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Background: Cognitive dysfunction is a critical complication of diabetes mellitus, and
there are still no clinically approved drugs. Zi Shen Wan Fang (ZSWF) is an optimized
prescription composed of Anemarrhenae Rhizoma, Phellodendri Chinensis Cortex, and
Cistanches Herba. The purpose of this study is to investigate the effect of ZSWF on DCI
and explore its mechanism from the perspective of maintaining intestinal microbial
homeostasis in order to find an effective prescription for treating DCI.

Methods: The diabetes model was established by a high-fat diet combined with
intraperitoneal injections of streptozotocin (STZ, 120mg/kg) and the DCI model was
screened by Morris water maze (MWM) after 8 weeks of continuous hyperglycemic
stimulation. The DCI mice were randomly divided into the model group (DCI), the low-
and high-ZSWF–dose groups (9.63 g/kg, 18.72 g/kg), the mixed antibiotic group (ABs),
and the ZSWF combined with mixed antibiotic group (ZSWF + ABs). ZSWF was
administered orally once a day for 8 weeks. Then, cognitive function was assessed
using MWM, neuroinflammation and systemic inflammation were analyzed by enzyme-
linked immunosorbent assay kits, intestinal barrier integrity was assessed by hematoxylin-
eosin (HE) staining andWestern blot and high performance liquid chromatography tandem
mass spectrometry (UPLC-MS/MS). Furthermore, the alteration to intestinal flora was
monitored by 16S rDNA sequencing.

Results: ZSWF restored cognitive function in DCI mice and reduced levels of
proinflammatory cytokines such as IL-1β, IL-6, and TNF-α. Moreover, ZSWF protected
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the integrity of the intestinal barrier by increasing intestinal ZO-1 and occludin protein
expression and decreasing urinary lactulose to mannitol ratio. In addition, ZSWF reshaped
the imbalanced gut microbiota in DCI mice by reversing the abundance changes of a wide
range of intestinal bacteria at the phyla and genus levels. In contrast, removing gut
microbiota with antibiotics partially eliminated the effects of ZSWF on improving cognitive
function and reducing inflammation, confirming the essential role of gut microbiota in the
improvement of DCI by ZSWF.

Conclusion: ZSWF can reverse cognitive impairment in DCI mice by remolding the
structure of destructed gut microbiota community, which is a potential Chinese medicine
prescription for DCI treatment.

Keywords: ZSWF, DCI, inflammation, intestinal barrier, gut microbiome

INTRODUCTION

Diabetes mellitus (DM) is a common metabolic disease with
increasing incidence. Cumulative studies confirm that DM is a
key risk factor for cognitive impairment (Zilliox et al., 2016;
Biessels and Despa, 2018; Biessels and Whitmer, 2020). Although
many excellent studies of DCI exist, its potential mechanisms
remain elusive and effective drugs are lacking. Several studies
suggested that DCI might be attributed to cerebrovascular
dysfunction (Prakash et al., 2012), neuroinflammation (Rom
et al., 2019), and metabolic disorders (Zhang et al., 2020a). In
recent years, emerging studies noticed that intestinal microbiota
structure and function disorders are closely related to brain
function. Gut-brain crosstalk is a complex network system,
which maintains the stability of gastrointestinal tract on the
one hand and affects the brain homeostasis on the other hand
(Rhee et al., 2009). Intestinal microbes regulate brain homeostasis
through multiple pathways, among which intestinal barrier-
inflammation is one of the main pathways (Rogers et al.,
2016). Next, the intestinal barrier plays a crucial role in
maintaining of intestinal microbiome and peripheral
homeostasis. In contrast, intestinal microbiome dysbiosis can
provoke disruption of the intestinal barrier. Increased intestinal
permeability can cause excessive translocation of bacterial
lipopolysaccharide into the bloodstream, which can trigger
systemic inflammation (Zhang et al., 2019). Microbiota-
derived inflammatory response ultimately leads to
neuroinflammation and neuronal damage (Bairamian et al.,
2022).

Increasing evidence indicates that the structural changes of
intestinal microbiota are associated with the development of DCI
(Xu et al., 2017). Clinical studies found significant differences in
gut microbiome composition between diabetic patients with and
without cognitive impairment (Zhang et al., 2021a). Also,
preclinical studies suggested that DCI was associated with
alterations of the gut microbiome (Gao et al., 2019).
Furthermore, Yu et al. (2019) transplanted fecal bacteria from
DCI and non-DCI mice into the gut of pseudo-germ-free mice,
respectively, and they found that the escape latency was
significantly longer in pseudo-germ-free mice receiving DCI
mouse fecal bacteria than those receiving non-DCI mouse

fecal bacteria. These studies suggest that maintaining intestinal
microbial homeostasis is an effective strategy for the prevention
and treatment of DCI.

