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Abstract

What goes wrong in a schizophrenia patient's brain that makes it so different from a

healthy brain? In this study, we tested the hypothesis that the abnormal brain activity

in schizophrenia is tightly related to alterations in brain connectivity. Using functional

magnetic resonance imaging (fMRI), we demonstrated that both resting-state func-

tional connectivity and brain activity during the well-validated N-back task differed

significantly between schizophrenia patients and healthy controls. Nevertheless,

using a machine-learning approach we were able to use resting-state functional con-

nectivity measures extracted from healthy controls to accurately predict individual

variability in the task-evoked brain activation in the schizophrenia patients. The pre-

dictions were highly accurate, sensitive, and specific, offering novel insights regarding

the strong coupling between brain connectivity and activity in schizophrenia. On a

practical perspective, these findings may allow to generate task activity maps for clin-

ical populations without the need to actually perform any tasks, thereby reducing

patients inconvenience while saving time and money.
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1 | INTRODUCTION

Understanding the differences between the brains of psychiatric

patients and healthy individuals has been a major challenge for neurosci-

entists and psychiatrists, with specific efforts focused on schizophrenia

(SCZ), because of its extreme clinical, social, and financial implications

(Cloutier et al., 2016; Heinrichs & Zakzanis, 1998; McCutcheon, Reis

Marques, & Howes, 2020; Velthorst et al., 2016). A vast body of evi-

dence from over 20 years of neuroimaging studies in schizophrenia sug-

gests that one of its underlying causes is a disruption in brain

connectivity (Lynall et al., 2010; Van Den Heuvel & Fornito, 2014).

A broadly used approach to measure brain connectivity noninva-

sively is to detect brain regions that show high temporal correlation in

functional magnetic resonance imaging (fMRI) scans acquired at rest,

that is, when no explicit task is introduced (rs-fMRI). This method can

be used to explore the architecture of functional brain networks,

often referred to as resting-state networks (RSN's) (Bijsterbosch,

Smith, & Beckmann, 2017; van den Heuvel & Hulshoff Pol, 2010).

Alterations in various RSN's that are associated with high cognitive

functions, such as the default-mode (Whitfield-Gabrieli et al., 2009),

salience (Palaniyappan, Simmonite, White, Liddle, & Liddle, 2013), and

fronto-parietal (Godwin, Ji, Kandala, & Mamah, 2017) networks are

consistently reported in schizophrenia. These alterations are in line

with the substantial cognitive deficits and behavioral changes that are

among the hallmarks of this condition (Heinrichs & Zakzanis, 1998;

Knowles et al., 2015). Patients diagnosed with schizophrenia also
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demonstrate abnormal task-associated brain function compared

to healthy individuals (Gur et al., 2002; Minzenberg, Laird, Thelen,

Carter, & Glahn, 2009) in several cognitive domains such as emotional

response, decision making, response inhibition, and working memory.

Even though the abovementioned deficits in both functional con-

nectivity and brain activity reported in schizophrenia may be in line

with one another, they were traditionally studied mostly as two sepa-

rate elements (Bijsterbosch et al., 2017). In the last few years, studies

have been trying to bridge this gap and establish the claim that brain

activation while performing different tasks is closely related to

brain connectivity. Such studies, focusing mainly on young healthy

adults, have shown that functional connectivity closely corresponds

with task-derived measures, and that RSNs qualitatively resemble

task-evoked networks at the group level (Cole, Bassett, Power,

Braver, & Petersen, 2014; Krienen, Thomas Yeo, & Buckner, 2014;

Smith et al., 2009). Furthermore, It has been demonstrated that by

applying machine-learning based computational models, these RSNs

can be used to predict differences in fMRI activation across a range of

cognitive paradigms (Tavor et al., 2016), even for individuals with

unique or unusual brain activation patterns. This highlights a strong

coupling between brain connectivity and activity that can be captured

at the level of individual participants.

The abovementioned findings suggest that the relationship

between functional connectivity and task-evoked brain activity in

healthy individuals may be a constant intrinsic trait rather than a tran-

sient state (Finn & Todd Constable, 2016). If it is in fact an intrinsic

trait, it suggests that networks' organization could be mapped directly

to brain function. This means that given a specific set of connectivity

measures it will be possible to predict brain activation patterns in indi-

viduals regardless of their specific brain attributes and even if they

suffer from a pathology that effects these attributes.

