face: 97%, angry face: 86%,
fearful face: 74%, happy body: 75%, angry body: 93%, fearful
body: 82%). There were no significant differences in the intensity
rates between the selected videos for three emotional expressions
[happiness versus anger: t(17) = 0.73, p = 0.465; happiness versus
fear: t(17) = 0.26, p = 0.796; anger versus fear: t(17) = 1.07,
p = 0.285].

In order to examine the quantitative differences in the amount
of movement between videos, the movement per video was
assessed by quantifying the variation for each pixel in the
intensity of light (luminance) between two adjacent frames
(Grezes et al., 2007; Peelen and Downing, 2007). For each frame,
we averaged the score (on a scale reaching a maximum of 255)
higher than 10 (10 corresponds to the noise level of the camera)
across the pixels to estimate movements. Then, these scores
were averaged for each video. No significant differences were
observed between all three emotional expressions [happiness
versus fear: t(23) = 1.639, p = 0.108; happiness versus anger:
t(23) = 0.833, p = 0.409; anger versus fear: t(23) = 2.045,
p = 0.091].

Procedure
The procedure consisted of four runs (Figure 1B), each starting
and ending with a 10 s fixation. Three emotions (happiness,
anger, and fear) expressed by three stimulus types (face, body,
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FIGURE 1 | Representative stimuli and paradigm of the experiment design.
(A) Three stimulus types (face, body, and whole person) expressing three
emotions (happy, angry, and fearful) were used in the experiment. The faces
and bodies were masked with Gaussian blur masks; (B) A schematic
overview of the presentation timing for emotion judgment task. Participants
performed four fMRI runs, each starting and ending with a 10 s fixation
baseline period. Emotions expressed by three stimulus types (face, body, and
whole-person) were presented in each of the first three runs. The last run, only
used emotions expressed by the whole-person. Within each run, 18 blocks of
eight trials of the same category were pseudo-randomly presented. These
blocks were separated by 10 s fixation interval (a black cross was presented
for 9 s, followed by a white cross presented for 1 s to control subjects’
attention). Each trial consisted of a 2 s video, followed by a 0.5 s interval. At
the end of each block, participants were asked to make a choice between
three emotions using a button press within a 2 s response window.

and whole-person) were presented in each of the first three runs.
In the fourth run, only three kinds of the whole-person emotions
(happiness, anger, and fear) expressed by the whole-person were
presented. Within each run, eighteen blocks with eight trials were
pseudo-randomly presented. These blocks were separated by a
10 s fixation interval (a black cross presented for 9 s and a white
cross presented for 1 s to control subjects’ attentions). Each trial
consisted of a 2 s video, followed by a 0.5 s inter-stimulus interval

(ISI). At the end of each block, participants were asked to make
a choice between three emotions using a button press within
a 2 s response window. One block-designed localizer run was
also performed, in which the stimuli included 4 types of static
or dynamic faces, bodies, whole-persons, and objects. This run
contains a total of 16 blocks (4 types × dynamic/static × repeat
2 times), and these blocks including 8 trials (1.5 s each) were
separated by 10 s fixation interval. Each trial consisted of a 1.4 s
stimulus, followed by a 0.1 s ISI.

Data Acquisition
Functional images were acquired using a 3.0 T Siemens scanner
in Yantai Hospital Affiliated to Binzhou Medical University with
a twenty-channel head coil. Foam pads and earplugs were used to
reduce the head motion and scanner noise (Liang et al., 2017).
For functional scans, an echo-planar imaging (EPI) sequence
was used (T2∗ weighted, gradient echo sequence), with the
following parameters: TR (repetition time) = 2000 ms, TE (echo
time) = 30 ms, voxel size = 3.1 mm × 3.1 mm × 4.0 mm, matrix
size = 64 × 64, 33 axial slices, 0.6 mm slices gap, FA = 90◦. In
addition, a high-resolution anatomical image was acquired using
a three-dimensional magnetization-prepared rapid-acquisition
gradient echo (3D MPRAGE) sequence (T1-weighted sequence),
with the following parameters: TR = 1900 ms, TE = 2.52 ms,
TI = 1100 ms, voxel size = 1 mm × 1 mm × 1 mm, matrix
size = 256 × 256, FA = 9◦. The stimuli were displayed by
high-resolution stereo 3D glasses of VisualStim Digital MRI
Compatible fMRI system.

Data Analysis
Behavioral Measures
For each participant, the response time and recognition accuracy
of three kinds of emotions by three kinds of stimulus types were
calculated. Then an analysis of variance (ANOVA) was performed
on the accuracies to test the main effect and interactions between
the factors Emotion and stimulus Category. Paired t-tests were
further performed to examine the differences between all three
emotions. The statistical analysis was performed using the SPSS
18 software.

