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Simple Summary: The aim of this study was to explore the regulatory effect of gga-miR-449b-5p on
GC proliferation and steroidogenesis in laying hens. Our results showed that gga-miR-449b-5p had
no effect on the proliferation of GCs, but regulated the expression of key genes involved in steroid
synthesis and the secretion of P4 and E2. In addition, gga-miR-449b-5p could target IGF2BP3 and
inhibit its mRNA and protein expression. Therefore, we concluded that gga-miR-449b-5p played an
important role in the synthesis of steroid hormones in laying hens.

Abstract: MiRNAs have been found to be involved in the regulation of ovarian function as important
post-transcriptional regulators, including regulators of follicular development, steroidogenesis, cell
atresia, and even the development of ovarian cancer. In this study, we evaluated the regulatory role of
gga-miR-449b-5p in follicular growth and steroid synthesis in ovarian granulosa cells (GCs) of laying
hens through qRT-PCR, ELISAs, western blotting and dual-luciferase reporter assays, which have
been described in our previous study. We demonstrated that gga-miR-449b-5p was widely expressed
in granulosa and theca layers of the different-sized follicles, especially in the granulosa layer. The
gga-miR-449b-5p had no significant effect on the proliferation of GCs, but could significantly regulate
the expression of key steroidogenesis-related genes (StAR and CYP19A1) (p < 0.01) and the secretion
of P4 and E2 (p < 0.01 and p < 0.05). Further research showed that gga-miR-449b-5p could target
IGF2BP3 and downregulate the mRNA and protein expression of IGF2BP3 (p < 0.05). Therefore, this
study suggests that gga-miR-449b-5p is a potent regulator of the synthesis of steroid hormones in
GCs by targeting the expression of IGF2BP3 and may contribute to a better understanding of the role
of functional miRNAs in laying hen ovarian development.
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1. Introduction

The egg production performance of laying hens depends on the function of ovaries
and the developmental ability of follicles, which are regulated by a complex and delicate
network. Many studies have shown that the synthesis of steroid hormones in follicular
theca cells (TCs) and granulosa cells (GCs) is essential for the regulation of follicular
development and maturation, cell proliferation, differentiation and apoptosis [1–4].

The hypothalamic-pituitary-ovarian axis plays an important role in the reproduction
of animals by regulating steroid hormone synthesis. However, numerous studies have
proven that ovarian steroidogenesis is also regulated by various factors in the ovary, includ-
ing key steroidogenesis-related genes, hormones and other regulatory factors. In general,
hormones can exert their biological effects only when they specifically combine with their
receptors to form hormone-receptor complexes. Progesterone (PR), androgen (AR) and
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estrogen (ER) receptors are located in the nucleus of GCs and TCs and bind specifically to
hormones to form hormone receptor complexes, which are involved in follicular growth
and development, maturation and ovulation, as well as the synthesis of steroids [5–8].
The genes such as steroidogenic acute regulatory protein (StAR), cytochrome P450 fam-
ily 11 subfamily A member 1 (CYP11A1), 3β-hydroxysteroid dehydrogenase (3β-HSD),
and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) are directly involved in
the synthesis of progesterone and estrogen [9–12]. In addition, several regulatory factors,
such as IGF-1, EGF, TGF-β, and SF-1, and transcription factors (CATA-4/6, FOXL2, WT-1,
DAX-1, AP-1, and SP-1) [13–15] regulate the expression of ovarian steroid synthesis genes
as well as hormone secretion by activating multiple molecular signaling pathways. Thus, it
is necessary to explore the further regulatory mechanism of steroid synthesis for follicular
development and ovulation in chickens.

