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Background. The number of multislice computed tomography (MSCT) analyses performed for planning structural heart
interventions is rapidly increasing. Further automation is required to save time, increase standardization, and reduce the
learning curve. Objective. The purpose of this study was to investigate the feasibility of a fully automated artificial intelligence
(AI)-based MSCT analysis for planning structural heart interventions, focusing on left atrial appendage occlusion (LAAO) as
the selected use case. Methods. Different deep learning models were trained, validated, and tested using a cohort of 583 patients
for which manually annotated data were available. These models were used independently or in combination to detect the
anatomical ostium, the landing zone, the mitral valve annulus, and the fossa ovalis and to segment the left atrium (LA) and left
atrial appendage (LAA). The accuracy of the models was evaluated through comparison with the manually annotated data.
Results. The automated analysis was performed on 25 randomly selected patients of the test cohort. The results were compared
to the manually identified landmarks. The predicted segmentation of the LA(A) was similar to the manual segmentation (dice
score of 0.94 + 0.02). The difference between the automatically predicted and manually measured perimeter-based diameter was
—0.8 + 1.3 mm (anatomical ostium), —1.0 + 1.5 mm (Amulet landing zone), and —0.1 + 1.3 mm (Watchman FLX landing zone),
which is similar to the operator variability on these measurements. Finally, the detected mitral valve annulus and fossa ovalis
were close to the manual detection of these landmarks, as shown by the Hausdorff distance (3.9 + 1.2 mm and 4.8 + 1.8 mm,
respectively). The average runtime of the complete workflow, including data pre- and postprocessing, was 57.5 + 34.5 seconds.
Conclusions. A fast and accurate Al-based workflow is proposed to automatically analyze MSCT images for planning LAAO.
The approach, which can be easily extended toward other structural heart interventions, may help to handle the rapidly
increasing volumes of patients.

1. Introduction

During the last decade, there has been an exponential growth
in the number of structural heart interventions, largely
driven by the widespread adoption of transcatheter aortic
valve replacement (TAVR) [1]. A continued growth can be
expected in the coming years due to a further expansion of
TAVR in combination to significantly increase volumes for
several other interventions, such as left atrial appendage
occlusion (LAAO) and transcatheter mitral valve repair and
replacement (TMVR).

Medical imaging is of utmost importance for all these
structural heart interventions, from preprocedural planning
to intraprocedural guidance and postprocedural follow-up.
A wide variety of imaging modalities can be used during
these different stages. Notably, many centers rely on mul-
tislice computed tomography (MSCT) for preprocedural
planning [2, 3]. Driven by the enormous growth in structural
heart interventions, there has been a steep increase in the
number of MSCT analyses that need to be performed. Given
that the currently available software solutions only provide
semi-automated workflows, further automation is required.
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This may not only help to save a considerable amount of time
but can also result in more standardization and a shorter
learning curve for a starting operator.

An MSCT analysis for planning structural heart inter-
ventions—whether this is TAVR, LAAO, or any other
procedure—typically requires identifying certain anatomical
landmarks and deriving measurements from these land-
marks, in order to assess the procedural risks and to guide
device selection and sizing. In addition, a segmentation or
3D volume reconstruction of certain anatomical structures is
sometimes performed to better understand the patient’s
anatomy. With the recent advances in artificial intelligence
(AI), it has become possible to automate all these tasks
(landmark identification, measurements, and 3D recon-
struction) [4, 5].

The aim of this study was to investigate the feasibility of a
fully automated Al-based MSCT analysis for planning
structural heart interventions, focusing on LAAO as the
selected use case.

2. Methods

This retrospective study was performed using MSCT images
acquired for the preoperative planning of the LAAO. The full
cohort contains 583 distinct MSCT datasets collected from
41 different medical centers. The patient cohort is charac-
terized by a mean age of 76.5 £ 7.9 years, and 44.9% of male
and 24.7% of female patients (gender unknown in 30.4% of
the patients).