Data Preprocessing
Functional images were preprocessed and analyzed using
the SPM8 software package1 and MATLAB software (The
Math Works). The first five volumes corresponding to the
baseline of each run for all functional data were discarded
to allow for equilibration effects. Slice-timing corrected
and spatially realigned to the first volume for head-motion
correction were performed for the remaining 283 volumes.
Subsequently, the T1-weighted images were segmented into
the gray matter, white matter and cerebrospinal fluid (CSF) for
normalization after being co-registered to the mean functional
images. Then the generated parameters were used to spatially
normalize the functional images into the standard Montreal
Neurological Institute (MNI) space at an isotropic voxel size of
3 mm × 3 mm × 3 mm. Especially, the images in the first four

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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FIGURE 2 | Flow chart of the main analytical steps. There were three kinds of main procedures. The dissimilarity matrix was first established for the abstract emotion
model and then the representational similarity analysis (RSA) was performed to calculate the correlations between the dissimilarity matrix capturing the model and
the neural dissimilarity matrix of each voxel across the whole brain. Then the cross-modal multivoxel pattern analysis (MVPA) was performed as the additional
validation analysis to verify whether the clusters identified by whole-brain RSA were truly informative to abstract representations of emotions. A further univariate
analysis was then conducted to explore the differences between the mean activation patterns of the significant clusters identified from the MVPA procedure.

runs and the functional localization run were smoothed with
a 4-mm full-width at half-maximum (FWHM) Gaussian filter
(Zhang et al., 2016; Liang et al., 2018). Before the further analysis,
fMRI data were fitted with a GLM to obtain regressors for all
nine experimental conditions (happy face, angry face, fearful
face, happy body, angry body, fearful body, happy whole-person,
angry whole-person, and fearful whole-person). The GLM was
constructed to model the data for each participant and the
subsequent analysis was conducted on each of the first three
runs, generating nine activation patterns in total. The sources
of nuisance regressors along with their time derivatives were

removed through the linear regression, including six head
motion correction parameters, and averaged signals from the
white matter and CSF (Xu et al., 2017; Geng et al., 2018). The
main analytical steps included in this study were shown in
Figure 2. In the searchlight analysis and cluster-based MVPA,
only the data of the first three run were used.

Representational Similarity Analysis
To localize regions that supported abstract representation of
three emotions generalize across three stimulus types, the whole-
brain RSA was performed, in which the RSA framework for the
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FIGURE 3 | Representational similarity analysis model and neural
representational dissimilarity matrices (RDMs). For one abstract emotion
model (A) and three neural representation of three clusters (B–D), the
representational dissimilarity matrices were calculated. The model is indexed
at two levels in the order in which experimental conditions are rearranged:
emotion (happy, angry, and fearful) and stimulus category (F: face B: body W:
whole-person). The model dissimilarity matrix illustrates hypothetical
correlations of different activity pattern, for example, significant similarity
between pair of conditions that from the same emotion (happy–happy pair or
angry–angry pair or fearful–fearful pair) should be observed in the abstract
emotion model. The neural RDMs illustrate the actual representation of these
three brain areas.

whole brain “searchlight” analysis was constructed using the RSA
toolbox (Nili et al., 2014). To estimate the neural representational
structure of the brain, a dissimilarity matrix was established for
the abstract emotion model as follows: the model was established
by setting 0 for all conditions of within-emotion across stimulus
types (i.e., happy face-happy body pair or angry face-angry
whole-person pair) and 1 anywhere else. In other words, setting
1 for all conditions of between-emotion (i.e., happy face-angry
face pair or happy face-angry body pair), as shown in Figure 3A.
Considering that the diagonal entries were not relevant to the
hypothesis, they were set as NaNs for the model and excluded
from the following analysis.

In whole-brain searchlight analysis, a spherical volume-
based searchlight approach (Kriegeskorte et al., 2006) was
used. For each participant and each voxel in the brain, we
selected a searchlight of 9-mm radius and established the neural
dissimilarity matrix for this sphere with the following procedures:
for each of the nine stimulus conditions (3 emotions × 3 stimulus
types), the neural activity patterns estimated by GLM were
extracted from this sphere. Pair-wise dissimilarities were then
computed between each of two different activity patterns using
the correlation distance (1 minus the Pearson correlation) based
on the pattern of GLM weights across conditions, resulting in
a symmetrical 9 × 9 RDM for each participant. To examine
whether the representations were independent of stimulus types