The idea that task-evoked brain activity can be predicted from

task-free functional connectivity in both healthy individuals and

patients was supported by a study which demonstrated that brain

activity could be successfully predicted in patients awaiting neurosur-

gery (Parker Jones, Voets, Adcock, Stacey, & Jbabdi, 2017). However,

these patients suffered from focal and well understood structural

abnormalities. The question whether the close relationship between

functional connectivity and brain activity is similar for individuals with

brain pathologies that are more “diffuse” and “holistic,” such as

schizophrenia and other psychiatric disorders, remains unclear.

Successful predictions of task-evoked brain activity from task-

free functional connectivity measures would allow reducing the fMRI

protocol to a single rs-fMRI scan, instead of a series of demanding

cognitive tasks. This would dramatically diminish scan time and incon-

venience, and allow studying challenging populations that are usually

not compliant with task performance, such as psychiatric patients

(Fox & Greicius, 2010). But above all, this approach has the potential

to deepen our understanding of how brain connectivity and activity

are interrelated in the pathological brain and may further the under-

standing of the underlying mechanisms of schizophrenia.

In the current study, we aim to investigate the relationship between

functional connectivity and task-evoked brain activity in SCZ patients

by predicting task-evoked brain activity from task-free functional con-

nectivity measures. First, we asserted the differences between patients

and controls in both task-evoked brain activity and resting-state func-

tional connectivity. Then, we trained a prediction model based on func-

tional connectivity measures extracted from task-free scans of healthy

controls and applied the model to predict working memory task-evoked

brain activity in SCZ patients. We demonstrate accurate predictions in

terms of sensitivity, represented by high overlap between predicted and

actual brain activation maps, and specificity, represented by accurate

prediction of individual-unique activation patterns.

2 | MATERIALS AND METHODS

2.1 | Participants

The dataset was acquired in Sheba Medical Center, Ramat-Gan, Israel.

It originally consisted of 112 participants: 89 healthy volunteers and

23 patients diagnosed with schizophrenia (SCZ). All participants were

18–55 years old Hebrew speakers and had no history of neurological

conditions (no significant age difference between groups, P = .113).

The control participants had no history of psychiatric conditions. The

research protocol was approved by the Institutional Review Board of

Sheba Medical Center. All participants signed an informed consent

form. Nine healthy volunteers and three SCZ patients were excluded

from the study due to insufficient task performance or the lack of vital

MRI scans. The final dataset used for analysis consisted of 80 healthy

volunteers and 20 patients. Clinical and demographic characteristics

are described in Table 1. Individual level characteristics for SCZ group

are described in Table S1.

2.2 | Clinical assessment

All participants in the SCZ group met the criteria for schizophrenia

according to DSM-5 and were diagnosed by a psychiatrist. Symptoms

TABLE 1 Clinical and demographic characteristics. SCZ = patients
diagnosed with schizophrenia

Control (N = 80) SCZ (N = 20)

Age (years)
Mean (STD)

33.67 (11.79) 29.3 (6.39)

Gender
% male

56.25 80

PANSS total

Mean (STD)

— 50.64 (12.83)

PANSS general
Mean (STD)

23.47 (5.47)

PANSS positive
Mean (STD)

— 11 (4.99)

PANSS negative
Mean (STD)

— 16.18 (5.16)
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severity was evaluated using the Positive and Negative Syndrome

Scale (PANSS) for schizophrenia (Kay, Fiszbein, & Opler, 1987). Out of

20 patients, 17 had available PANSS scores. Average clinical scores

are described in Table 1 and individual scores in Table S1.

2.3 | fMRI working memory task

All participants conducted the widely used fMRI working memory

(WM) N-back task (Livny et al., 2018; Owen, McMillan, Laird, &

Bullmore, 2005). Differences between control participants and SCZ

patients in this task have been reported consistently, in both brain

activation patterns and task performance (Jansma, Ramsey, Van Der

Wee, & Kahn, 2004; Krieger, Lis, Cetin, Gallhofer, & Meyer-

Lindenberg, 2005; Whitfield-Gabrieli et al., 2009). A detailed descrip-

tion of the task design can be found in Supporting Information and

Figure S1.

2.4 | MRI acquisition

Participants underwent an MRI session which included anatomical,

task-fMRI and rs-fMRI scans. Scans were acquired on a 3 Tesla whole

body MRI system (GE Signa HDxt, version 16 VO2) equipped with an

eight-channel head coil.