In recent years, many studies have reported that noncoding RNAs, such as miRNAs,
lncRNAs and circRNAs, play major roles in the regulation of the reproductive function
of laying hens [16–20]. MiRNA is a kind of noncoding small 22 nt RNA that mostly
regulates gene expression at the post-transcriptional level. By binding to the miRNA
response element (MRE) in the 3′UTR, which is the target of mRNA, miRNAs act as
negative modulators of gene expression, inhibit or silence target gene expression, and
regulate mRNA and protein expression at the mRNA and protein levels [21,22]. MiRNAs
are widely distributed in various tissues and cell types and participate in a variety of
biological regulatory processes, playing an important regulatory role in the occurrence and
development of diseases, tumors and cancers [23–25]. At present, GCs have been the main
target cells for the study of ovarian function related to miRNA regulation, particularly
in mammals. Many studies have shown that functional miRNAs play an important role
in regulating ovarian function, follicular development and atresia, cell proliferation and
apoptosis, steroid hormone synthesis and even ovarian cancer [26–29]. In mammals,
miR-383, miR-323-3p, miR-320a, miR-130a-3p, miR-1246, miR-31 and miR-20b influence
steroid hormone synthesis in granulosa cells [30–35], and miR-214-3p, miR-324-3p and
miR-335-5p promote granulosa cell proliferation in the ovary [36–38]. Unfortunately, in
poultry, the study of functional miRNAs in ovarian development and function of laying
hens still lags behind. Only a few studies have proven that miR-26a-5p, miR-1b-3p and
miR-23b-3p play an important role in the regulation of follicular development and steroid
synthesis in chickens [39–41].

In our previous study, we predicted that gga-miR-449b-5p might be involved in
the regulation of proliferation and steroid synthesis in ovaries of hens via transcriptome
sequencing analysis of hen ovarian tissue during the four classic physiological periods (15 w,
20 w, 30 w, and 68 w), which represent initial ovarian development, sexual maturation,
the peak laying period and the late laying period [42]. In another previous study, we
predicted that IGF2BP3 may be its targeted regulatory gene [20]. At present, the reports
on this gene are mainly focused on cell development, proliferation and migration [43,44],
especially in cancer development and progression [45–47], but there are few reports on the
reproduction of laying hens. Therefore, in the present study, we explored the regulatory
effect of gga-miR-449b-5p on cell proliferation and steroid synthesis and hormone secretion
in GCs and explored the relationship between gga-miR-449b-5p and IGF2BP3 in GCs to
further explore the role of gga-miR-449b-5p in ovarian function in laying hens.

2. Materials and Methods
2.1. Ethics Approval

All studies involving Hy-Line brown laying hens were approved by the regulators
for the administration of affairs concerning experimental animals (Revised Edition, 2017).
The protocols have been reviewed and approved by the Henan Agricultural University
Institutional Animal Care and Use Committee (Permit Number: 19−0068).
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2.2. Sample Collection

Forty healthy Hy-Line brown laying hens were collected at the age of 30 weeks and
euthanized by cervical dislocation, and then the whole ovaries of six laying hens were
removed. The follicles were divided into the following ten groups: small white follicles with
a diameter < 4 mm (SWF), large white follicles with a diameter of 4−6 mm (LWF), small
yellow follicles with a diameter of 6–8 mm (SYF), large yellow follicles with a diameter
of 9–12 mm (LYF), and preovulatory follicles with a diameter > 12 mm (F6-F1) [48]. The
obtained groups of follicles were placed in PBS buffer containing 3% double antibiotics to
remove the residual connective tissue and attached blood filaments. The outer membrane
layer was peeled off with curved forceps, the follicles were cut in half with scissors and
the end was gently shaken with forceps until all the white granulosa layer came out; the
remaining layer is the theca layer. After the granulosa layer or theca layer were mixed
and divided equally into 6 biological replicates, they were immediately used for gene
expression analysis. The small yellow follicles with a diameter of 6−8 mm were removed
from the remaining 34 hens and divided into 4 groups: NC group, gga-miR-449b-5p mimic
group, NCR group and gga-miR-449b-5p inhibitor group, followed by cell proliferation
assay, ELISA assay and western blotting assay.

2.3. Cell Culture

The granulosa layer of small yellow follicles with a diameter of 6–8 mm was collected
from the remaining 34 hens according to the method described above, and washed three
times in PBS buffer. All GCs were assembled in 1.5 mL centrifuge tubes, ground into a
homogeneous paste by a cell grinding rod, mixed in 15 mL centrifuge tubes and digested in
a 37 ◦C environment with 0.25% trypsin of the same volume for 10 min. After the digestion
process was completed, single cells were obtained by 200 µm filtration. The cells were
assembled by 1800 rpm centrifugation at room temperature for 5 min. After repeated
centrifugation twice, the suspended cells in complete culture medium containing 2.5% fetal
bovine serum and 1% double antibiotics were spread in a 12-well plate, which was incu-
bated in a cell incubator at 37 ◦C and 5% CO2 for 12 h and then the cells were transfected,
as previously reported [49].