and to what extent the abstract emotion model could account for
neural pattern information, we then computed the Kendall’s rank
correlation coefficient (tau a) between the searchlight sphere and
the abstract emotion model using the values derived from the
upper triangles of neural RDMs and RDM of abstract emotion
model. After that, the generated coefficients were assigned to
the center voxel of the sphere in each searchlight analysis. This
computational procedure was repeated across the whole brain
for each individual, generating a whole-brain correlation map (r-
map) for each participant (Nili et al., 2014). The group analysis
was conducted based on the statistical r-maps, treating subjects
as a random effect. One-side Wilcoxon sign-rank analysis was
used to test in which voxel the correlation between the observed
neural RDM and predicted model was significant by thresholding
at p < 0.01 with a minimum cluster-size of 30 (resampled)
contiguous voxels.

Cluster-Based MVPA
In the cluster-based analysis, the cross-modal MVPA was
performed as an additional validation analysis to verify whether
the clusters identified by the searchlight analysis were truly
informative to abstract representations of emotions, where the
validation analysis is necessary because the identified significant
searchlight clusters are not guaranteed to be informative (Etzel
et al., 2013). There were two main functions in our verification
analysis. First, Type I error was prevented which might falsely
infer the existence of modal-generic voxels that is not existent
by requiring this analysis to confirm the effect. Second, like the
posthoc testing of a common effect, the specific nature of the
representation of emotions was tested to better describe these
effects. Crucially, this analysis did not introduce any new effects,
but could rather clarify the nature of the observed effects and
serve as a conservative criterion for identifying these effects.
The MVPA method used in the current study is similar to
those methods that have been successfully used in the previous
exploration of affective space (Baucom et al., 2012; Shinkareva
et al., 2014; Kim et al., 2017). A logical regression classifier was
used for the cross-modal classification to examine the abstract
representation of emotions at the group level (Bishop, 2006).
In details, the data of the three stimulus types (face, body,
and whole-person) were extracted separately, each of which
contained the data of three emotional types. Then the logistic
classifier was trained from the data of one stimulus type (i.e.,
face), and then the data of the other stimulus type (i.e., body
or whole-person) was used as a test set. The logistic classifier
was trained/tested separately for each cluster. We made a two-
way classification analysis (happy versus angry/fearful, which
could be considered as positive versus negative: P vs. N) and a
three-way classification (happy versus angry versus fearful: H vs.
A vs. F) analysis, which decomposed the data in an orthogonal
manner. Classification accuracies were averaged across two cross-
validation folds (i.e., face to body and vice versa) for each
participant. For each participant, the significant cross-modal
classification provides strong evidence of the structural validity
of the classification, as the classification is unlikely to be driven
by associated variables, such as lower-level features (e.g., motion,
brightness, hue, etc.) between different stimulus types. For the
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classification analysis between three emotional conditions, the
one-sample t-test analysis was conducted to assess whether the
group mean accuracy was significantly higher than the chance
level (0.33). For the P vs. N classification analysis, half of the data
for anger and fear conditions declined randomly, with each cross-
validation equal to the baseline and therefore the chance level was
0.5. A one-sample t-test was also used to examine the significance
of the group mean accuracy (the chance level was 0.5).

Analysis of the Differences Between Mean Activation
Patterns
A further univariate analysis was conducted to explore the
differences between the mean activation patterns of the
significant clusters identified from the MVPA procedure in
different conditions. For each cluster, the beta values were
averaged across voxels for each condition as described in
previous studies (Peelen et al., 2010; Kim et al., 2015). The
generated mean activation values for each cluster were input
into a 3 emotions × 3 stimulus types ANOVA. To test whether
there were significant differences between the emotion-specific
activations across stimulus types, we examined whether the
mean activations estimated by the beta values in these clusters
were more similar for within-emotion response than between-
emotion response. To this end, for each participant, the mean
response magnitudes in three stimulus types (faces, bodies, and
whole-persons) were subtracted from the data. Subsequently, we
compared the absolute differences between the same emotion
across different stimulus types (e.g., happy faces vs. happy bodies)
and the absolute differences between different emotions across
different stimulus types (e.g., happy faces vs. fearful bodies).