Traditional Chinese medicine (TCM) believes that “poison
damage brain collateral” and “deficiency of kidney essence” are
the main pathogenesis of DCI, and “clearing heat-fire and
detoxifying” and “invigorating kidney for protecting semen”
are the key therapeutic principles. Anemarrhenae Rhizoma
and Phellodendri Chinensis Cortex are the most commonly
used heat-clearing drug pair in clinical practice, and they were
originally derived from “Tong Guan Wan.” Previous modern
pharmacological evidence suggests that Anemarrhenae
Rhizoma and Phellodendri Chinensis Cortex drug pair
exhibit an effect on improving diabetes-related
complications (Zhang et al., 2014), and their active
ingredients demonstrate a clear protective effect on
cognitive function (Liu et al., 2012; Xian et al., 2013; Liang
et al., 2017; Piwowar et al., 2020). However, studies also found
that the bioavailability of saponins and alkaloids (the main
components of Anemarrhenae Rhizoma and Phellodendri
Chinensis Cortex, respectively) is low (Singh and
Chaudhuri, 2018; Baldim et al., 2020), suggesting that
regulation of intestinal microbial homeostasis may be the
key pathway for them to improve diabetes-related
complications. Furthermore, considering that the treatment
of diabetes-related complications is a long process and that
Anemarrhenae Rhizoma and Phellodendri Chinensis Cortex
are severe cold medicines, the compatibility of warm drugs to
neutralize cold is the basic principle of the compatibility of
TCM prescriptions. Cistanches Herba (Cistanche deserticola Y.
C. Ma), a classic Chinese medicine with the effect of tonifying
kidney and nourishing essence, is warm in property. Also,
modern pharmacological studies suggest that Cistanches
Herba demonstrates the function of maintaining intestinal
flora homeostasis and neuroprotection (Li et al., 2017;
Wang et al., 2017). Therefore, under the guidance of basic
theories of TCM, we formed ZSWF by the compatibility of the
Cistanches Herba (C. deserticola Y. C. Ma) and Anemarrhenae
Rhizoma (Anemarrhena asphodeloides Bge)-Phellodendri
Chinensis Cortex (Phellodendron chinense Schneid) herb
pair, hoping to find a new prescription to treat DCI.
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In this study, we investigated the effects of ZSWF on the
cognitive function of DCI mice, and we explored the possible
mechanism by regulating intestinal flora. Cognitive function,
neuroinflammation and systemic inflammation, intestinal
barrier integrity, and gut microbiome diversity were examined.
Furthermore, an antibiotic intervention was used to assess the
possibility of a causal relation between ZSWF improving
cognitive and gut microbiota.

METHODS

Preparation of Zi Shen Wan Fang Extract
ZSWF is composed of Anemarrhenae Rhizoma (dried rhizome of
A. asphodeloides Bge.), Phellodendri Chinensis Cortex (dried
bark of P. chinense Schneid.), and Cistanches Herba (dried
fleshy stem of C. deserticola Y. C.Ma) with a ratio of 1:1:1 in
weight. The drug materials of Anemarrhenae Rhizoma and
Phellodendri Chinensis Cortex were purchased from Hebei
anguo Chinese Herbal Medicine Co., Ltd., and Cistanches
Herba was purchased from Inner Mongolia Mandera
Biological Technology Co., Ltd. These herbs were identified by
professor Tianxiang Li (TianJin University of Traditional Chinese
Medicine) and were extracted according to our previous method
(Zheng et al., 2018). In simple terms, Anemarrhenae Rhizoma
and Phellodendri Chinensis Cortex were mixed at the ratio of 1:
1 by weight, then extracted by reflux for 3 times with 80% ethanol
of 8 times (2 h each time), and filtrate was collected. The same
weight Cistanches Herba was first extracted by reflux for 3 times
with 8 times the amount of 80% ethanol (2 h each time), and
filtrate was collected and then extracted with 10 times the amount
of distilled water for 3 times (2 h each time). Next, the volume of
liquid required for ingastric administration of mice during the
treatment cycle was calculated, and all filtrate was mixed and
concentrated to 0.94 g/ml ZSWF crude extract by rotary
evaporator, which was separated and stored in a refrigerator
at −80°C for use. Moreover, our previous study systematically
investigated the main chemical components of ZSWF extract
(Zheng et al., 2018), including in vitro components (e.g.,
Neomangiferin, Berberine, TimosaponinBⅡ, and
Cistansinenside A), absorbed components (e.g., Mangiferin,
Timosaponin C, and 3/5-O-Feruloylquinic acid), as well as
prototypical (e.g., Phellodenrine, Tetrahydropalmatine, and
Oxoberberine) and metabolic components [e.g., 3,4-
dihydroxybenzenepropionic acid and (20R, 25S)-timosaponin
AI] in feces.

Establish the Diabetic Cognitive Impairment
Model and Administration Method
Two hundred male C57BL/6J mice (8 weeks-old) were purchased
from Beijing Vital River Laboratory Animal Technology Co., Ltd.,
[SCXK (Jing) 2016-006]. The animals were housed in the
Laboratory Animal Center of Tianjin University of Traditional
Chinese Medicine under a standard laboratory condition
(temperature 22 ± 2°C, humidity at 50 ± 15%, 12-h-light/12-h-
dark cycle) and were given ad libitum access to water and food.

All experimental procedures were approved by the Animal Ethics
Committee of Tianjin University of Traditional Chinese
Medicine (TCM-LAEC2019083, Tianjin, China).

After 1 week of adaptive feeding, the diabetic mouse model
was replicated as previously reported (Kusakabe et al., 2009). In
simple terms, mice were intraperitoneally injected with
120 mg/kg streptozotocin (STZ, Sigma, United States) after
being fed a high-fat diet with 60% energy from fat for 3 weeks
(Beijing Vital River Laboratory Animal Technology Co., Ltd.).
One week after injection, fasting blood glucose (FBG) of mice
after 12 h of fasting was detected, and mice with FBG >
11.1 mmol/L were selected to continue high-fat diet feeding.
After 8 weeks of continuous hyperglycemic stimulation, mice
with cognitive impairment were screened with MWM (detailed
in 2.3) and used in follow-up studies.

To investigate the effect of ZSWF on the cognitive function of
DCI mice and its potential mechanism, the mice with cognitive
impairment were randomly divided into five groups: vehicle
treated group (DCI), ZSWF low dose (9.36 g/kg, clinical
equivalent dose) treated group (ZSWFL), ZSWF high dose
(18.72 g/kg, 2 times the clinical equivalent dose) treated group
(ZSWFH), mixed antibiotic (natamycin 3 mg/ml, neomycin
2 mg/ml and bacitracin 2 mg/ml) treated group (ABs), and
ZSWF combined with mixed antibiotic treated group (ZSWF
+ ABs). Mice in the treatment group were orally gavaged with
crude extract of ZSWF for 8 weeks, and mice in Con group and
DCI group were gavaged with equal volume of distilled water. The
control group was fed the normal diet, and the other groups were
kept on HFD during drug administration. Weight was measured
every 2 weeks, and FBG was measured weekly during continuous
treatment.