2.1. MSCT Analysis for LAAO in Clinical Practice. A typical
MSCT analysis for the preprocedural planning of LAAO
involves several aspects [3, 6]. The size of the left atrial
appendage (LAA) is assessed by identifying the 3D planes
defining the entrance of the LAA (i.e., anatomical ostium)
and a device-specific landing zone, and by performing
measurements in these planes. The depth of the appendage is
also measured, to understand whether the LAA is deep
enough to host the selected device. To plan the transseptal
puncture site, the fossa ovalis is identified as a 3D curve on
the interatrial septum. Locating the mitral valve annulus can
also be useful to assess whether there could be any potential
interaction between the implanted occluder and the mitral
valve. Finally, a 3D model reconstruction of the left atrium
(LA) and the LAA is often generated through image seg-
mentation techniques to better understand the patient’s
anatomy. The described anatomical landmarks and mea-
surements are depicted together with the 3D model of the
LA(A) in Figure 1.

2.2. Manual MSCT Analysis Available as Ground Truth.
Manually annotated or “ground truth” data have been
produced by trained professionals for all the above-
mentioned landmarks and the 3D segmentation of the
LA(A), using the Materialise Mimics Innovation Suite 21
(Materialise, Leuven, Belgium), according to the indications
provided in the instruction for use of the devices and in the
most relevant literature of the field [3]. Not all annotations
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are available for all patients as some were added at a later
stage of the study.

For 25 patients, three trained professionals identified the
ostium and landing zone planes independently and per-
formed the related measurements. This provides interop-
erator variability data that allow to correctly interpret the
accuracy of the deep learning models.

2.3. Automated MSCT Analysis. Four distinct application
types based on deep learning are used independently or in
combination to provide the required output for the ana-
tomical analysis: segmentation, point detection, curve de-
tection, and plane detection. The complete data flow, starting
from the resampled MSCT data, is shown in Figure 2. The
deep learning models used here are based on the NiftyNet
implementation [6] (variations of DenseVNet [5]), where
the prior and the initial average pooling layer can be omitted.
Other strategies were investigated, but none gave compa-
rable results in terms of accuracy.

For each application, the amount of data used for the
training, validation, and testing of the deep learning models
was 80%, 10%, and 10%, respectively. Data were randomly
distributed over these three different groups.

The train and validate set are used during the training
and hyperparameter optimization of the deep learning
models, while the test set is an “unseen” dataset used to
assess model accuracy. For the purpose of this manuscript, a
fixed group of 25 randomly selected patients was used in the
test cohort for all applications. The average age in this test set
is 77.35 + 8.22 years. The gender distribution is 52% of male
patients, 16% of female patients, and 32% of unknown
patients. For the same 25 patients, the manual annotations
obtained from different operators were used in the inter-
operator variability study to assess the accuracy of the au-
tomated ostium and landing zone plane detection and the
related anatomical measurements. This condition does not
alter the data distribution across the groups, but it ensures a
meaningful comparison of the results.

In order to automatically perform the above-described
anatomical analysis for LAAO, a preprocessing step of the
MSCT data is required. Initially, one cardiac phase has to be
selected. This step is performed manually, and it is not
included in the “automatic analysis workflow” described
here. As part of the automatic process, firstly the MSCT
volume needs to be resampled to an isotropic resolution and
voxel size (different values depending on the specific ap-
plication). Once the MSCT volumes are isotropic, they are
resized or cropped to an application-specific input shape.
The difference between resizing and cropping is illustrated in
Figure 3.

The following sections provide more details regarding
the four different types of applications.