RESULTS

Behavior Analysis
The recognition accuracies of facial, bodily, and whole-person’s
emotions were at a relatively high level (mean accuracy = 98.0%,
SD = 5.3) (happy faces: 100%, angry faces: 97.5%, fearful
faces: 96.7%, happy bodies: 97.5%, angry bodies: 97.5%, fearful
bodies: 96.7%, happy whole-persons: 100%, angry whole-persons:
98.8%, and fearful whole-persons: 97.1%). The 3 × 3 ANOVA
was performed on the accuracies with the factors Emotion
(happy, angry, and fearful) and stimulus Category (face, body,
and whole-person), without significant main effect for Emotion
[F(2,38) = 2.98, p = 0.063] and stimulus Category [F(2,38) = 1.03,
p = 0.367], nor any significant interaction effect between these
factors [F(4,76) = 0.69, p = 0.599]. The 3 × 3 ANOVA of
the response time with the factors Emotion (happy, angry,
and fearful) and stimulus Category (face, body, and whole-
person) showed no significant main effect for stimulus Category
[F(2,38) = 1.91, p = 0.162] but for Emotion [F(2,38) = 20.53,
p < 0.001], nor any significant interaction between these
factors was observed [F(4,76) = 1.91, p = 0.118]. Additionally,
we performed paired comparisons among three emotions
irrespective of the stimulus category. The results showed that
the response time of the subjects to happy emotions was shorter
than that to angry emotions [t(19) = 3.98, p = 0.001] or fearful

TABLE 1 | Mean emotion identification accuracies and corresponding response
times.

Emotion Category Recognition rate (%) Response time (ms)

Mean SD Mean SD

Happy Face 100 0 713.74 163.39

Body 97.50 6.11 669.36 160.87

Whole-person 100 0 675.25 155.35

Angry Face 97.50 6.11 808.22 235.30

Body 97.50 6.11 762.83 227.69

Whole-person 98.75 3.05 767.05 224.22

Fearful Face 96.67 6.84 809.54 234.73

Body 96.67 6.84 825.16 220.20

Whole-person 97.08 5.59 836.10 210.54

emotions [t(19) = 6.15, p < 0.001]. In addition, they responded to
angry emotions significantly faster than fearful ones [t(19) = 2.75,
p = 0.013]. Table 1 showed the statistical details of the group-
level behavioral data. In the emotion identification task, the
recognition accuracies and response times for the nine conditions
of the subjects were shown in Table 1.

Searchlight Similarity Analysis
In the searchlight similarity analysis, we compared the neural
RDMs with the hypothetical abstract emotion model across the
whole brain. The abstract emotion model was established by
setting 0 for all conditions of within-emotion across stimulus
types and 1 for all conditions of between-emotion, as shown in
Figure 3A. The model RDM were indexed at two levels in the
order where experimental conditions were rearranged: emotion
(happy, angry, and fearful) and stimulus category (face, body,
and whole-person). The model dissimilarity matrix illustrated
the hypothetical correlations of different activity patterns for
each condition, for example, the significant similarity between
pair of conditions that from the same emotion (happy–happy
pair or angry–angry pair or fearful–fearful pair) was observed in
the abstract emotion model. Then the correlation map (r-map)
for each participant was obtained and the random-effect group
analysis (N = 20) was performed on the individual correlation
map, revealing that all three clusters were significantly correlated
with the abstract emotion model (p < 0.01, cluster size >30):
left postcentral gyrus (−39, −21, 36), left IPL (−30, −54, 54),
and right STS (51, −9, −24), as shown in Figure 4. The neural
RDMs of the three clusters illustrated the actual representation
of these brain areas. The neural RDMs, like the model, were
also indexed at two levels) (Figures 3B–D). We discovered that
the RDMs of specific brain regions were similar to the model
to a certain extent. The correlations between within-emotions
conditions were relatively high. For example, the correlations
between three types of stimuli for the within-angry emotion
conditions were relatively higher than the between-emotion
conditions. The whole-brain searchlight analysis revealed that
the abstract emotion model was positively related to the neural
similarity in the left postcentral gyrus, left IPL, and right STS. The
significantly positive correlations between the model and neural
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FIGURE 4 | Results of representational similarity analysis of whole-brain
searchlight showing the significant clusters of abstract representation of
emotion. For abstract representation of three emotions, three clusters are
significantly correlated with the abstract emotion model: the left postcentral
gyrus, inferior parietal lobe (IPL), and right superior temporal sulcus (STS)
which are shown on axial and sagittal slices. One-side Wilcoxon sign-rank test
was used in the second-level group analysis and p-map generated by
thresholding at p < 0.01 with a minimum cluster-size of 30 contiguous voxels.

TABLE 2 | Significant clusters (p < 0.01, cluster size >30) correlated with the
abstract emotion model from searchlight analysis.

Anatomical
region

Hemisphere Cluster
size

MNI coordinates peak

x y z intensity

Postcentral
gyrus

L 323 −39 −21 36 28.99

STS R 48 51 −9 −24 15.61

IPL L 34 −30 −54 54 17.65

The cluster size indicates number of voxels; STS, superior temporal sulcus; IPL,
inferior parietal lobe; R, right; L, left.