Anatomical high-resolution (1mm3, Matrix size 256 � 256, FOV

25.6 cm) images of the entire brain were acquired, using a standard

3D inversion recovery prepared fast spoiled gradient echo pulse

(FSPGR) T1 weighted sequence. Additional anatomical sequences

(T2w and fluid-attenuated inversion recovery [FLAIR]) were acquired

for radiological screening.

Working memory task functional scans were acquired with a T2*-

weighted gradient-echo echo-planar protocol (GE-EPI) using the fol-

lowing parameters: TR = 3 s; TE = 30–35 ms; matrix size 64 � 64,

FOV 22 � 22 cm, and up to 40 contiguous oblique axial slices cover-

ing the whole brain. The resulting voxel size was 3.4 mm3.

Rs-fMRI protocol was almost similar to the task fMRI protocol,

except that TR was reduced to 2 s and scan time was 9:53 min. Partic-

ipants were instructed to close their eyes during the scan.

2.5 | fMRI preprocessing and individual statistics

fMRI preprocessing (see Figure 1) for both rs-fMRI and N-back task

was carried out using FMRIB Software Library (FSL v5.0.10) (Smith

et al., 2004) and included high-pass filtering at 0.01 Hz, correction for

motion artifacts, linear registration to the T1w anatomical scan,

nonlinear registration to 152MNI space, and smoothing with 5 mm

gaussian kernel. Residual noise was cleaned using FMRIB's ICA-based

Xnoiseifier (FIX) (Griffanti et al., 2014), which is a semi-automatic ICA

based method to identify and remove structured noise from fMRI

scans. Motion confounds (24 parameters) were regressed out the data

in that process. Then each scan was resampled onto the set of 91,282

“grayordinates” (Glasser et al., 2013) in standard space which was

used for surface representation using the HCP's Connectome Work-

bench visualization and discovery tool (Marcus et al., 2011).

Individual-level statistical analysis was performed using the FEAT

pipeline in FSL (Woolrich, Ripley, Brady, & Smith, 2001). Task activa-

tion maps were generated for the 2back > 0back contrast rep-

resenting brain activity associated with working memory (Owen

et al., 2005) for each participant.

2.6 | fMRI group analysis

As mentioned above, group differences in brain activity between

healthy and SCZ participants in the N-back task are well documented

(Jansma et al., 2004; Krieger et al., 2005; Whitfield-Gabrieli

et al., 2009). However, it is important to validate that such differences

are found in our specific dataset in order to ensure that successful

prediction is not simply a result of no variability between the groups.

In order to test for group differences in task evoked brain activation,

group level analysis was performed using FSL's FEAT pipeline. Z-score

activation maps depicting group differences in brain activation were

created using FMRIB's local analysis of mixed effects (FLAME)

(Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 2004). The activa-

tion maps were then thresholded using a Gaussian-two-Gammas mix-

ture model (Beckmann & Smith, 2004), where the Gaussian

represents the noise and the two Gamma distributions represent posi-

tive and negative activations. The positive and negative thresholds are

chosen to correspond to the medians of the two Gamma

distributions.

2.7 | Functional connectivity-based classification

It is well established that SCZ patients demonstrate altered patterns

of brain connectivity compared to controls (Lynall et al., 2010; Van

Den Heuvel & Fornito, 2014; Whitfield-Gabrieli et al., 2009). Before

exploring the predictability of task-evoked activity from connectivity

measures, we aimed to assert these differences in our dataset. In

order to achieve this, we trained a classifier to distinguish between

controls and SCZ based on functional connectivity measures.

Feature extraction for classification was conducted by averaging

the preprocessed rs-fMRI time courses within each of 100 cortical

parcels, where each parcel was assigned to one of seven brain net-

works, according to a parcellation by Schaefer et al. (Schaefer

et al., 2018). Pearson's correlation coefficients were calculated for

each dyad of parcels, resulting in 4950 correlation scores, which were

used as features for the classification model. All features were normal-

ized by removing the mean and scaling to unit variance.

Then, we utilized an elastic-net logistic regression model in order

to classify each participant to either patient or control. The L1/L2

ratio (α = 0.7) and the regularization factor (λ = 0.77) were chosen in

a stratified fivefold cross-validation procedure. In order to determine

chance level rates and utilize them to test for statistical significance
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we used a 5,000 iterations permutation test in which our classification

labels (control or SCZ) were shuffled randomly. We calculated four

scores to determine prediction success: AUC (Area under the receiver

operating characteristics curve), accuracy, sensitivity and specificity.