2.3.1. Segmentation. Segmentation is the task of assigning a
specific label to each part of the input. In this case, the input is
a 3D volume and the segmentation output is a 3D volume of
the same shape, with a label identifier assigned to each voxel
inside the volume. The manually obtained segmentation
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Anatomical ostium
Dmin = 20.9 mm
Dmax = 31.6 mm

Landing zone
Dmin =21.1 mm
Dmax = 26.3 mm

(f)

FIGURE 1: Anatomical structures and landmarks identified by the model. (a) 3D model reconstructed from the segmentation of the left
atrium and left atrial appendage, where the landmarks of the anatomical ostium (blue), landing zone (green), fossa ovalis (yellow), and
mitral annulus (red) are reported. (b) Fossa ovalis region indicated on the DICOM (yellow). (c) Mitral annulus indicated on the DICOM
(red). (d) Anatomical ostium and landing zone indicated on the DICOM (blue and green, respectively). (e) Anatomical ostium plane.

(f) Landing zone plane (Amulet device).

masks describe which voxels are part of the LA(A), and these
data are used to train a deep learning model. An example of
the LA(A) mask is shown in Figure 4(a). When applying the
trained deep learning model, a probability mask is returned,
describing the probability that a certain voxel belongs to the
LA(A) label. Postprocessing of the model output is required to
binarize the obtained probability mask. Given a threshold, all
probabilities in the mask below this threshold are set to label
zero, while all values equal to or higher than the threshold are
set to label one. The resulting segmentation mask is the
volume described by all the voxels with label one. To obtain a
higher precision mask, the deep learning mask is combined
with masks obtained through image analysis techniques (such
as water shedding).

2.3.2. Point Detection. In order to detect a 3D point within
the MSCT volume, the location of the manually identified
point is used to generate a segmentation mask by assigning a
predefined label to a spherical region around the point
(highlighted in dark red in Figure 4(b)). Deep learning models
are then trained to return a probability mask of that same
region. Postprocessing is similar as compared to the seg-
mentation application, with the additional step of taking the
centroid of all the similar labels to obtain a 3D point. This 3D
point detection is used to identify specific regions of interest

in the MSCT data for further processing as shown in Figure 2.
For example, the centroid of the mitral valve is detected in
order to crop the MSCT data around the mitral valve, which is
then used to identify the mitral valve annulus. This appli-
cation type is based on the work of Astudillo et al. [8].

2.3.3. Curve Detection. The manually identified curves
(fossa ovalis or mitral annulus) are used to generate a
segmentation mask by sweeping a sphere along the curve
with an application-dependent radius. This results in a to-
rus-shaped segmentation mask (Figure 4(c)). The proba-
bility mask returned by a trained deep learning model is
transformed into a 3D curve using graph-based techniques,
as described in the work of Astudillo et al. [9].

2.3.4. Plane Detection. Plane detection is fundamental to
derive the diameter measurements used by physicians to
understand the size of the LAA. The manually identified
planes (such as the anatomical ostium and landing zone) are
used to split the manually obtained LA(A) segmentation
mask into two regions, as shown in Figure 4(d). Using this
input, deep learning models are trained to assign voxels
within the LA(A) to one of these two labels. Subsequently,
the connecting boundary between the voxels annotated by
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right) depending on the application at hand. Resizing keeps the
entire data but in a smaller format. Cropping takes out a region of
interest without any resizing.

these labels can be extracted using imaging processing
techniques and used to fit a plane.

2.4. Derived Measurements. Using the items described
above, additional output required for the preoperative
planning can be extracted. For each of the detected planes
(ostium and landing zones), a closed curve describing the
boundary of the appendage in the predicted planes is derived
using the LA(A) segmentation and four diameters are cal-
culated (area-based, perimeter-based, minimum, and
maximum diameters).

The LAA depth (for Amulet devices) can also be derived,
calculated as the distance between the centroid of the

anatomical ostium plane and its projection to the LAA
surface, at the roof of the LAA. With a similar procedure, the
LAA depth (for Watchman FLX devices) can be derived, by
calculating the distance between the landing zone centroid
and the LAA tip.

2.5. Evaluation Metrics. Depending on the application, the
prediction is evaluated using different metrics. Segmenta-
tions are evaluated by the Serensen-Dice coefficient [10, 11],
while for point detections, the Euclidean distance between
the predicted and ground truth curves is used.