RDMs suggested an abstract representation of emotions in these
three regions. Table 2 depicted the detailed MNI coordinates of
these clusters.

Cluster-Based Cross-Modal MVPA
Cluster-based MVPA was conducted as a validation analysis
to test whether clusters identified by the searchlight analysis
contained information on the type of emotions, as proposed by
Etzel et al.’s (2013) “Confirmation Test.” The clearest evidence
for an abstract representation of emotions is that the searchlight
similarity analysis and MVPA converged on the same result,
in other words, the clusters selected by the searchlight analysis
could successfully distinguish either P vs. N or H vs. A vs. F for
the cross-modal classification. Therefore, we only included those

clusters that could distinguish either P vs. N or H vs. A vs. F
using MVPA for any two or three of these three stimulus type
pairs (face-body, face-whole person, and body-whole person).
The clusters, which could not distinguish both P vs. N and H
vs. A vs. F for all three pairs, were excluded from the further
analysis. Classifying angry and fearful stimuli together versus
happy stimuli (P vs. N) is important because the variation in
this dimension clearly distinguishes bivalent representations and
some brain regions may not be fine-grained to classify the three
emotions, but can sort out different valences.

The cross-modal classification accuracies of three types of
emotions for the three stimulus type pairs were higher than
the baseline (0.33) for the left postcentral gyrus (face-body pair:
38.18, face-whole person pair: 34.29, body-whole person pair:
36.42) but lower for the STS and IPL. Similarly, the classification
accuracies of P vs. N for three stimulus type pairs were higher
than the chance level (0.5) for the left postcentral gyrus (face-
body pair: 55.35, face-whole person pair: 52.92, body-whole
person pair: 55.52) but not for the STS and IPL. Details were
shown in Table 3. Additionally, one-sample t-tests in the left
postcentral gyrus found that the classification accuracies for the
face-body pair [t(19) = 3.70, p = 0.002] and body-whole person
pair [t(19) = 4.15, p = 0.001] were significantly higher than
0.33 as distinguishing three types of emotions, and significantly
higher than 0.5 as distinguishing P vs. N for the face-body pair
[t(19) = 4.14, p = 0.001], face-whole person pair [t(19) = 2.16,
p = 0.044] and body-whole person pair [t(19) = 5.83, p < 0.001],
indicating that the left postcentral gyrus was informative on the
type of emotions of all three stimulus types (face, body, and
whole-person). The remaining two clusters could not distinguish
the P vs. N or H vs. A vs. F significantly for any of the three pairs
(p > 0.05).

Mean Activation in the Identified Clusters by the
Searchlight Analysis
The mean activation was extracted from the left postcentral gyrus
by averaging the stimulus-related activations (as estimated from
the GLMs) across all the voxels (Figure 5). The 3 × 3 ANOVA
for parameter estimates of mean activation with the factors
stimulus Category (face, body, and whole-person) and Emotion
(happiness, anger, and fear) showed a main effect for Emotion

TABLE 3 | Classification accuracies from cross-modal MVPA for each searchlight
cluster.

Clusters Hemisphere H vs. A vs. F P vs. N

F-B F-W B-W F-B F-W B-W

Postcentral
gyrus

L 38.18∗ 34.29 36.42∗ 55.35∗ 52.92∗ 55.52∗

STS R 33.04 31.17 32.85 52.02 50.46 49.15

IPL L 33.06 31.29 32.21 51.56 48.25 48.69

The cluster size indicates number of voxels; STS, superior temporal sulcus; IPL,
inferior parietal lobe; ∗p < 0.05; R, right; L, left; H vs. A vs. F, happy versus angry
versus fearful; P vs. N, happy versus angry/fearful which could be seen as positive
versus negative; F-B, F-W, and B-W indicate the three stimulus type pairs (face-
body, face-whole person, and body-whole person).
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FIGURE 5 | Mean activation (parameter estimates) for each experimental condition in the left postcentral gyrus. The mean activation was extracted from the left
postcentral gyrus by averaging the stimulus-related activations [as estimated from the general linear models (GLMs)] across all the voxels. We found that the mean
activations in all of the stimulus conditions were below the baseline. Error bars show SEM.