For more details see Supporting Information.

To explore which features contributed most to the classification,

we sorted them by the absolute classification beta value. To ensure

the robustness of the results we repeated this procedure 1,000 times

and averaged the beta values across all iterations. Then, we extracted

the 100 features that contributed most to the classification.

2.8 | Prediction of task activity from functional
connectivity measures

The prediction pipeline was adapted from Tavor et al. (2016). We

used data from 80 control participants as a training set. Feature

extraction included dimensionality reduction of preprocessed rs-fMRI

maps by iterative group principal component analysis (PCA) (Smith,

Hyvärinen, Varoquaux, Miller, & Beckmann, 2014), yielding 200 group

level principal components. Next, group-level spatial independent

component analysis (ICA) (Beckmann, DeLuca, Devlin, & Smith, 2005)

was carried out on cortical data using fast ICA (Hyvärinen, 1999) to

define a set of 60 cortical group-level functional connectivity maps.

Then dual regression (Beckmann, Mackay, Filippini, & Smith, 2009)

was performed on the group level connectivity maps to generate

individual-level functional connectivity maps that were used as fea-

tures for the prediction model.

A linear model was used to map the functional connectivity fea-

tures to the individual task-evoked activation maps. The model was

trained only on the 80 healthy controls training set. Regression coeffi-

cients (betas) were calculated for each participant, and then, for per-

formance validation purposes, averaged for n�1 participants each

time to execute a leave-one-out (LOO) prediction routine to generate

F IGURE 1 Prediction pipeline: (a) fMRI preprocessing and feature extraction included iterative principal component analysis (PCA) followed
by group independent component analysis (ICA) to yield group level functional connectivity maps (features). Then, dual regression was applied to
generate individual-level features. (b) Our GLM based prediction model was trained on features extracted solely from healthy controls (training
set) and validated using a leave-one-out routine. Last, the trained model was applied on the SCZ patients (test set) and yielded a predicted

activation map for each participant. Note that the process described in panel B was conducted separately for each of 50 nonoverlapping brain
parcels to yield a whole cortex predicted activation map (see Supporting Information)
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a predicted task activation map for each control participant. Then, the

trained model was utilized to predict task activation maps in 20 SCZ

patients that were kept out in previous steps. A detailed description

of the prediction pipeline be found in Figure 1 and Supporting

Information.

3 | RESULTS

3.1 | N-back working memory task group
differences

Group differences between SCZ patients and healthy controls in the

2back > 0back contrast of the N-back task were tested. As expected,

significant differences in activation were found in various cortical

regions. Healthy controls displayed higher activation mainly in areas

that correspond with the fronto-parietal network (Thomas Yeo

et al., 2011) such as the dorsolateral prefrontal cortex (DLPFC), medial

frontal cortex, inferior parietal lobule and posterior temporal regions.

SCZ patients displayed significantly higher activations mostly in occip-

ital visual areas and in the left insula. These group differences are

presented in Figure 2. In order to ensure that the observed group dif-

ferences are not originated from residual head motion differences

between the groups, we repeated the analysis while controlling for

absolute and relative head motion measures estimated by FSL's

MCFLIRT. This procedure had almost no effect on the observed group

differences. For more details see Figure S2.

3.2 | Functional connectivity-based classification

We used an elastic-net logistic regression classifier to explore the abil-

ity to successfully classify our participants as either control or SCZ

using rs-fMRI derived functional connectivity measures. In order to

test the statistical significance of our classification we performed a

permutation test and used it to compute chance level rates for 4 classi-

fication performance scores. All scores were found significant com-

pared to the computed chance level: AUC = 0.845 ( p = .0002),

Accuracy = 0.76 (p = .0002), Sensitivity = 0.8 ( p = .0004) and

Specificity = 0.75 (p = .0006). These results indicate successful classi-

fication of participants into control and SCZ using functional connec-

tivity features (Figure 3a and Figure S3).

Feature importance analysis revealed that out of the top 100 con-

tributing features, 56 were inter-hemispheric connections and

44 intra-hemispheric: 25 in the left hemisphere and 19 in the right.