MorrisWater Maze Experimental Evaluation
of Cognitive Function
To screen mice with abnormal cognitive function after 8 weeks of
hyperglycemia and investigate the effect of ZSWF treatment on
cognitive function, the MWM experiment was performed as
previously described (Morris., 1984). In short, to acclimate to
the maze environment, all the mice were allowed to swim freely in
the maze without a platform for 1 min the day before the
experiment began. Next, the positioning navigation experiment
was conducted for five consecutive days, during which the mice
were allowed to swim freely for 60 s. If they did not reach the
platform within 60 s, the mice were slowly guided to the platform
and held there for 10 s. In the space exploration experiment, the
mice were allowed to swim freely for 60 s in a maze where the
platform was removed. During this process, the time to first reach
the original platform, the duration in the platform quadrant, and
the frequency of crossing the platform were recorded. During the
whole test, data acquisition is completed by the automatic image
surveillance and processing system.

Cresyl Violet Staining
To investigate the effect of ZSWF on hippocampal neurons of
DCI mice, cresyl violet staining was performed. At the end of the
treatment, the mice were deeply anesthetized by inhalation with
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4% isoflurane, and blood samples were collected. Apical perfusion
with PBS was then performed to remove residual blood from the
brain tissue, and whole brain tissue was collected. After fixation
with 4% paraformaldehyde, the brain tissue was dehydrated with
gradient sucrose solution (10%, 20%, and 30%, respectively), and
the coronal sections with thickness of 10 μm were obtained using
a frozen slicer. Sections were stained with 0.1% cresol violet
solution, dehydrated with ascending grades of alcohol, cleared
with xylene, mounted with neutral resin, and images were taken
using Leica DM4000B biological microscope (Beijing, China).

Enzyme-Linked Immunosorbent Assay
To investigate the effects of ZSWF on neuroinflammation in
DCI mice, the mice were sacrificed by cervical dislocation
after deep anesthesia. Then, the skull was cut along the
midline of the skull to expose the whole brain tissue, the
cortex was separated to expose the hippocampus, and the
hippocampus was collected with bamboo sticks and stored
at −80°C for detection. Also, commercially available enzyme-
linked immunosorbent assay (ELISA) kits were used to
measure the hippocampus IL-6 (JYM0012Mo, Colorful-
Gene, 2–150 pg/ml), IL-1β (JYM0531Mo, Colorful-Gene,
1.5–100 pg/ml), TNF-α (JYM0218Mo, Colorful-Gene,
8–500 pg/ml), and monocyte chemotaxis protein-1 (MCP-1,
JYM0099Mo, Colorful-Gene, 6–450 pg/m) according to
manufacturer’s instructions. To investigate the effects of
ZSWF on proinflammatory cytokines in peripheral
circulation in DCI mice, blood samples from each group
were collected and centrifuged at 3,000 g for 15 min. The
levels of IL-6, IL-1β, TNF-α, and INF-γ (abs552811, Absin
Bioscience Inc., 7.81–500 pg/ml) in the serum were also
detected using ELISA kits. Furthermore, to investigate the
effect of ZSWF on the integrity of intestinal mucosal barrier in
DCI mice, colon tissue approximately 5 cm connected to the
cecum of mice in each group was taken, colon contents were
scraped, and then, the colon and colon contents were stored in
EP tubes, respectively. Next, colon tissue was lysed with lysate,
and the content of mucin-2 (MUC2) in colon was determined
by the ELISA kit (SEA705Mu, Cloud Clone Biotechnology
Co., LTD., 0.78–50 ng/ml). The colon contents were diluted
with 0.9% Nacl, homogenized and centrifuged (3,000 g,
15 min), and the content of secretory immunoglobulin A
(SlgA) in the colon contents was determined by the ELISA
kit (SEA641Mu, Cloud Clone Biotechnology Co., LTD.,
0.156–10 ng/ml). All experimental procedures were
performed according to the manufacturer’s instructions.
The optical density at 450 nm was obtained with an ELISA
microplate reader (Infinite® 200 PRO, Tecan, Swit). There
were six biological repetitions in each group for
proinflammatory cytokines and five biological repetitions in
each group for Muc2 and SlgA.

Hematoxylin-Eosin Staining of Colon
To evaluate the effect of ZSWF on intestinal barrier integrity
in DCI mice, the colon was fixed in 4% paraformaldehyde for
24 h, and then, the paraffin section was performed. Sections
with a thickness of 0.5 μm were stained with hematoxylin

(5 min) and 0.5% eosin (3 min), and the histopathological
images of the colon were taken with a Leica DM4000B biologic
microscope.

Western Blot Analysis
To investigate the effect of ZSWF on intestinal permeability of
DCI mice, Western blot analysis was used to detect the protein
expressions of occludin and ZO-1. Proteins from colon tissues
were extracted and quantified using the BCA protein
quantification kit. Total proteins were separated by SDS
polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred onto a polyvinylidene fluoride (PVDF) membrane
by wet transfer apparatus. Tight junction protein associated
antibodies ZO-1 (ab216880, Abcam, United Kingdom) and
occludin (ab216327, Abcam, United Kingdom) were used to
incubate the bands overnight at 4°C, where β-actin (13E5,
CST, United States) was used as a reference protein, and then,
goat anti-rabbit secondary antibodies (ab205718, Abcam,
United Kingdom) were used to incubate the bands at room
temperature for 2 h. In conclusion, the immunoreactive bands
were visualized using enhanced chemiluminescence reagents, and
the luminescence intensity was quantitatively analyzed using
Image-pro Plus6.0.