[F(2,38) = 7.34, p = 0.002] and a weak trend towards main effect
for stimulus Category [F(2,38) = 3.07, p = 0.058], and a weak
trend towards interaction between these factors [F(4,76) = 2.18,
p = 0.079] in the left postcentral gyrus, suggesting that the
activation differences between the emotions differed in all three
modalities. To further confirm whether there were the emotion-
specific activation differences across stimulus types, we tested
whether the average activations estimated by the beta values
in the left postcentral gyrus were more similar for the within-
emotion response than between-emotion response. If the mean
activation values carried emotion-specific information, the mean
within-emotion response difference should be smaller than the
mean between-emotion response difference. However, the results
showed that the mean within-emotion response difference was
equivalent to the mean between-emotion response difference for
all three stimulus type pairs in the postcentral gyrus (p > 0.05, for
all tests). Thus, this confirmed that the mean response amplitude
values might not provide emotion-specific information across
different stimulus types.

DISCUSSION

In this study, we used a searchlight-based RSA to investigate
the regions that could represent emotions independent of the
stimuli (body, face, and whole-person) mediating the emotions.
The searchlight RSA with an abstract emotion model identified
three clusters (left postcentral gyrus, left IPL, and right STS) that
contained information about specific emotions regardless of the
type of stimulus. Furthermore, the additional validation analysis
found that the neural activity pattern in the left postcentral gyrus
could successfully distinguish the happy versus angry/fearful
conditions (positive versus negative, P vs. N) for all the three
stimulus type pairs and three types of emotions (H vs. A vs. F)
for two stimulus types pairs (body versus face and body versus

whole-person), when the cross-modal classification analysis was
performed. The other two clusters could not make a successful
classification of the P vs. N or H vs. A vs. F for any of the
three pairs. Therefore, the results further confirmed that the left
postcentral gyrus played a crucial role in emotion representation
at an abstract level. The univariate analysis showed that the mean
within-emotion response difference was significantly smaller
than that between-emotion response difference for all three
stimulus type pairs in the left postcentral gyrus. This further
confirmed that the left postcentral gyrus was truly informative
of emotions of face, body and whole-person. Therefore, these
findings provide evidence for emotion-specific representations in
the left postcentral gyrus independent from the stimulus types
(body, face, and whole-person) that conveyed the emotions.

Representations of the Facial, Bodily,
and Whole-Person’s Emotions
The main goal of this study was to explore the regions that
could represent emotions at an abstract level. Using a searchlight-
based RSA, the left postcentral gyrus was identified to be capable
of distinguishing three types of emotions for face-body pair
and body-whole person pair and distinguishing happy versus
angry/fearful (like positive versus negative) for all the three pairs.
The left postcentral gyrus has often been shown to be involved
in emotion processing (Viinikainen et al., 2010; Baucom et al.,
2012; Kassam et al., 2013; Sarkheil et al., 2013; Flaisch et al.,
2015; Kragel and LaBar, 2015). And it also has been found to be
involved in emotional face and body processing (van de Riet et al.,
2009) and the recognition of vocal expressions. One latest study
confirmed the successful decoding of the affective category from
perceived cues (facial and vocal expressions) by the activation
patterns in the left postcentral gyrus, which was consistent with
our study (Kragel and LaBar, 2016). Another recent research
identified that the postcentral gyrus was critical for valence
decoding. Furthermore, in the postcentral gyrus, the information
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about valence (positive, neutral, and negative) was represented in
activation patterns elicited by viewing photographs of different
affective categories (Baucom et al., 2012), which was consistent
with the present study. The postcentral gyrus also has been
implicated in the perception of emotions based not just on
facial expressions, but also on vocal prosody and whole-person’s
expressions, when subjects made emotion judgments (Heberlein
and Atkinson, 2009). Consistent with our study, it indicated that
the role of the postcentral gyrus in emotion recognition extended
to recognizing whole-person emotional expressions. A previous
finding revealed an interaction effect between emotion type
and intensity corresponding to level of aversiveness in the
postcentral gyrus when decoding dynamic facial expressions
(Sarkheil et al., 2013). In contrast, our study only focused on the
change in the emotion type, keeping the intensity unchanged.
But we still found the abstract representation of face, body
and whole-person in postcentral gyrus when the emotions were
classified, suggesting that the extended cortical networks might
be involved in processing the highly integrated information
of face, body or whole-person stimuli. The postcentral gyrus
also has been shown to make a consistent contribution to the
cross-condition classification of four basic emotions induced
by the video clips and imagery through emotion words. It
indicated that the neural signatures were consistent within
different emotions from video and imagery and suggested that
the abstract representation of emotions was independent of
the emotion induction procedure within the postcentral gyrus
(Saarimaki et al., 2016). Consistent with this interpretation,
our current results provide further evidence for the role of
the left postcentral gyrus in abstract emotional processing by
encoding emotional information regardless of the stimuli types
(face, body, and whole-person). Furthermore, one recent study
examined the neural representations of the categorical valence
(positive, neutral, and negative) elicited by visual and auditory
stimulus modalities, suggesting evidence for modality-general
representations in the left postcentral gyrus (Kim et al., 2017).
This finding directly compared different valence states, but
specific emotional categories were not considered. Our study
provided further evidence for the role of the left postcentral gyrus
in abstract emotional processing by encoding three emotions
(happiness, anger, and fear) expressed by different stimulus
types. The searchlight-based RSA revealed an emotion-specific
but stimulus category-independent neural representation in
the left postcentral gurus. Our study suggested that abstract
representations of emotions could extend from the face and body
stimuli to whole-person stimuli. In summary, the findings of the
current study provide support for the left postcentral gyrus for
abstract representations of emotions.