Out of the 56 inter-hemispheric connections, 31 were homotopic,

meaning they connected nodes that are assigned to the same network

in different hemispheres. Therefore, the proportion of homotopic con-

nections in the top 100 contributing features was 31% and 70% in

the top 10, even though they amount to only 8% of the total features

used for classification. Figure 3b presents the top 100 contributing

features on a circular graph. Each edge in the graph is a feature used

for the classification, and its importance is depicted by the color in

grayscale. Each node is colored by networks according to the

parcellation by Schaefer et al. (2018) (Section 2, Figure 3b and

Figure S4). To further explore the important role homotopic connec-

tions have in differentiating SCZ patients from healthy controls we

repeated the classification using only homotopic connections as fea-

tures. This process improved our classification ability even more:

AUC = 0.887, ( p = .0002), Accuracy = 0.82 (p = .0002),

Sensitivity = 0.8 ( p = .0002), Specificity = 0.825, (p = .0002) (see

Figure S5, Figure S6 and Table S2).

3.3 | Task-evoked brain activity prediction

Our GLM-based prediction model was trained on 80 healthy controls.

Using a leave-one-out routine, a predicted cortical activation map was

created for each participant in the training set. Then the trained model

was used to predict cortical activation maps in the test set that con-

sisted of 20 SCZ patients. Exemplar maps showing the predicted and

actual activations and the substantial overlap between them in both

control and SCZ groups can be found in Figure 4a.

We calculated the correlations between the actual and predicted

activation maps of all participant pairs (Figure 4b). The diagonal of the

resulting correlation matrix represents correlations between

the predicted and actual activation maps of the same participant (diag-

onal correlations). The rest of the matrix represents correlations

between predicted and actual activation maps of different participants

(off-diagonal correlations). The accuracy score was calculated as the

average Pearson correlation between participants' actual and

predicted activation maps (Mean = 0.544, Median = 0.589,

SD = 0.193). The specificity score was defined as the diagonality

index, calculated as the average difference between diagonal and off-

diagonal correlations (DI = 0.063). Diagonality of the correlation

matrix that indicates high prediction specificity was quantitatively ver-

ified by a Kolmogorov–Smirnov test between diagonal and off-

F IGURE 2 Brain activation maps showing group differences
between control and SCZ in the 2back > 0back contrast. The maps
are thresholded using Gaussian-two-Gammas mixture model. The
positive threshold was set as Z = 1.08 and the negative as Z = �2.41
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diagonal correlations, in which diagonal correlations were found sig-

nificantly higher (D = 0.25, p< .0001). A histogram of diagonal and

off-diagonal values is shown in Figure 4c. In order to further quantify

prediction specificity, we calculated the proportion of participants for

whom the diagonal correlation was highest, that is, their actual activa-

tion map resembled their own predicted map more than any other

predicted map. The diagonal correlation was highest for 90% (72 out

of 80) of the control group and 85% (17 out of 20) of the SCZ group

(Figure 4d).

To determine which features contributed most to the prediction,

the regression coefficient (beta) value of each feature was averaged

across all training set participants. The features were then sorted by

absolute beta value. A bar plot of average beta values and the top

5 contributing features is shown in Figure 5.

We calculated correlations between prediction sensitivity (diago-

nal correlations) and PANSS scores: positive symptoms (r = � .13,

p = .61), negative symptoms (r = .23, p = .37), general pathology

(r = .2, p = .44) and total score (r = .12, p = .63). All correlations were

found statistically insignificant (using P< .05), indicating that our pre-

dictive ability did not depend on symptoms severity.

4 | DISCUSSION

In the current study, we tested the hypothesis that abnormalities in

brain function in SCZ are closely associated with, and can be

predicted by, brain connectivity. We provide the first evidence for

successful predictions of fMRI task-evoked brain activity in psychiatric

patients. Furthermore, the prediction was obtained using a model

trained on healthy controls exclusively. Our results suggest that the

relationship between functional connectivity and task-evoked brain

activity is a stable intrinsic trait, and that the functional organization

of brain networks inferred from task-free fMRI scans can be mapped

directly to task-evoked brain function, regardless of individual-specific

brain attributes such as a diagnosed brain pathology.