HPLC-MS/MS Analysis Lactulose/Mannitol
Ratio in Urine
To observe the effect of ZSWF on intestinal barrier integrity in DCI
mice, the ratio of lactulose to mannitol in urine was determined by
HPLC-MS/MS according to the previous method (Kubica et al.,
2012). At the end of treatment, mice were given a 2:1 lactulose-
mannitol solution, and urine was collected in a metabolic cage for
6 h. The supernatant was obtained by centrifugation and stored
at −80°C. A Waters ACQUITY UPLC BEH Amide (2.1 mm ×
50mm, 1.7 μm, VK) was used for separation. The mobile phase
consisted of Methanol (A) and acetonitrile-water (B), and the flow
rate was set at 0.25 ml/min. The gradient profile was: 0–1 min (A:
90%; B: 10%), 1–8 min (A: 60%; B: 40%), 8–15min (A: 90%; B:
10%). The sample injection volume was 2 μL. The ESI source
operates in negative mode, with a capillary voltage of 2.0 kV and a
desolvation temperature of 550°C. The source of the gas was set as
follows: desolvation at 200 L/h and cone at 0 L/h. The collision
cell pressure was 4.5 × 10−3 mbar. Dates were processed using
MassLynx™4.1 software (Waters Corp, Milford, MA,
United States). Lactulose and mannitol contents were calculated
as well as the standard curve and corresponding peak area.

Gut Microbiota Composition Analysis
To investigate the effect of ZSWF on intestinal microflora of DCI
mice, feces of each group were collected by individual metabolic
chamber for approximately 24 h after treatment, and 16S rDNA
sequencing was performed. The metagenomic DNA from each feces
sample was extracted using a QIAampDNA StoolMini Kit (Qiagen,
Hamburg, Germany). Thereafter, the DNA concentration was
determined, and the V3-V4 regions of bacterial 16S rDNA was
amplified by PCR (95°C for 3 min, followed by 27 cycles at 95°C for
30 s, 55°C for 30 s, and 72°C for 45 s and a final extension at 72°C for
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10min, 10°C until halted by user) using 10 ng DNA as a template.
The 16S primers 338F-ACTCCTACGGGAGGCAGCAG and
806R-GGACTACHVGGGTWTCTAAT were used as fusion
primers containing Ion Torrent sequencing adapters. PCR
reactions were performed in triplicate 20 μl reaction mixtures
containing 4 μl of 5 × FastPfu Buffer (1 μM), 2 μl of 2.5 mM
dNTPs, 0.8 μl of Forward Primer (5 μM), and 0.8 μl of Reverse
Primer (5 μM), 0.4 μl of FastPfu Polymerase, 2 μl of Microbial DNA
(5 ng/μl), and add ddH2O to 20 μl. Afterwards PCR products were
gel-purified, and the amplicon DNA concentration was determined.
Sequencing of pooled amplicons was performed with an Illumina
MiSeq platform (Illumina Inc., San Diego, United States), and the
resulting analysis using the MiSeq Reporter software (MSR) and the
classification is based on the Greengenes database. Subsequent cord
diversity analysis applied to determine α (within sample) and β
(between samples) diversity. To demonstrate the clustering of
different groups, the Nonmetric multidimensional scaling and
weighted unifrac principal coordinate analysis (PCoA) were
conducted.

Statistical Analysis
Data were processed and analyzed using the statistical package SPSS
(version 17.0), and the results were expressed as mean ± standard
deviation (SD). Data were tested for normality before difference
analysis, escape latency data were analyzed by repeated measures
ANOVA, the remaining data were analyzed by one-way ANOVA,
followed by a post hoc Tukey’s Honest Significant Difference test for
multiple comparisons among the groups. A p value of less than
0.05was considered to indicate statistical significance. For 16S rRNA
gene sequence analysis, all reads were deposited and grouped into
operational taxonomic units (OTU) at a sequence identity of 97%,
and the taxonomic affiliation of the OTUs was determined with
quantitative insights into microbial ecology (version 1.8.0) against
the Greengenes database (version 13.5). Principal component
analysis was performed using SIMCA 14.0, and metastats was
used to analyze differences between groups.

RESULTS

Zi Shen Wan Fang Ameliorated Cognitive
Impairment and Prevented Neuron Damage
in Diabetic Cognitive Impairment Mice
To investigate the effect of ZSWF on the body weight of DCI
mice, we analyzed the changes of body weight of each group of
mice every 2 weeks during the treatment of ZSWF, and we found
that ZSWF tended to increase the body weight of DCI mice, but
no statistical difference (p > 0.05) was found, indicating that
ZSWF demonstrated no effect on the body weight of DCI mice.
Considering that hyperglycemia is the primary cause of cognitive
dysfunction, we first investigated the effect of ZSWF on FBG in
DCI mice. The results showed that no significant difference in
FBG was found between the ZSWF group and the DCI group
during continuous treatment (p > 0.05), whether the ZSWFL or
ZSWFH group (Supplementary Figure S1). Next, to investigate
the effect of ZSWF on cognitive impairment in DCI mice, the

MWM experiment was performed. The results of the positioning
navigation experiment showed that the escape latency of DCI
group was significantly increased compared with the Con group
(p < 0.05), while the escape latency of mice in the ZSWF group
was significantly decreased compared with the DCI group (p <
0.05) (Figure 1A). Next, the results of the space exploration
experiment showed that ZSWF significantly increased the
frequency of crossing the platform (p < 0.01, F = 6.590)
(Figure 1B) and the duration of swimming in the platform
quadrant (Figure 1C), and it reduced the time for DCI mice
to reach the platform for the first time (p < 0.05, F = 6.434)
(Figure 1D). Moreover, the swimming trajectory of the space
exploration experiment showed that the swimming trajectory of
the ZSWF group is oriented, while that of the DCI group is
disordered (Figure 1E).