2.4. RNA Extraction, cDNA Synthesis, and Quantitative Real-Time PCR (qRT-PCR)

Total RNA was extracted from GCs and TCs using TRIzol reagent (Novizan, Nanjing,
China). The purity and concentration of the RNA was determined by measuring the ratio
between the absorbance at 260 nm and 280 nm by a spectrophotometer (Thermo, Waltham,
MA, USA). All samples were of acceptable purity (the range of the absorbance ratio
from 1.9 to 2.1). cDNA was synthesized by reverse transcription with the HiScrip®®III First
Strand cDNA Synthesis Kit (Novizan, Nanjing, China) containing gDNA wiper. MiRNA
was reverse transcribed by a HiScrip®®III RT SuperMix for qPCR kit (Novizan, Nanjing,
China). The samples were stored frozen at −20 ◦C and a ChamQ Universal SYBR qPCR
Master Mix (Vazyme, Nanjing, China) was used for real-time quantitative polymerase
chain reaction (qRT-PCR). The β-actin gene was used as the reference gene for mRNA, and
U6 was used as the reference gene for miRNA. The relative quantification of related genes
and miRNAs was performed by the 2−∆∆Ct method [50]. The primer sequence information
is listed in Table 1.
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Table 1. Primer sequences.

Primer Name Primer Sequence (5′–3′) Product Length (bp) Genbank Number

CCND1
F: ATAGTCGCCACTTGGATGCT

122 NM_205381R: AACCGGCTTTTCTTGAGGGG

CCND2
F: TCCGGAAACATGCACAAACG

257 XM_015292118.2R: CCGGACTTGCCTAAGGTTGC

CDK1
F: TGGCCTTGAACCACCCATAC

147 NM_205314.1R: AGGCAGGCAGGCAAAGATAA

CDK2
F: ACGTGATCCACACGGAGAAC

132 NM_001199857R: GCAGCTGGAACAGGTAGCTC

CDK6
F: AGCAGCCCAGAAGAGATGATT

132 NM_001007892.2R: GAGAAATACGCACAAACCCTGT

StAR
F: GTCCCTCGCAGACCAAGT

196 NM_204686R: TCCCTACTGTTAGCCCTGA

CYP11A1
F: GTGGACACGACTTCCATGACT

174 NM_001001756R: GAGAGTCTCCTTGATGGCGG

3β-HSD F: TGGAAGAAGATGAGGCGCTG
185 NM_205118R: GGAAGCTGTGTGGATGACGA

CYP19A1
F: GGCCTCCAGCAGGTTGAAAG

214 NM_001001761.3R: ATAGGCACTGTGGCAACTGG

FSHR
F: GAGCGAGGTCTACATACA

281 NM_205079R: GCACAAGCCATAGTCA

LHR
F: GGGCTTTCCCAAGCCTACAT

133 NM_204936.2R: TGGTGTCTTTATTGGCGGCT

IGFBP4
F: AACTTCCACCCCAAGCAGT

123 NM_204353.1R: GCAATCCAAGTCCCCCTTCA

PGRMC1
F: AGATCGTGGGCTCACCTCTA

157 NM_001271939.1R: AGCTGCTCCAGTGTGAAGTC

MMP2
F: CGATGCTGTCTACGAGTCCC

96 NM_204420.2R: TAGCCCCTATCCAGGTTGCT

IGF2BP3
F: TCCTGGTGAAGACGGGCTAC

133 XM_015281444.4R: CTTTTAGGGACCGAATGCTC

BMP3
F: ACAGGGCAAAGAGTAAGAAAAAG

136 NM_001034819.2R: AGATAGCGTCGGGCACAATA

E2F5
F: GCCTTCCAGACTCAGTGTTG

148 NM_001030942.1R: GGCTCCTCCATCTTTGCTAT

β-actin F: CAGCCAGCCATGGATGATGA
147 NM_205518.2R: ACCAACCATCACACCCTGAT

IGF2BP3 WT
F: ccgctcgagTTACATAACACTGCCATGAATA

244 -
R: ataagaatgcggccgcAGTCCGTAGTACTCCTGGCTGG

IGF2BP3 MUT
F: ccgctcgagTTACATAATGACATAGTGAATAACCTAAGGGA

244 -
R: ataagaatgcggccgcAGTCCGTAGTACTCCTGGCTGG

MMP2 WT
F: ccgctcgagCGAGTTTGATCATTACTGCCA

337 -
R: ataagaatgcggccgcGAAAGCCTAACCAAACAAAAC

MMP2 MUT
F: ccgctcgagCGAGTTTGATCATTGACATTGTTTATTTACATAAT

337 -
R: ataagaatgcggccgcGAAAGCCTAACCAAACAAAAC

2.5. Plasmid Construction

The mimics and inhibitors of gga-miR-449b-5p and their negative controls (NC and
NCR) were synthesized by RiboBio (Guangzhou, China). The MMP2 3′UTR fragment
with binding sites was cloned into the psiCHECK-2 dual luciferase reporter vector by PCR
amplification. To construct a mutant MMP2 3′UTR vector, we designed mutant primers,