The curve detection models are assessed with the Eu-
clidean distance between the centroids of the predicted and
ground truth curves. This metric provides information about
the accuracy of the location of the detected curve. In ad-
dition, the Hausdorff distance [12] and the difference in
diameter of the predicted and ground truth curves are
calculated to assess the accuracy of the shape of the curve.

The detected planes are evaluated using the angle between
the predicted and ground truth planes. In addition, the Eu-
clidean distance between the centroid of the closed curve
describing the boundary of the appendage in the predicted and
ground truth planes is calculated to assess the location error.

2.6. Quality Control. For the purpose of this manuscript, the
results reported in the following sections do not include any
quality check step or manual modifications, to ensure that
the accuracy of the models is calculated without any sub-
jective corrective action. The processing time reported refers



Journal of Interventional Cardiology

FiGure 4: Different ground truth masks created for the AI model trainings, overlaid on top of the DICOM images. (a) Segmentation of the
left atrium and left atrial appendage. (b) Point detection, where the dark red region (label) represents the spherical region around the point,
and the bright red dot is the centroid of the mask identified as output. (c) 3D curve detection. (d) Plane detection, where the different labels

are identified with different colors.

to the automatic tasks only, even though manual steps (e.g.,
phase selection) are still required in the preprocessing phase.

3. Results

The automated analysis was completed for the patients in-
cluded in the test cohorts (n=25). The average runtime of
the complete workflow, including data pre- and post-
processing, was 57.5 + 34.5 seconds when executed on a GPU
server with 4 GPUs (2x Nvidia GeForce RTX 2080 ti, 1x
Nvidia GeForce RTX 2070 SUPER, and 1x GeForce GTX
TITAN X) and 64 GB RAM, using TorchServe [13]. The time
spent by qualified professionals to perform the same tasks
manually was approximately 10-15 minutes per patient.
The accuracy of the different applications is provided in
the following paragraphs. For each patient, the comparison
between the automatic and the manual analyses has been
performed on images of the same cardiac phase.

3.1. LA(A) Segmentation. The mask resulting from the deep
learning models and the image analysis techniques is evaluated

for the 25 patients on whom the interoperator variability study
was performed. The mean Dice score is 0.94 + 0.02.

3.2. Plane Detections and Related Measurements. The pre-
diction of the anatomical ostium and landing zone planes, as
well as the resulting anatomical measurements, is evaluated
using the interoperator variability data that were conducted
on 25 patients. Table 1 provides an overview of all the results
using the data from observer 1 as the comparator. It can be
observed that the differences between the model predictions
and observer 1 are very similar to the differences between the
different observers, both in terms of the derived measurements
as well as for the location and orientation of the detected planes.
Scatter and Bland-Altman plots are provided in Figure 5 for
the perimeter-based diameter at the ostium and the different
landing zone planes. Figure 6 shows the manually identified
and predicted curves for one randomly selected patient.

3.3. Mitral Valve Annulus. The mean diameter difference of
the detected mitral valve annulus is 0.1 + 0.9 mm for the test
set, while the mean Hausdorff distance is 3.9 + 1.2 mm. This
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TaBLE 1: Overview of the differences between the manual analysis from observer 1 (obs1), the model predictions, and the manual analyses of
observer 2 (obs2) and 3 (obs3). The differences are reported as mean + standard deviation.

Model vs. obsl

Obs2 vs. obsl Obs3 vs. obsl

Anatomical ostium plane

Area-based diameter (mm) -0.8+1.3 -0.8+1.2 -0.4+1.1
Perimeter-based diameter (mm) -0.8+1.3 -0.8+1.3 -0.4+1.2
Maximal diameter (mm) -0.9+2.0 -09+1.6 -0.6+1.6
Minimal diameter (mm) -0.6+1.1 -0.6+1.1 -0.1+£0.8
Centroid (mm) 1.9+1.0 1.9+0.9 1.7+0.7
Angle [’] 6.5+2.9 6.0+£3.0 6.5+3.4
Landing zone plane (amulet)