The hippocampus is the main brain region regulating learning
and memory, and the damage of hippocampus neurons is the
final pathological change of cognitive dysfunction. Therefore, we
investigated the protective effect of ZSWF on DCI hippocampal
neurons by cresol violet staining the neuronal Nissl bodies. As
described in Figure 1F, the DCI animals neuron layer is thin,
irregularly and loosely arranged, intercellular spaces are widened,
and the cellular structure is incomplete, even with the loss of large
amounts of cells. Meanwhile, this phenomenon can be reversed
by the ZSWF administration, whether ZSWFL or ZSWFH.

Zi Shen Wan Fang Suppressed
Hippocampal and Peripheral Inflammation
in Diabetic Cognitive Impairment Mice
Cumulative studies reported that neuroinflammation is an
important pathological mechanism of DCI (Rom et al., 2019),
and chronic systemic inflammation is one of the important
characteristics of DM (Esser et al., 2014). Thus, we measured
the levels of classic proinflammatory cytokines IL-1β, IL-6, TNFα,
MCP-1, and INF-γ in the hippocampus and serum. Our results
indicated that the hippocampus levels of IL-1β (F = 8.909, p <
0.01) (Figure 2A), IL-6 (F = 20.64, p < 0.01) (Figure 2B), TNF-α
(F = 6.935, p > 0.05) (Figure 2C), andMCP-1 (F = 7.033, p < 0.05)
(Figure 2D) in DCI mice were significantly increased, and the
levels of IL-1β (F = 10.12, p < 0.01) (Figure 2E), IL-6 (F = 4.719,
p < 0.05) (Figure 2F), TNF-α (F = 6.767, p < 0.01) (Figure 2G),
and INF-γ (F = 4.727, p < 0.05) (Figure 2H) in serum were also
significantly increased. In contrast, these proinflammatory
cytokines were significantly reduced in the ZSWF group
compared with the DCI group (p < 0.05), although no
significant dose dependence occurred.

Zi Shen Wan Fang Maintains Intestinal
Integrity in Diabetic Cognitive Impairment
Mice
Given that intestinal dysbiosis in diabetes animals may affect gut
integrity and subsequently lead to release of bacterial
proinflammatory cytokines into the circulation, we examined the
effect of ZSWF on intestinal barrier integrity in DCI mice. HE
staining results showed that compared with the Con group, the
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colonic mucosa of mice in the DCI group was damaged, the number
of goblet cells was reduced, and mucosal muscle layer was thinned,
while ZSWF protected the colonic injury of DCI mice (Figure 3A).
Furthermore, intestinal SIgA plays a key role in the intestinal immune
system. Our data showed that compared with the Con group, the
SIgA level of colon contents was significantly reduced in the DCI
group (F = 8.092, p < 0.01), while ZSWF treatment significantly
reversed the decreased SIgA level in DCImice (p < 0.05) (Figure 3B).
Next, we examined the level of Muc2 secreted by goblet cells and
found that ZSWF treatment significantly increased the content of

Muc2 in the DCI mice colon (F = 33.39, p < 0.01) (Figure 3C).
Moreover, the urinary lactulose/mannitol (L/M) ratio was used to
determine intestinal permeability and found that the urinary L/M
ratio of the ZSWF group was significantly lower than that of the DCI
group (F = 12.06, p < 0.01) (Figure 3D). In addition, we also
investigated the effect of ZSWF on tight junction protein
expression in the colon of DCI mice and found that compared
with the Con group, the expression of tight junction proteins ZO-1
and occludin in the colon of DCI mice was significantly decreased,
while ZSWF treatment significantly increased the expression of ZO-

FIGURE 1 | ZSWF ameliorated cognitive impairment and prevented neuron damage in DCI mice. (A) escape latency, (B) the frequency of crossing the platform, (C)
duration in the platform quadrant, (D) time of first arrival at platform. These data are expressed as the mean ± SD, (n = 15). Escape latency data were analyzed by
repeated measurement ANOVA, other data were analyzed by one-way ANOVA. **p < 0.01, *p < 0.05 vs. Con group, ##p < 0.01, #p < 0.05 vs. DCI group. (E)
representative swimming tracks of each group of mice in the space exploration experiment. (F) representative images of cresol violet staining in hippocampus of
each group of mice.
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1(F = 326.8, p < 0.01) and occludin (F = 181.2, p < 0.01) in the colon
of DCI mice (Figures 3E,F).

Zi Shen Wan Fang Reversed Gut Microbiota
Dysbiosis and Increased Short-Chain Fatty
Acids in Diabetic Cognitive Impairment
Mice
Gut microbiota may be an ideal target for understanding and
treating DCI. To reveal the effect of ZSWF in regulating gut
microbiota in DCI mice, the feces were sampled and sequenced
by performing a pyrosequencing-based analysis of bacterial 16S
rDNA (V3-V4 region). Weighted UniFrac distance-based PCoA
revealed a distinct clustering of microbiota composition for each
group (Figure 4A). At the phylum level, the DCI mice displayed an
increased the relative abundance of Firmicutes (54.27% vs. 27.53%)
and Proteoobacteria (30.08% vs. 3.24%) and decreased abundance
of Bacteroidetes (15.21% vs. 64.25%) compared with Con mice. In
contrast, the microbiota imbalance was ameliorated by ZSWF
administration as it decreased the abundance of Firmicutes
(32.95% vs. 54.27%) and Proteoobacteria (14.71% vs. 30.18%)
and increased Bacteroidetes (50.34% vs. 15.2%) (Figure 4B).
Furthermore, treatment with ZSWF reduced the ratio of
Firmicutes to Bacteroidetes in DCI mice (Figure 4C). At the
genus level, the relative abundance accounted for the top
30 was analyzed, and after ZSWF treatment, several important
modifications of the gut microbiota composition were found. The
relative abundance of Bacteroides (F = 14.48, p < 0.01) and Alistipes
(F = 4.559, p < 0.05) were markedly increased, and Dorea (F =
5.396, p < 0.01), Intestinimonas (F = 11.79, p > 0.05), Desuifouibrio
(F = 12.45, p < 0.05), and Allobaculum (F = 10.32, p < 0.05) were
significantly decreased in the ZSWF administration group
compared to the DCI group (Figures 4D–J). These results
confirmed that the homeostasis of the gut microbiota in DCI
individuals was destroyed, and ZSWF could play an important role
in modulating the composition of gut microbiota on DCI mice.