and the sequences are shown in Table 1.

2.6. Cell Transfection and Treatment

Lipofectamine 3000 reagent (Invitrogen, Carlsbad, CA, USA) was used to transfect
miRNA mimics, and a ribo FECT CP transfection kit (Guangzhou, China) was used to
transfect miRNA inhibitors. The transfection experiment was carried out according to the
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concentration recommended by the manufacturer when the density of follicular granu-
losa cells in a 12-well plate was ≥ 70%. The new complete medium was changed after
transfection for 4 h.

2.7. Cell Proliferation Assay

The GCs were spread in 12-well plates for the EdU assay. GC proliferation was mea-
sured using a Cell Proliferation EdU Image Kit (Abbkine, Wuhan, China) after transfection
for 24 h. Nuclear staining experiments were performed with 4′,6-diamidino-2-phenylindole
(DAPI, Invitrogen, Carlsbad, California USA) after two hours of incubation in the incubator.
Finally, images were captured with a fluorescence microscope (Olympus Ts2-FL, Olympus,
Shinjuku-ku, Tokyo, Japan).

GCs were evenly spread in a 96-well plate, placed in a 37 ◦C incubator containing
5% CO2 and cultured until they were transfected. The 96-well plates were removed at 12 h,
24 h, 36 h and 48 h. According to the manufacturer’s instructions, 100 µL of the original
medium was removed, while 100 µL of complete medium containing 10% CCK-8 reagent
(Dojindo, Kumamoto, Japan) was added to the incubator for an additional 2 h. Afterward,
samples were collected for enzyme labeling (BioTek, Winooski, VT, USA), and absorbance
was detected (OD value) at a wavelength of 450 nm.

2.8. Flow Cytometric Analysis

GCs were collected 24 h after transfection and washed twice with PBS. DNA was
incubated with PI (Solarbio, Beijing, China) staining solution at 4 ◦C for 30 min. GCs were
analyzed by adjusting the excitation wavelength of the flow cytometer (BD Biosciences,
San Jose, CA, USA) to Ex = 488 nm and the emission wavelength to Em = 530 nm.

2.9. ELISA for Steroid Hormones

GCs were transfected in 12-well plates for 24 h, and cell supernatants were collected.
Concentrations of progesterone (P4), testosterone (T), and estradiol (E2) were determined
by the Chicken P4, T, and E2 ELISA Kit (Jiangsu Meimian Industrial Co., Ltd., Jiangsu,
China), respectively, according to the manufacturer’s instructions (The sensitivity of ELISA
Kits of P4, T, E2 were typically less than 10 pmol/L, 1.0 pg/mL and 0.1 pg/mL; tolerance
within batch and tolerance between batches of CV < 10% and no cross-reactivity for all
three ELISA kits.).

2.10. Western Blotting Assay

The proteins from GCs were extracted at 36 h post-transfection with a RIPA lysis buffer
(Beyotime, Shanghai, China). Primary antibodies for IGF2BP3 and GAPDH were purchased
from Novusbio (Littleton, CO, USA) and Affinity (Cincinnati, OH, USA), respectively, and
were incubated with samples overnight at 4 ◦C. The secondary antibody, HRP-conjugated
goat anti-rabbit antibodies provided by Elabscience (Wuhan, China), were incubated at
room temperature for 1 h. Finally, the optical density values of the target band were
analyzed with the Odyssey FC NIR Protein Processing System (LI-COR, Lincoln, NE, USA).