The cross-modal classification of three emotions found that
the mean accuracy was not significant for the face-whole person
pair in the left postcentral gyrus. We speculated that as most of
the low-level features (e.g., motion, brightness, hue, etc.) could
not be shared between these two stimulus types, the effect of low-
level features on a logical regression classifier trained from one
stimulus type (face or whole-person) might not play a role in the
testing of the other stimulus types (whole-person or face). In this
study, only the construct of visual emotions were represented,

which was easier to be influenced during the classification of
three emotions. As previously demonstrated, this is because the
encoding of the visual affect might be highly affected by the lower-
level features in the visual modality (e.g., motion, brightness,
hue, etc.) (Gabrielsson and Lindström, 2001; Lakens et al.,
2013). Therefore, the differences between the stimuli of different
emotional categories may be due to the accompanying differences
of lower-level features rather than the emotional differences,
which led to the classification performance for the face-whole
person pair was not significant. Another possibility is that the
left postcentral gyrus may not be fine-grained to classify the
three emotions, but can sort out different valences (Peelen et al.,
2010; Baucom et al., 2012; Kim et al., 2017). In recent researches,
the postcentral gyrus was proved to be critical for valence
decoding (Baucom et al., 2012; Kim et al., 2017), but insensitive to
specific emotion categories, which could not successfully decode
the specific affective categories from perceived cues (facial,
bodily and vocal expressions) when the cross-modal classification
analysis was performed (Peelen et al., 2010). In our present study,
the left postcentral gyrus could still distinguish three types of
emotions using MVPA for the two stimulus type pairs (face-body
and body-whole person) and P vs. N for all the three stimulus type
pairs, indicating that the left postcentral gyrus was informative
to emotion representation of all three stimulus types (face, body,
and whole-person) (Heberlein and Atkinson, 2009; Kragel and
LaBar, 2016; Kim et al., 2017).

Regions Where Emotions Could Not Be
Represented
The searchlight-based RSA revealed that the neural RDMs of
the IPL and rSTS were significantly correlated with the abstract
emotion model. But both clusters could not make a significant
classification between all three kinds of emotions and P vs. N for
any of the three stimulus type pairs, suggesting that the significant
correlations between neural RDMs of the IPL and rSTS and the
abstract emotion model possibly arose from the overpowered
nature of the searchlight analysis. Because the Type I error
which might falsely infer the existence of modal-generic voxels
that is not existent when the searchlight analysis was performed
(Kim et al., 2017). And it might cause us to conclude that the
hypothetical effects or relationships exist but in fact it doesn’t.
Therefore, our finding indicated that the IPL and rSTS might not
contain enough information to make an abstract representation
for facial, bodily, or whole-person’s feelings.

The IPL and rSTS have been demonstrated that facial and
bodily emotions can be coded at an abstract level regardless
of the sensory cue in previous studies (Peelen et al., 2010;
Watson et al., 2014; Jessen and Kotz, 2015; Kim et al., 2017), but
these studies have focused only on the abstract representations
elicited from single face or body parts. Furthermore, our
study confirmed the unsuccessful cross-modal decoding of the
affective category from perceived cues (facial, bodily, and whole-
person’s expressions) by the activation patterns in the IPL and
rSTS, suggesting that the abstract representations of emotions
might not extend from the face and body stimuli to whole-
person stimuli in both clusters. However, the latest evidence
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for modality-general representations in the IPL and rSTS has
been confirmed by examining the neural representations of the
categorical valence (positive, neutral, and negative) by visual
and auditory stimulus modalities. Similarly, the inferior parietal
cluster didn’t show significant P vs. N (positive versus negative)
or PN vs. 0 (positive/negative versus neutral) classification which
was consistent with our study, but significant information from
multidimensional scaling (MDS) (Kim et al., 2017) results for
both P vs. N and PN vs. 0 representations. The confirmatory MDS
analyses confirmed that this cluster is informative to valence
representation, which might not be applicable to our results,
because three kinds of visual stimuli were used in our experiment
without auditory stimuli. Similarly, future work is needed to
model the similarity structure dimensionally using a MDS
method for our two clusters to reveal the underlying mechanisms
when perceiving the emotions of face, body and whole-person,
and to explore whether both clusters could represent all three
stimulus types’ emotions at an abstract level.