Furthermore, considering that short-chain fatty acids (SCFAs) are
major metabolites of intestinal microbiota and play an important
role in gut-brain axis communication, we examined the effect of
ZSWF on fecal SCFAs concentration and found that ZSWF could
increase the concentration of SCFAs in feces of DCI mice
(Supplementary Figure S3).

Microbiota Ablation With Antibiotics
Eliminated Zi Shen Wan Fang in Improving
Cognitive Function and Reducing
Neuroinflammation as Well as Systemic
Inflammation of Diabetic Cognitive
Impairment Mice
The above results suggest that the gut microbiota-brain axis plays
an important role in ZSWF in improving cognition impairment
of DCI mice. To further investigate the relationship between the
improvement of cognitive function and the regulation of
intestinal microbiota by ZSWF, a cocktail of oral antibiotics
was used to eliminate the gut microbiota. The mice were
administrated with antibiotics in the drinking water starting
7 days before ZSWF treatment and throughout the experiment.
First, we found that antibiotics demonstrated no effect on FBG in
DCI mice (Supplementary Figure S4). Furthermore, antibiotic
treatment significantly reduced the amount of OTU in the feces of
DCI mice (Figure 5A), suggesting that most intestinal microbiota
were eliminated. Antibiotics alone did not significantly alter
cognitive function and inflammation in the DCI group,
suggesting antibiotics did not further impair cognitive function
and increase inflammation induced diabetes (Figures 5B–E). Of
note, the antibiotic treatment abrogated the beneficial effects of
ZSWF treatment in DCI mice. We found that the cognition
improvement with ZSWF was abolished by antibiotics treatment,
with longer escape times (Figure 5B), longer times of first to
arrival platform (Figure 5C), lower times in the target quadrant
(Figure 5D), and lower frequency to cross platform (Figure 5E).

FIGURE 2 | ZSWF suppressed hippocampal and peripheral inflammation in DCI mice. (A) IL-1β contents in the hippocampus, (B) IL-6 contents in the
hippocampus, (C) TNF-α contents in the hippocampus, (D) MCP-1 contents in the hippocampus, (E) IL-1β levels in the serum, (F) IL-6 levels in the serum, (G) TNF-α
levels in the serum, (H) INF-γ levels in the serum. All data were expressed as mean ± SD (n = 6). One-way ANOVA was used to compare statistical differences between
groups. **p < 0.01, *p < 0.05 vs. Con group, ##p < 0.01, #p < 0.05 vs. DCI group.
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Moreover, we also observed that the effect of ZSWF on reducing
hippocampus and serum proinflammatory cytokines was
eliminated by antibiotic intervention (Figures 5F–M).
Meanwhile, the effect of ZSWF intervention on increasing
fecal SCFAs in DCI mice was eliminated (Supplementary
Figure S5). These results suggest that maintaining intestinal
microflora homeostasis is a critical pathway for ZSWF to
reverse cognitive function and reduce inflammation in DCI mice.

DISCUSSION

Cognitive dysfunction is one of the complications of diabetes, and
no clinically approved treatment drug exists. Previous cumulative
studies showed that DCI is closely associated with intestinal
microbiome dysregulation (Xu et al., 2017; Zhang et al.,
2021a), suggesting that maintaining intestinal microbiome

homeostasis may be an effective strategy to prevent and treat
DCI. In this study, we investigated the effects of ZSWF on the
cognitive function of DCI mice, and we explored the mechanism
from the perspective of gut-microbial-brain axis. Next, we present
evidence that suggests that ZSWF supplementation ameliorated
the diabetes-induced cognitive dysfunction and reduced
neuroinflammation and systemic inflammation. Furthermore,
ZSWF treatment protected intestinal barrier integrity and
maintained intestinal microbiota homeostasis in DCI mice. In
particular, the effects of ZSWF treatment on improving diabetes-
induced cognitive impairment and inflammation were eliminated
after antibiotic treatment deleted intestinal bacteria, highlighting
the essential role of gut microbiota in improving cognitive
function of ZSWF.

In this study, we established a diabetic mouse model according
to the method previously reported (Kusakabe et al., 2009). Given
that our previous studies confirmed a certain incidence of

FIGURE 3 | ZSWF maintains intestinal integrity in DCI mice. (A) representative images of colon HE staining, the goblet cells marked by the red arrow, scale bar
50 μm (n = 3). (B,C) SlgA and Muc2 contents in the colon, (D) lactulose to mannitol ratio, these data were expressed as mean ± SD (n = 5). (E,F) occludin and ZO-1
representedWestern blotting bands and relative protein expression levels in the colon, data were expressed as mean ± SD (n = 3). All data were analyzed using one-way
ANOVA, **p < 0.01 vs. Con group, ##p < 0.01, #p < 0.05 vs. DCI group.
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diabetes-induced cognitive impairment (Song et al., 2017), mice
with cognitive impairment were screened by MWM after 8 weeks
of hyperglycemic stimulation. Our screening results revealed that
diabetic mice demonstrated an approximately 80% chance of
developing cognitive impairment (Unpublished). Then, we
treated DCI mice with ZSWF extract for 8 weeks. FBG was
measured weekly during treatment, and cognitive function was
assessed after treatment. Likewise, we found that ZSWF
significantly improved cognitive function and protected
hippocampal neuron damage in DCI mice. However, this
study found that ZSWF could not improve FBG, the initial
pathological factor of DCI mice, suggesting that improving the
subsequent complex pathological links mediated by
hyperglycemia may be the mechanism by which ZSWF
improves DCI.