2.11. Dual-Luciferase Reporter Assay

The DF-1 cell line is the most investigated and widely used chicken cell line, and its cul-
ture is the same as that reported by Himly et al.; these cells were used for the dual-luciferase
reporter assay [51]. When the DF-1 cell density was ≥ 70%, the gga-miR-449b-5p mimics or
NC was cotransfected with IGF2BP3 WT or IGF2BP3 MUT and MMP2 WT or MMP2 MUT
for 36 h using Lipofectamine 3000 reagent (Invitrogen, Carlsbad, CA, USA). Firefly and
sea kidney luciferase activities were detected by the Dual Luciferase Reporter Gene Assay
System Kit (Promega, Madison, WI, USA) according to the manufacturer’s instructions.
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2.12. Statistical Analysis

All data were statistically analyzed by SPSS package version 22.0 and are presented
as the means ± SEMs. A p value < 0.05 indicated a statistically significant difference.
GraphPad Prism 7.0 software (GraphPad Software, Inc., San Diego, CA, USA) was used for
visualization of all data for statistical purposes.

3. Results
3.1. Differential Expression of gga-miR-449b-5p in TCs and GCs at All Levels

We investigated the distribution of gga-miR-449b-5p in the TCs and GCs of follicles of
different sizes by qRT−PCR. The results showed that the expression level of gga-miR-449b-
5p was significantly higher in follicular GCs than in TCs, especially follicles with a diameter
of 4–6 mm, 6–8 mm, 9–12 mm and preovulatory follicles with a diameter > 12 mm (F6-F3)
(p < 0.01 and p < 0.05). In addition, the highest expression was found in prehierarchical
GCs (Figure 1).

Animals 2022, 12, x FOR PEER REVIEW 6 of 14 
 

The DF-1 cell line is the most investigated and widely used chicken cell line, and its 

culture is the same as that reported by Himly et al.; these cells were used for the dual-

luciferase reporter assay [51]. When the DF-1 cell density was ≥ 70%, the gga-miR-449b-

5p mimics or NC was cotransfected with IGF2BP3 WT or IGF2BP3 MUT and MMP2 WT 

or MMP2 MUT for 36 h using Lipofectamine 3000 reagent (Invitrogen, Carlsbad, Califor-

nia, USA). Firefly and sea kidney luciferase activities were detected by the Dual Luciferase 

Reporter Gene Assay System Kit (Promega, Madison, WI, USA) according to the manu-

facturer’s instructions. 

2.12. Statistical Analysis 

All data were statistically analyzed by SPSS package version 22.0 and are presented 

as the means ± SEMs. A p value < 0.05 indicated a statistically significant difference. 

GraphPad Prism 7.0 software (GraphPad Software, Inc., San Diego, CA, USA) was used 

for visualization of all data for statistical purposes. 

3. Results 

3.1. Differential Expression of gga-miR-449b-5p in TCs and GCs at All Levels 

We investigated the distribution of gga-miR-449b-5p in the TCs and GCs of follicles 

of different sizes by qRT−PCR. The results showed that the expression level of gga-miR-

449b-5p was significantly higher in follicular GCs than in TCs, especially follicles with a 

diameter of 4–6 mm, 6–8 mm, 9–12 mm and preovulatory follicles with a diameter > 12 

mm (F6-F3) (p < 0.01 and p < 0.05). In addition, the highest expression was found in prehi-

erarchical GCs (Figure 1). 

 

Figure 1. Expression of gga-miR-449b-5p in the TCs and GCs of follicles of different sizes. ** and * 

indicated that there were significant differences (p < 0.01) and significant differences (p < 0.05), re-

spectively. 

3.2. gga-miR-449b-5p Has No Effect on the Proliferation of GCs 

We investigated the role of gga-miR-449b-5p in the proliferation of GCs using qRT‒

PCR, CCK-8 assays, EdU assays and flow cytometry. The results showed that the trans-

fection efficiency of gga-miR-449b-5p was increased approximately 600-fold in GCs by the 

Figure 1. Expression of gga-miR-449b-5p in the TCs and GCs of follicles of different sizes. ** and * in-
dicated that there were significant differences (p < 0.01) and significant differences (p < 0.05), respectively.