Behavioral and neuroimaging studies have suggested that the
human brain could encode whole-persons in a holistic rather
than part-based manner (McKone et al., 2001; Maurer et al., 2002;
Zhang et al., 2012; Soria Bauser and Suchan, 2013), indicating that
the whole-person’s emotional expression might not be integrated
from the isolated emotional faces and bodies. Our latest study has
found that in the EBA, the whole-person patterns were almost
equally associated with weighted sums of face and body patterns,
using different weights for happy expressions but equal weights
for angry and fearful ones (Yang et al., 2018), but this was not
established for the other regions. Although some other regions
like MPFC, left STS and precuneus have been demonstrated to be
capable of coding the facial and bodily emotions at an abstract
level regardless of the sensory cue (Peelen et al., 2010; Klasen
et al., 2011; Chikazoe et al., 2014; Skerry and Saxe, 2014; Aube
et al., 2015; Kim et al., 2017; Schirmer and Adolphs, 2017), these
regions that were not sensitive to whole-person stimuli might not
be able to represent the emotions of whole-person stimuli (Tsao
et al., 2003; Pinsk et al., 2005; Heberlein and Atkinson, 2009).
A recent study found that there existed a cross-modal adaptation
in the right pSTS using dynamic face-to-voice stimuli, suggesting
the presence of integrative, multisensory neurons in this area
(Watson et al., 2014). Similar results were observed when body-
to-voice stimuli were used (Jessen and Kotz, 2015). It indicated
that the integration of different stimulus types might attribute
to interleaved populations of unisensory neurons responding to
face, body or voice or rather by multimodal neurons receiving
input from different stimulus types. By examining the adaptation
to facial, vocal and face-voice emotional stimuli, the multisensory
STS showed equally adaptive responses to faces and voices, while
the modality-specific cortices, such as face-sensitive and voice-
sensitive cortices in STS, showed a stronger response to their
respective preferred stimuli (Ethofer et al., 2013). Hence, the
IPL and rSTS that have been demonstrated to be capable of
representing facial and bodily emotions at an abstract level might
not had the integrative, multisensory neurons which can adapt to
whole-persons’ emotion. Therefore, the IPL and rSTS might not
be able to represent the emotions extending beyond face and body
stimuli to whole-person stimuli.

Limitation
There are several limitations to be addressed in this study. The
first one is that the emotional state was expressed only via the
visual modality. Therefore, our results may not be generalized
to other modalities, such as auditory or tactile emotional stimuli.
The purpose of our study was to investigate whether there were
specific regions that could represent whole-person’s emotions
with facial and bodily emotion expressions abstractly. Three
types of emotional stimuli of visual modality were used in our
study. However, as there is no auditory or tactile condition,
our research is limited to a certain extent. Future work is
needed to explore the cross-modal representation of emotions.
Another limitation is that the generality of our findings may
be influenced by the relatively small sample size (N = 20) for
functional MRI studies on healthy participants. To verify whether
the number of participants was valid, the pre-determined sample
size was computed with a priori power analysis which was
conducted using the statistical software G∗Power2. The analysis
showed that the sample size of this study was moderate and our
results remained valid and efficient. Although many studies on
the emotional expressions had comparative sample size (Peelen
et al., 2010; Kim et al., 2015, 2016, 2017), a larger sample size
could better prove the effectiveness of our findings and a bigger
statistical power can be obtained. So, replicating this study with
a larger number of participants appears considerable in the
future work. In addition, examining the potential of age-related
differences between different age groups is also an issue worthy
of study in the future.

CONCLUSION

We found emotions can be represented at an abstract level
using three emotional stimuli in the left postcentral gyrus,
left IPL and rSTS by using a whole-brain RSA. These three
clusters probably contain emotion-specific but stimulus category-
independent representations of perceived emotions (happy,
angry, and fearful). Further cluster-based MVPA revealed that
only the left postcentral gyrus could distinguish three types
of emotions and happy versus angry/fearful which could be
considered as positive versus negative for the two or three
stimulus type pairs. Future research will be needed to model the
similarity structure dimensionally using a MDS method for the
IPL and right STS to reveal the underlying mechanisms when the
face, body and whole-person expressions are perceived.
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