Accumulated evidence suggests that neuroinflammation is an
important pathological mechanism of DCI (Muriach et al., 2014;

Jeong et al., 2021). IL-6, IL-1β, and TNF-α are common
proinflammatory cytokines, which are significantly altered in a
variety of acute and chronic inflammatory diseases. IFN-γ is
secretedmainly by natural killer cells and natural killer T cells and
plays a role in innate immunity. A large number of excellent
previous studies confirmed that the diabetic hyperglycemic
environment mediates changes in innate immune system
function and significantly increases IFN-γ levels. MCP-1 is a
major chemokine that recruits monocyte/macrophage to the site
of tissue injury and plays a critical role in microvascular
complications of diabetes. Therefore, in order to investigate
the effects of ZSWF on the system and neuroinflammation of
DCI mice, we used the ELISA kit to detect the changes of the
above cytokines, and we found that the levels of these
proinflammatory factors in the hippocampus of DCI mice
were significantly increased, which was consistent with
previous reports (Wang et al., 2019; Zeinivand et al., 2020).

FIGURE 4 | ZSWF reversed gut microbiota dysbiosis in DCI mice. (A) principal coordinates analysis (PcoA), (B) relative abundances at phylum levels, (C) ratio of
Firmicutes to Bacteroidetes, (D) relative abundance of bacteria at the genus level, (E–J) relative abundance of Dorea, Bacteroides, Intestinimonas, Desulfourbrio,
Allobaculum, and Alistipes. All data were expressed asmean ± SD (n = 6), and one-way ANOVAwas used to compare statistical differences between groups, **p < 0.01,
*p < 0.05 vs. Con group, ##p < 0.01, #p < 0.05 vs. DCI group.
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Likewise, our current study also revealed that ZSWF reduced
hippocampal proinflammatory cytokines levels in DCI mice.
Also, we found that ZSWF inhibited the activation of brain-
resident immune cells (microglia and astrocytes) in DCI mice
(unpublished). In addition to brain-resident immune cells
releasing proinflammatory cytokines, peripheral circulating
proinflammatory cytokines crossing the blood-brain barrier is
also a key pathologic pathway of neuroinflammation. In a similar
manner, our results showed that ZSWF significantly reduced
peripheral circulating proinflammatory cytokines in DCI mice.
These results suggest that the reduction of peripheral circulation
and neuroinflammation is the mechanism of ZSWF to improve

DCI. However, studies showed that the bioavailability of main
chemical components of Anemarrhenae Rhizoma and
Phellodendri Chinensis Cortex is low (Singh and Chaudhuri,
2018; Baldim et al., 2020), and our previous in vivo chemical
analysis of ZSWF also showed that most components in
Cistanches Herba were concentrated in feces (Zheng et al.,
2018), suggesting that regulation of gastrointestinal function or
intestinal flora may play a crucial role in the reversal of DCI
inflammation by ZSWF.

Increasing evidence also indicates that diabetes-induced
systemic inflammation is mainly caused by impaired intestinal
barrier integrity and dysbiosis of intestinal flora (Cani et al., 2008;

FIGURE 5 |Microbiota ablation with antibiotics eliminated the effects of ZSWF on improving cognitive function and reducing inflammation in DCI mice. (A) effects of
antibiotic treatment on relative abundance of intestinal bacteria at genus level in DCI mice. The heat map represents the relative sequence abundance of Top50 OTU of
genus level bacteria. The redder color represents more bacteria composition or the higher relative abundance of genus level bacteria. The horizontal axis represents
groups, D1–D6 are six samples from the DCI group, and A1–A6 are six samples from the antibiotic group. (B) escape latency, (C) time of first arrival at platform, (D)
duration in platform quadrant, (E) the frequency of crossing the platform. These data were expressed as mean ± SD (n = 15). Escape latency data were analyzed by
repeated measurement ANOVA, and other data were analyzed by one-way, ##p < 0.01, #p < 0.05 vs. DCI group, $p < 0.05 vs. ZSWF group. (F)MCP-1 contents in the
hippocampus, (G) TNF-α contents in the hippocampus, (H) IL-1β contents in the hippocampus, (I) IL-6 contents in the hippocampus, (J) INF-γ levels in the serum, (K)
TNF-α levels in the serum, (L) IL-1β levels in the serum, (M) IL-6 levels in the serum. These data were expressed as mean ± SD (n = 6), one-way ANOVA was used to
compare statistical differences between groups, ##p < 0.01, #p < 0.05 vs. DCI group, $$p < 0.01, $p < 0.05 vs. ZSWF group.
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Cani et al., 2009; Li et al., 2019). Our detection results of intestinal
barrier integrity related parameters showed that the intestinal
barrier integrity was damaged in DCI mice, which was consistent
with previous reports (Visser et al., 2010; Li et al., 2022; Xiao et al.,
2022). Likewise, our results show that ZSWF exhibits a protective
effect on intestinal barrier integrity in DCI mice by increasing
colon tight junction protein expression (ZO-1 and occludin) and
mucin (Muc2) content, as well as colon content immunoglobulin
A (SlgA) levels. These results systematically confirmed that ZSWF
maintained intestinal barrier integrity in DCI mice.