3.2. gga-miR-449b-5p Has No Effect on the Proliferation of GCs

We investigated the role of gga-miR-449b-5p in the proliferation of GCs using qRT-PCR,
CCK-8 assays, EdU assays and flow cytometry. The results showed that the transfection
efficiency of gga-miR-449b-5p was increased approximately 600-fold in GCs by the gga-miR-
449b-5p mimic (p < 0.01) and significantly diminished by the gga-miR-449b-5p inhibitor
(p < 0.01; Figure 2a). Then, a qRT-PCR assay was used to detect the mRNA expression of
the proliferation-related genes CCND1, CCND2, CDK1, CDK2 and CDK6. We found that
the gga-miR-449b-5p mimic suppressed the mRNA expression of CCND1 and CCND2
(p < 0.05 and p < 0.05) but upregulated the mRNA expression of CDK2 and CDK6 (p < 0.01;
Figure 2b). Next, a CCK-8 analysis was performed to determine the changes in GC viability
at 12, 24, 36 and 48 h, and we found that both overexpression of and interference with
gga-miR-449b-5p had no significant effect on the viability of GCs (Figure 2c,d).



Animals 2022, 12, 2710 7 of 14

Animals 2022, 12, x FOR PEER REVIEW 7 of 14 
 

gga-miR-449b-5p mimic (p < 0.01) and significantly diminished by the gga-miR-449b-5p 

inhibitor (p < 0.01; Figure 2a). Then, a qRT‒PCR assay was used to detect the mRNA ex-

pression of the proliferation-related genes CCND1, CCND2, CDK1, CDK2 and CDK6. We 

found that the gga-miR-449b-5p mimic suppressed the mRNA expression of CCND1 and 

CCND2 (p < 0.05 and p < 0.05) but upregulated the mRNA expression of CDK2 and CDK6 

(p < 0.01; Figure 2b). Next, a CCK-8 analysis was performed to determine the changes in 

GC viability at 12, 24, 36 and 48 h, and we found that both overexpression of and interfer-

ence with gga-miR-449b-5p had no significant effect on the viability of GCs (Figure 2c,d). 

 

 

Figure 2. gga-miR-449b-5p has no effect on the proliferation of GCs in small yellow follicles (6-8 

mm). (a) The transfection efficiency of gga-miR-449b-5p mimics or inhibitor; (b) The mRNA expres-

sion of key genes related to proliferation of GCs following transfection of gga-miR-449b-5p mimics 

or inhibitor; (c, d) Cell growth curves determined by the CCK-8 assay following transfection with 

gga-miR-449b-5p mimics or inhibits in granulosa cells; (c) Proliferation of GCs was assayed using 

EdU assays after transfection with gga-miR-449b-5p mimics or inhibitor; (f, g) Cell cycle changes of 

GCs after transfection with gga-miR-449b-5p mimics or inhibitor as shown by flow cytometry. ** 

and * indicated that there were significant differences (p < 0.01) and significant differences (p < 0.05), 

respectively. 

EdU analysis was performed to detect the number of proliferating GCs after trans-

fection of cells with gga-miR-449b-5p mimics and gga-miR-449b-5p inhibitors. We found 

that neither overexpression of nor interference with gga-miR-449b-5p had a significant 

effect on the proliferation of GCs (Figure 2e). The same results were found for the flow 

cytometric assays (Figure 2f, g). These results indicated that gga-miR-449b-5p had no ef-

fect on the viability and proliferation of GCs in laying hen follicles. 