Our findings are in line with previous literature describing schizo-

phrenia as a disorder of brain connectivity (Lynall et al., 2010; Van

Den Heuvel & Fornito, 2014; Whitfield-Gabrieli et al., 2009). Along

with the growing body of evidence linking connectivity directly to

task-evoked brain activity (Cole et al., 2014; Saygin et al., 2012; Smith

et al., 2009; Tavor et al., 2016) and cognitive function (Godwin

et al., 2017; Hampson, Driesen, Skudlarski, Gore, & Constable, 2006),

the current study provides support to the claim that abnormal brain

activation patterns and altered cognitive function, which are widely

reported in schizophrenia, may correspond directly to changes in the

architecture of connectivity-derived brain networks. The successful

predictions of task-evoked brain activity from task-free functional

connectivity measures suggest that the abnormalities observed in SCZ

in task-performance and the related brain activity are manifested at

the level of functional connectivity. Therefore, it is important to

deepen our understanding of the mechanism underlying these con-

nectivity alterations, that may be a potential target for developing bio-

markers or disease modifying interventions (Fox & Greicius, 2010).

Importantly, we demonstrated predictions that are both sensitive

and specific. This is a core issue when trying to make individual pre-

dictions because it is cardinal to not only predict the shared variance

across all individuals, but also account for the variance that is unique

for every individual. Modern “dimensional” approaches, such as the

Research Domain Criteria approach spearheaded by the National

Institute of Mental Health (NIMH) (Cuthbert & Insel, 2010), calls to

F IGURE 3 Classification of participants into control and schizophrenia groups. (a) Results of a permutation test designed to determine
classification success, evaluated by 4 scores: area under the ROC curve (AUC), accuracy, sensitivity and specificity. Computed chance level for
each score is marked by a dashed line. (b) A circular graph showing the 100 edges that contributed most to the classification. Features importance
is depicted by the color in grayscale (i.e., darkest edges contributed most). Each half of the plot represents one hemisphere. The nodes are colored
according to the parcellation by Schaefer et al. (2018)
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move from statistically based dichotomic diagnoses towards describ-

ing individual specific phenotypes as a continuum. Understanding that

these approaches will become more and more prominent in psychiat-

ric research, we must be able to draw individual-level conclusions that

will ultimately not rely on dichotomic diagnosis (Finn & Todd

Constable, 2016). The current study goes hand in hand with these

approaches, as our findings suggest a framework in which we rely

upon learning the unique relationship between an individual's connec-

tivity and brain activation patterns and therefore do not have to train

the prediction model on diagnosed patients in order to predict their

brain activation patterns. Hence, our ability to make such predictions

will not be affected if the criteria for diagnosis change dramatically.

The ability to predict task-evoked brain activity in one population

(or dataset), using a model trained on another, is worth considering in

relation to recent debates on fMRI analyses reliability. Recent publica-

tions suggest that the reliability of task-fMRI paradigms may be

inadequate, resulting in an inaccurate estimation of task-evoked brain

activations (Elliott et al., 2020; Zuo, Xu, & Milham, 2019). The method

described here could be used to train prediction models on task-fMRI

data that was collected following rigorous reliability standards (Elliott,

Knodt, Caspi, Moffitt, & Hariri, 2021; Kragel, Han, Kraynak,

Gianaros, & Wager, 2021; Zuo et al., 2019), and then utilize these

models to predict task-evoked brain activity in other datasets. There-

fore, we may provide the opportunity to produce reliable predictions

of task-evoked brain activity at the level of the single participant,

without any task actually being performed.

We examined the differences between the SCZ and control

groups in both functional connectivity and task-evoked brain activity,

in order to confirm that our predictive ability could not be explained

by the lack of variability between the groups. We showed that the

healthy controls and SCZ patients in the current dataset can be accu-

rately differentiated based on functional connectivity measures. This

F IGURE 4 N-back task-evoked brain activity prediction. (a) Predicted (red) and actual (yellow) task activation maps and the substantial
overlap between them (orange) for 4 control and 4 SCZ participants. (b) Correlations between predicted and actual activation maps. Rows and
columns are normalized by removing the mean in order to account for higher variability in actual than predicted maps. The diagonal represents
correlations between predicted and actual maps in the same individuals, hence the diagonality of the matrix indicates high prediction specificity.
(c) Off-diagonal values histogram. The markers on the x-axis are the diagonal values (SCZ in blue and control in black). The dashed line indicates
the median of diagonal correlations. (d) The proportion of participants in each group that the diagonal (individual-specific) prediction was the most
accurate one for them
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finding is consistent with previous studies that performed classifica-

tion of SCZ and controls based on functional connectivity measures

(Anderson & Cohen, 2013; Cetin et al., 2016; Li et al., 2020).