Intestinal microbiome is a key component of the intestinal
barrier, and its homeostasis can lead to an increase in the
permeability of the intestinal barrier. The results of our 16S
rDNA sequencing revealed that the intestinal microbiome
composition of DCI mice was significantly altered, and ZSWF
demonstrated a significant reversal effect on the microbiome
disorder of DCI mice. The relative abundance results of phylum
level bacteria showed that DCI mice increased the relative
abundance of Firmicutes and Proteoobacteria, and they
significantly decreased the abundance of Bacteroidetes, which
was consistent with previous reports (Zhu et al., 2016). More
notably, ZSWF improved the imbalance of intestinal bacteria, as
demonstrated by a decreased ratio of Firmicutes to Bacteroides. At
the genus levels, our results showed that ZSWF treatment
significantly increased the abundance of Bacteroides and
Alistipes, and it decreased the abundance of Desulfouibrio,
Dorea, and Allobaculum. Clinical studies linked changes in
Bacteroides to cognitive and neurodegenerative diseases
(Cattaneo et al., 2017; Saji et al., 2019). Also, previous studies
found that Bacteroides can reduce inflammation (Tan et al., 2019)
and protect intestinal mucosal permeability (Hooper et al., 2001).
Studies found that the abundance of Alistipes is significantly
reduced in patients with mild cognitive impairment, suggesting
that Alistipes is negatively correlated with cognitive function
(Zhang et al., 2021b). Desulfovibrio is a proinflammatory
bacterium (Simpson et al., 2021) and can produce hydrogen
sulfide, which demonstrates a cytotoxic effect (Gibson, 1990).
The above evidence suggested that ZSWF could maintain
intestinal microbiome homeostasis in DCI mice, which was
reflected in that ZSWF increased the relative abundance of
beneficial bacteria in DCI mice and decreased the abundance
of bacteria that produced cytotoxic substances. Antibiotic cocktail
treatment is an appropriate method to explore the effects of
intestinal bacteria on physiology and disease in animal (Kennedy
et al., 2018). Data from ZSWF combined with antibiotic therapy
revealed that oral antibiotics did not improve or worsen FBG,
cognitive function, as well as inflammation in DCI mice.
However, oral antibiotics treatment eliminated the effect of
ZSWF on cognitive function and inflammation in DCI mice,
suggesting that gut microbes are necessary to ZSWF to improve
cognitive function and inflammation in DCI mice.

The regulation of intestinal flora by ZSWF in DCImice may be
bidirectional. On the one hand, the chemical composition of
ZSWF maintained the composition of intestinal microbes in DCI
mice, and on the other hand, intestinal microbes in DCI mice
metabolized the components with low bioavailability of ZSWF.
The potential active components of ZSWF regulating intestinal

flora of DCI mice may be polysaccharides in Cistanches Herba
and alkaloids in Phellodendri Chinensis Cortex. Previous studies
confirmed that Cistanche polysaccharides demonstrate a clear
regulatory effect on intestinal flora (Fu et al., 2020; Fan et al.,
2021; Gao et al., 2021). Although accumulative studies confirmed
that berberine, the main alkaloid component of Phellodendri
Chinensis Cortex, can protect cognitive function (Aski et al.,
2018; Shinjyo et al., 2020; Yi et al., 2021), subsequent studies
gradually recognized that regulating intestinal flora may be the
initial link of berberine improving cognitive function (Zhang
et al., 2020b; Habtemariam, 2020). The ZSWF components
metabolized by intestinal flora of DCI mice may be saponins
in Anemarrhenae Rhizoma (Tian et al., 2016; Dong et al., 2021).
Furthermore, besides the immune signaling pathway investigated
in this study, the mechanism of ZSWF regulating intestinal flora
to improve DCI may also include the following aspects: first,
regulating the tryptophan-kynurenine metabolic pathway.
Previous cumulative studies confirmed that gut microbiota
plays an important role in regulating tryptophan-kynurenine
metabolism (Kennedy et al., 2017; Agus et al., 2018; Deng
et al., 2021), and several studies also found that tryptophan-
kynurenine metabolism is involved in the regulation of glutamate
neurotransmitters and synaptic excitability, which is crucial for
the protection of cognitive function (Oxenkrug, 2007; Forrest
et al., 2015; Tanaka et al., 2020; Bakker et al., 2021). More notably,
our previous study found abnormal kynurenine metabolism in
DCI mice, and ZSWF treatment could improve kynurenine
metabolism in DCI mice (Yin et al., 2022). These studies
suggest that regulation of tryptophan-kynurenine metabolic
pathway may be the mechanism by which ZSWF improves
cognitive function by maintaining intestinal microbiome
homeostasis in DCI mice. Second, the increase the level of
SCFAs derived from gut microbiota. As the main metabolite
of gut microbiota, SCFAs have been reported to ameliorate
cognitive impairment mediated by a variety of etiologies,
including DCI (Lee et al., 2020; Enry et al., 2021; Qian et al.,
2021; Zheng et al., 2021). Our previous study also found that
ZSWF increased fecal SCFAs levels in DCI mice (unpublished).
These results suggest that increasing the level of SCFAs derived
from gut microbiota may also be the mechanism by which ZSWF
regulates intestinal microflora to improve cognitive function in
DCI mice. However, this study still demonstrates some
limitations. For example, although our previous studies
identified the main chemical components of ZSWF extract in
vivo and in vitro, including the main archetypes and metabolic
components in feces (Zheng et al., 2018), which components are
involved in maintaining intestinal microbiota homeostasis and
their mechanisms remain unclear. Moreover, since no drug with a
definite therapeutic effect for DCI exists in clinical practice at
present, this study did not select a suitable positive control.

CONCLUSION

ZSWF can improve cognitive dysfunction and
neuroinflammation in DCI mice, while oral antibiotics can
partially eliminate these effects, suggesting that maintaining

Frontiers in Pharmacology | www.frontiersin.org July 2022 | Volume 13 | Article 89836011

Shi et al. ZSWF Regulates the Gut-Brain Axis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


intestinal microbial homeostasis may be the underlying
mechanism of ZSWF to improve cognitive function in
DCI mice.
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