3.3. gga-miR-449b-5p Regulates Steroid Secretion by GCs 

We determined the role of gga-miR-449b-5p in P4, T, and E2 secretion in chicken 

granulosa cells using qPCR and ELISAs. The expression of key genes related to steroid 

Figure 2. gga-miR-449b-5p has no effect on the proliferation of GCs in small yellow follicles (6-8 mm).
(a) The transfection efficiency of gga-miR-449b-5p mimics or inhibitor; (b) The mRNA expression
of key genes related to proliferation of GCs following transfection of gga-miR-449b-5p mimics or
inhibitor; (c,d) Cell growth curves determined by the CCK-8 assay following transfection with
gga-miR-449b-5p mimics or inhibits in granulosa cells; (e) Proliferation of GCs was assayed using
EdU assays after transfection with gga-miR-449b-5p mimics or inhibitor; (f,g) Cell cycle changes
of GCs after transfection with gga-miR-449b-5p mimics or inhibitor as shown by flow cytome-
try. ** and * indicated that there were significant differences (p < 0.01) and significant differences
(p < 0.05), respectively.

EdU analysis was performed to detect the number of proliferating GCs after transfec-
tion of cells with gga-miR-449b-5p mimics and gga-miR-449b-5p inhibitors. We found that
neither overexpression of nor interference with gga-miR-449b-5p had a significant effect on
the proliferation of GCs (Figure 2e). The same results were found for the flow cytometric
assays (Figure 2f,g). These results indicated that gga-miR-449b-5p had no effect on the
viability and proliferation of GCs in laying hen follicles.

3.3. gga-miR-449b-5p Regulates Steroid Secretion by GCs

We determined the role of gga-miR-449b-5p in P4, T, and E2 secretion in chicken
granulosa cells using qPCR and ELISAs. The expression of key genes related to steroid
synthesis was first detected. The qPCR results showed that the overexpression of gga-miR-
449b-5p reduced the mRNA expression of StAR and CYP19A1 (p < 0.01), and interfering
with gga-miR-449b-5p had the opposite effect (Figure 3a). The ELISA results showed
that the P4 and E2 levels in the GCs after transfection with gga-miR-449b-5p mimic were
decreased (p < 0.01 and p < 0.05), while the P4 and E2 levels in the GCs after transfection
with gga-miR-449b-5p inhibitor were increased (p < 0.05 and p < 0.01; Figure 3b). These
results suggest that gga-miR-449b-5p can regulate the synthesis and secretion of steroids
and then affect the ovarian function of laying hens.
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3.4. IGF2BP3 Is a gga-miR-449b-5p Target

We examined several potential targets predicted in previous studies to be associated
with the regulatory effects of gga-miR-449b-5p on steroidogenesis, including IGFBP4,
PGRMC1, MMP2, IGF2BP3, BMP3 and E2F5. We found that the mRNA expression of MMP2
and IGF2BP3 decreased markedly after overexpression of gga-miR-449b-5p (p < 0.05 and
p < 0.01; Figure 4a). To verify which was the direct target gene of gga-miR-449b-5p, we used
a dual-luciferase reporter assay. The results showed that there was no targeting relationship
between MMP2 and gga-miR-449-5p (Figure 4b). Notably, the gga-miR-449b-5p mimic
significantly decreased the activity of WT IGF2BP3 (p < 0.01), but no significant changes
were noted for the MUT, which indicated that IGF2BP3 was directly targeted by gga-miR-
449b-5p (Figure 4c).
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target genes following transfection with gga-miR-449b-5p mimics; (b) Dual-luciferase reporter assay
of the DF-1 cell line cotransfected with gga-miR-449b-5p mimics and IGF2BP3 3′ UTR-WT or IGF2BP3
3′ UTR-MUT; (c) Dual-luciferase reporter assay of the DF-1 cell line cotransfected with gga-miR-
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3.5. Expression of IGF2BP3 Is Regulated by gga-miR-449b-5p

To test the validity of the putative target, we transfected gga-miR-449b-5p mimic or
NC and inhibitor or NCR into chicken GCs. The results showed that compared with the
gga-miR-449b-5p inhibitor NCR, the gga-miR-449b-5p inhibitor significantly increased the
protein expression of IGF2BP3 (p < 0.05), while compared with the gga-miR-449b-5p mimic
NC, the gga-miR-449b-5p mimic significantly inhibited the protein expression of IGF2BP3
(p < 0.01). These results further suggested that gga-miR-449b-5p plays a regulatory role by
targeting IGF2BP3 (Figure 5).
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Figure 5. The protein expression of IGF2BP3 in GCs of small yellow follicles (6−8 mm) transfected
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4. Discussion

The development of ovarian follicles is the basis of female animal reproduction. As
the most basic functional unit of the ovary, the granulosa layer of poultry follicles is closely
linked to the development and selection of dominant follicles. The proliferation, apoptosis
and steroid synthesis of follicular granulosa cells are not only affected by nutritional and
environmental factors but also regulated by miRNAs [52].