Area-based diameter (mm) -0.9+1.5 -0.2+0.6 03+1.0
Perimeter-based diameter (mm) -1.0+1.5 -0.2+0.6 03+1.0
Maximal diameter (mm) -1.2+2.0 -04+1.1 02+1.3
Minimal diameter (mm) -0.6+1.7 0.0+0.9 0.6+0.9
Centroid (mm) 1.8+1.1 1.7+ 0.9 1.5+0.8
Angle [°] 8.3+5.1 6.6+3.7 89+3.6
Landing zone plane (Watchman FLX)

Area-based diameter (mm) -01+1.2 02+1.0 0.7+0.9
Perimeter-based diameter (mm) -0.1+1.3 01+1.1 0.8+1.0
Maximal diameter (mm) 01+1.7 02+1.9 09+1.5
Minimal diameter (mm) -02+14 0.0+£0.9 0.6+1.0
Centroid (mm) 1.8+1.5 20+1.3 2.0+£1.0
Angle ['] 7.8+5.1 7.7+4.7 84+49

means that the shape of the predicted mitral valve annulus is
accurately predicted. The location error is represented by the
mean distance error between the ground truth and the
centroids of the predicted curve. This error is 1.2 + 0.8 mm
and confirms the location accuracy of the predicted curve.
Figure 7 shows a qualitative comparison of the predicted and
ground truth mitral annulus curves for nine randomly se-
lected patients included in the test set.

3.4. Fossa Ovalis. For the test set, the fossa ovalis mean
diameter difference is —2.7+4.2mm, with a Hausdorff
distance of 6.7 £ 5.1 mm. The Euclidean distance error on the
centroid of the curve is 4.1 + 5.0 mm. Of note, the region of
the fossa ovalis is clearly visible only if there is sufficient
contrast filling in the right atrium. The MSCT acquisition
protocols vary from center to center, and not for all patients
the contrast sufficiently reaches the right atrium for the
identification of a proper fossa ovalis. This explains why for
the fossa ovalis the performance of the model is lower than for
the mitral annulus. When excluding from the analysis the 4
DICOM datasets with poor contrast filling in the right heart,
the mean diameter difference is reduced to —2.1 + 3.0 mm,
with a Hausdorft distance of 4.8+1.4mm. The Euclidean
distance error on the centroid of the curve is 2.3 + 1.0 mm.

In Figure 8, a qualitative comparison of the prediction
and the ground truth is given for nine patients randomly
selected from the test set.

4, Discussion

4.1. Preoperative LAAO Anatomical Analysis Tool. Several
Al-powered models have been reported in the literature
[14, 15], and tools and platforms are described offering

semi-automated analysis, based on 3D echocardiography
[16] and MSCT images [17]. Commercially available soft-
ware exists, allowing for a predefined workflow for the
preoperative planning of LAAO procedures, where the
physician still needs to interact with the tool and provide
manual input to the software.

In this work, we presented a framework consisting of
several Al-based applications, to allow for the automatic
anatomical analysis needed for the preoperative planning of
the LAAO. After the preprocessing phase to ensure image
selection and standardization, no interaction or input is
required to generate the results. The proposed method is
based on MSCT scans, which provide high spatial resolution.
The availability of larger portions of the heart compared to
3D echocardiography allows the inclusion of relevant
structures such as the fossa ovalis contour, for transseptal
puncture planning. The proposed method is independent
from the origin of the data, MSCT machinery manufacturers,
and MSCT acquisition protocol, as the model has been
developed and tested on a large database spanning a wide
range of parameters for the abovementioned characteristics.

The presented framework is fast (I minute vs. 10-15
minutes of manual work), accurate, and is built on a large
database (>500 MSCT scans), providing a solid base for the
Al-based models. This framework can easily be extended to
other structural heart disease interventions. The availability
of such an analysis for physicians ensures a fast and accurate
anatomical analysis, which is crucial for a successful and
efficient LAAO procedure.