When examining feature importance, we noticed that homotopic

connections, meaning connections between areas within the same

network in both hemispheres, are cardinal for classification. As evi-

dence, their proportion in the top 100 important connections is 31%,

and 70% of the top 10, while their proportion from the total features

is only 8%. Moreover, when we used only homotopic connections as

features, our classification ability improved. These findings are consis-

tent with previous studies that demonstrated reduction in homotopic

functional connectivity in SCZ patients (Hoptman et al., 2012; Li, Xu,

Zhang, Hoptman, & Zuo, 2015), and even in their siblings (Guo

et al., 2014), and therefore highlight the need to better understand

alterations in homotopic connectivity in schizophrenia.

As for the task-evoked brain activity results, we found differences

between SCZ patients and healthy controls in the N-back working

memory task, in line with previous studies (Jansma et al., 2004;

Krieger et al., 2005; Whitfield-Gabrieli et al., 2009). Even though task

fMRI findings in schizophrenia seem to be rather inconsistent, a large

body of evidence has reported a reduction of brain activity in areas

related to the fronto-parietal network (Thomas Yeo et al., 2011), such

as the DLPFC and the inferior parietal lobule, when working memory

is a major factor in the performed task (Eryilmaz et al., 2016). These

are brain regions that are highly associated with working memory,

thus it is not surprising that patients demonstrated reduced activity in

these regions. When examining the features that contributed most to

task prediction, many of them are also associated with the fronto-

parietal network, which is also in line with the major role this network

plays in working memory and other high cognitive functions (Dodds,

Morein-Zamir, & Robbins, 2011). It is important to note though that if

other tasks would have been used, we would expect that different

functional networks might better predict their activation.

There are a few methodological issues that should be considered

when interpreting our results. The first is related to the quality of the

imaging data. While originally the predictability of brain activity from

connectivity was demonstrated on very high quality datasets (pro-

vided by the HCP) (Tavor et al., 2016), the acquisition of the current

dataset did not meet the same standard in terms of temporal and spa-

tial resolution, as often happens with clinical data. However, the fact

that we were still able to show accurate predictions emphasizes that

the relations between brain connectivity and activity are very robust

and could therefore be detected even with sub-optimal data. Never-

theless, it might be possible to get even more accurate results with a

larger higher-quality dataset. Such datasets with higher temporal reso-

lution and more datapoints may also enable us to use more advanced

machine-learning algorithms to improve prediction success. Another

issue is one that almost all fMRI schizophrenia studies suffer from: the

fact that we use long MRI protocols and a demanding cognitive task

creates a bias towards high functioning patients that might not be a

good representation of the population (Fox & Greicius, 2010). To vali-

date that this issue is not cardinal in our study, we showed that our

ability to make individual-specific predictions does not depend on

symptoms severity scores (PANSS). We also note that due to the rela-

tively modest size of the SCZ group we could not use it as a training

set, and therefore cannot rule out that prediction may further improve

by training a “SCZ specific” model. However, the fact that we demon-

strate accurate predictions in both controls and patients using the

same model supports our hypothesis that such a “disorder specific”
model is not necessary to achieve individual specific prediction of

task-evoked brain activity. Finally, it is important to generalize our

findings beyond schizophrenia to other psychiatric conditions. To

F IGURE 5 Features (connectivity
maps) that were used for prediction
of brain activity, sorted by their
importance for prediction (determined
by absolute GLM regression
coefficient value). Surface
representation of the top five
contributing features is also
presented
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achieve this, a large dataset of various fMRI tasks performed by

patients diagnosed with various conditions should be collected. On

the same note, we hope other researchers would utilize our publicly

available method on their own datasets to examine its replicability on

different clinical populations.

5 | CONCLUSIONS

We demonstrate a framework for predicting fMRI task-evoked brain

activity in SCZ using a training set consisting of healthy controls

exclusively. This may be a promising approach for studying connectiv-

ity and brain function in SCZ, as it allows drawing conclusions that

typically require hours of tedious scanning and task performance, with

only one short MRI scan at rest. Moreover, our results support the

notion that interrelations between functional connectivity and brain

activity do not depend on transient factors. Rather, they may be an

intrinsic trait underlying the functional and the resulting behavioral

abnormalities in SCZ. Therefore, while functional connectivity and

task-fMRI may be highly informative on their own, future studies

should not consider brain activity and connectivity as two different

elements but try to understand how they integrate and interact in the

healthy as well as the pathological brain.
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