Animals 2022, 12, 2710 10 of 14

The miR-449b-5p has been a known regulatory function in human reproduction-related
diseases, such as breast cancer, endometrial cancer and cervical cancer. Jiang et al. found
that miR-449b-5p may inhibit the growth and invasion of breast cancer cells by inhibiting
the CREPT/Wnt/β-catenin axis [53]. Zhao et al. reported that miR-449b-5p inhibited the
proliferation of endometrial cancer cells by targeting MDM4 [54]. Another report found
that overexpression of miR-449b-5p in cervical cancer cell lines significantly inhibits cell
proliferation [55]. All the above results show that miR-449b-5p has a potentially important
influence on regulation of cell proliferation, but its role in ovarian granulosa cells needs
to be further explored. Therefore, we speculate that gga-miR-449b-5p has a similar role
in GCs. CCND1, CCND2, CDK1, CDK2 and CDK6 were reported to be marker genes
for cell proliferation, which was found in GCs [56,57]. In this study, we examined the
role of gga-miR-449b-5p in GC proliferation by marker gene-related proliferation, CCK-8,
flow cytometry and EdU experiments. Surprisingly, we found that the proliferation of
GCs was not affected by gga-miR-449b-5p mimic or inhibitor transfection, indicating that
the function of gga-miR-449b-5p in GCs is different from that of the above studies, and
this difference can be attributed to the differences between species and cell models. As
gga-miR-449b-5p was confirmed to be enriched in the pathway related to steroid synthesis,
we explored the specific role of gga-miR-449b-5p in steroid synthesis in GCs.

P4, androgen and E2 are the main steroids that play a crucial role in the regulation
of female fertility [58]. Previous reports identified an androgen receptor in GCs [59]. GCs
are believed to be mediated by follicle stimulating hormone and synthesize P4 under the
action of StAR, CYP11A1 and 3β-HSD [60,61]. In addition, P4 is a precursor of estradiol
synthesis in TCs, which is stimulated by luteinizing hormone and catalyzed by CYP19A1.
Thus, the synthesis of steroids in TCs needs to be carried out with the participation of GCs
to regulate the synthesis and secretion of steroids [62–66]. Therefore, in this experiment, we
determined P4, T and E2 secretion by ELISAs as well as the expression of StAR, CYP11A1,
3β-HSD, and CYP19A1 by qPCR. The results showed that gga-miR-449b-5p inhibited the
expression of the steroid synthesis-related genes StAR, 3β-HSD and CYP19A1 and the
production of P4 and E2. This result is consistent with the previous results concerning the
validation of miRNA function in steroid the synthesis of GCs [35,37,43].

Several studies have shown that the insulin-like growth factor-2 mRNA-binding pro-
tein family is involved in mammalian follicular development and steroid secretion [67–69].
IGF2BP3 is an important member of this family [70]. Current studies have shown that
IGF2BP3 ensures the early embryonic development of zebrafish by maintaining the stability
of maternal RNA [71]. The expression of IGF2BP3 in medaka is also closely associated
with oocyte development [72]. These results indicate that IGF2BP3 may play a role in the
development of animal ovaries. We further investigated several potential target genes of
gga-miR-449b-5p in this study. Interestingly, it was found that overexpression of gga-miR-
449b-5p could significantly reduce the expression of MMP2 and IGF2BP3. Furthermore,
through double luciferase reporter gene detection, we demonstrated that gga-miR-449b-5p
was able to target IGF2BP3. Furthermore, IGF2BP3 gene and protein levels decreased after
gga-miR-449b-5p mimic transfection, and vice versa. These data suggest that gga-miR-
449b-5p regulates steroid synthesis in GCs by targeting IGF2BP3.

5. Conclusions

gga-miR-449b-5p inhibits the secretion of P4 and E2 in GCs by targeting the IGF2BP3
gene and inhibiting its expression. Our results may provide scientific insights into the
regulatory mechanism of miRNAs in follicular development in the future.
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