Clinically, as the LAAO procedure is still not as wide-
spread as TAVR, the learning curve of preprocedural
planning in low-volume centers can be long and difficult.
The availability of an automatic tool for the preoperative
anatomical analysis may not only result in more
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FI1GURE 5: Overview of the results obtained for the comparison between the AI models and one of the manually identified measurements. All
graphs report the results obtained for the perimeter-based diameter of the indicated cross-section (a-b: anatomical ostium, c-d: landing zone
Amulet, e-f: landing zone Watchman FLX). Graphs (a-c-e) scatter plot with R Pearson coefficient. Graphs (b-d-f) Bland-Altman analysis

with mean value and limits of agreement.
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FIGURE 6: Example of the ostium and landing zone curves in the detected planes for 1 patient. The black curve shows the predicted curve,
while the curves from the three different observers are shown in gray. (a) Anatomical ostium plane. (b) Landing zone plane (Amulet).

(c) Landing zone plane (Watchman FLX).

-

-

FiGure 7: Mitral valve annulus curves for nine randomly selected
patients of the test dataset. The manually detected and the predicted
curve are displayed in gray and black, respectively.

0Q0
000

O

FIGURE 8: Fossa ovalis curves for nine randomly selected patients
from the test dataset. The manually detected and the predicted
curve are displayed in gray and black, respectively.

standardization across different operators but may also
shorten the learning curve during initiation of the programs.

4.2. Quality Control and User Interaction. As stated before, all
the results presented here are calculated in a fully automated
manner, to prove the accuracy of the models. When the

applications described are translated into clinical practice
tools, the interaction with the user or the physician remains
fundamental. As the preoperative planning of a procedure
relies on the extensive experience of the operator, it is the
authors’ vision that the physician should always be able to
interact with the provided results, and to modify them if
needed. For example, a way to deliver the Al results would be
the inclusion of the described models into a user-friendly
interface, where the operator can inspect, review, and modify
the preoperative landmarks and measurements if needed.

Furthermore, to ensure the applicability of the developed
methodology regardless of infrastructure limitations, such a
model could be integrated into a cloud-based service/plat-
form, which is easily accessible and removes several con-
straints on hardware availability and maintenance.

4.3. Extension to Other Fields of Application. The work
presented for LAAO preprocedural planning serves as a use
case to demonstrate the availability, accuracy, and speed of the
developed Al-based applications. Additional features to the
workflow can be easily integrated, to expand the preoperative
planning even further. Relevant additions are the LAA cen-
terline detection, to understand the tortuosity of anatomies
and the positioning of the delivery system; to investigate the
trajectory between the transseptal puncture location and the
access to the LAA, and computational simulations [18]; and to
calculate the physical interaction between the virtually
deployed device and the anatomical structures.

Similar algorithms can be used for other interventions,
where preoperative planning of transcatheter procedures
based on MSCT images is mandatory. For TAVR, this may
be very useful considering the large number of MSCT an-
alyses that need to be performed in high-volume centers [4].
It also has the potential to significantly speed up the
planning of procedures such as TMVR, where multiple
analyses at different phases of the cardiac cycle are required,
resulting in a relatively time-consuming process [7, 9].

4.4. Current Limitations. The current study logically has
some limitations. The interoperator variability study con-
ducted as a comparator included only a limited cohort of
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patients (n=25). For a stronger comparison and dedicated
statistical subanalyses to detect potential patterns in the
automated landmark detection, a larger cohort of patients
should be analyzed by qualified operators.

From a clinical point of view, the models have been
presented and validated for the LAAO use case. The ex-
tension to other structural heart interventions might require
the implementation of additional models, to deliver all the
relevant landmarks and parameters necessary for the
planning of the corresponding procedures.

5. Conclusion

This manuscript presents a fast and accurate Al-based
workflow, to automatically analyze MSCT images for pre-
procedural planning of LAAO interventions. The approach,
which can be easily extended to other structural heart in-
terventions, may help to handle the rapidly increasing
volumes of patients, to speed up the manual process of
anatomical analysis, and to facilitate the preoperative
planning for transcatheter procedures.
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