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Secondary bacterial pneumonia is a frequent complication of influenza, associated

with high morbidity and mortality. We hypothesized that treatment with neutralizing

influenza A antibody AT10_002 protects against severe secondary pneumococcal

infection in a mouse model of influenza A infection. Influenza A (H3N2) virus–infected

male C57Bl6 mice were treated intravenously with either AT10_002 or a control

2 days postinfection. Seven days later, both groups were infected with Streptococcus

pneumoniae and killed 18 hours later. Mice receiving AT10_002 showed less loss of

bodyweight compared with controls (+1% vs −12%, P < .001), lower viral loads in

bronchoalveolar lavage fluids (BALFs) (7 vs 194 RNA copies per µL; P < .001), and

reduced bacterial outgrowth in lung homogenates (3.3 × 101 vs 2.5 × 105 colony‐
forming units per mg; P < .001). The treatment group showed lower pulmonary wet

weights, lower cell counts, and lower protein levels in BALF compared with controls.

Treatment with AT10_002 was associated with lower levels of tumor necrosis

factor‐α, interleukin (IL)‐6, cytokine‐induced neutrophil chemoattractant (KC), and

interferon‐γ in BALF and lower IL‐6 and KC in lung homogenates. Treatment with

anti‐influenza antibody AT10_002 is associated with reduced weight loss, viral load,

bacterial outgrowth, and lung injury in a murine model of secondary pneumococcal

pneumonia following influenza infection.
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1 | INTRODUCTION

The annual influenza epidemics have a high burden on society, with

an estimated 250 000 to 500 000 influenza‐related deaths world-

wide.1 Secondary bacterial pneumonia is a frequent complication and

an important cause of both seasonal and pandemic influenza–

associated mortality.2 Although influenza virus infection commonly

leads to mild and self‐limiting disease, it can cause dysregulation of

the innate and adaptive immune response, increasing susceptibility to

bacterial infection and contributing to disease severity.3-6 Secondary

bacterial infection is most frequently caused by Streptococcus

pneumoniae and Staphylococcus aureus,6,7 though in critically ill

patients Gram‐negative bacteria, such as Pseudomonas aeruginosa

and Klebsiella pneumoniae, are often also implicated.8,9
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Postinfluenza pneumonia is associated with a high mortality, and

there is a paucity of data as for the optimal approach of antiviral

and antibacterial treatments.2,10 Hence, much effort is directed

toward the prevention of influenza infection and disease severity.

Seasonal influenza vaccination is associated with a reduction of

hospitalizations for pneumonia, as well as with reduced mortality

following admission.11-14 However, influenza vaccine efficacy is

limited when the seasonal vaccine composition does not precisely

match the actual circulating strains, as has been observed in the

2014‐2015 season.15 Once influenza virus infection has been

established, there are indications that early treatment with neur-

aminidase inhibitors reduces the risk of hospitalization and lower

respiratory tract complications, such as pneumonia.16-20 However,

influenza variants resistant to neuraminidase inhibitors may emerge,

potentially complicating their future use.21-23

Broadly neutralizing influenza antibodies are a promising new

treatment option. These antibodies target conserved regions of

the surface glycoprotein hemagglutinin (HA), thereby blocking

infection and replication of multiple influenza A virus sub-

types.24,25 Influenza A antibody AT10_002 targets HA of group

2 viruses and has been shown to neutralize multiple influenza H3

and H7 variants in vitro.26 In the current study, we hypothesized

that treatment with influenza antibody AT10_002 reduces disease

severity in a mouse model of secondary pneumococcal infection

following influenza virus infection.

2 | MATERIALS AND METHODS

2.1 | Mice

All experiments were approved by the Animal Care and Use

Committee of the Academic Medical Center, University of Amster-

dam (Amsterdam, the Netherlands). Male C57Bl6 mice (±25 g)

were obtained from Charles River Nederland B.V. (Leiden, the

Netherlands) and maintained at animal biosafety level 2.

2.2 | Experimental infection protocol

Mice were briefly anesthetized by inhalation of 3% isoflurane and

intranasally inoculated with 400 median tissue culture infective

dose (TCID50) of influenza A/Hkx/31 (H3N2) in a volume of 50 μL

phosphate‐buffered saline. On day 2 after inoculation, mice were

injected in the tail‐vein with antibody AT10_002 (n = 8) (kindly

provided by AIMM Therapeutics B.V., Amsterdam, the Nether-

lands) in a dose of 15 mg/kg. AT10_002 is a human antibody

derived from memory B cells of influenza‐vaccinated indivi-

duals.26-28 Controls received an isotypic nonbinding control anti‐
CD20 antibody (Rituximab, Roche, Grenzach-Wyhlen, Germany)

(n = 7) in the same volume. On day 7 after influenza virus infection,

both groups were intranasally inoculated under isoflurane

anesthesia with S. pneumoniae, type 3 (ATCC 6303, Rockville,

MD) in a dose of 5 × 103 colony‐forming units (CFU) suspended in

50 μL saline (0.9%). Mice were killed 18 hours after pneumococcal

infection. Bodyweight was measured at baseline, 3 times during

the course of the infection, and at sacrifice.

2.3 | Exsanguination and organ processing

Mice were anesthetized intraperitoneally with 7.5 μL/g bodyweight

of a mixture of ketamine (16.8 mg/mL) and dexmedetomidine

(27 μg/mL) in sterile saline (0.9%). Mice were bled by heart puncture.

Blood was collected in EDTA tubes, centrifuged at 800g for

10minutes at 4°C, and plasma was stored at − 80°C for further

analysis. The right lung lobes were harvested and homogenized in

4 volumes of sterile saline using an Omni‐TH Tissue Homogenizer

(Wilten Instruments, Etten‐Leur, the Netherlands). The left lung was

used for bronchoalveolar lavage (BAL) and the right lung was used to

determine wet weight. BAL fluids were obtained by flushing the

left lung 3 times with 0.5 mL sterile saline (0.9%). Supernatant was

obtained after centrifugation at 260g for 10minutes at 4°C, in

which the total amount of cells was counted using a Z2 Coulter

Particle Counter (Beckman‐Coulter Corporation, Miami, FL) and the

total protein levels were measured (Oz Biosciences, Marseille,

France).

2.4 | Viral load measurement

Nucleic extractions were performed on 50 µL BAL fluid obtained

after sacrifice using the Roche MagNA Pure Total Nucleic Acid Kit on

a MagNA Pure 96 instrument (Roche Diagnostics, Penzberg,

Germany). A semiquantitative reverse transaiption‐polymerase chain

reaction was performed with the LightCycler 480 (Roche Diagnostics,

Penzberg, Germany), using a validated protocol for influenza A.29

Cycle threshold (Ct) values above 40 were considered negative; viral

load estimates were calculated based on Ct values.

2.5 | Bacterial outgrowth

Lung homogenates were diluted in serial 10‐fold dilutions in sterile

saline (0.9%) and plated on blood‐agar plates. CFUs were counted

after 12‐hour incubation at 37°C with 5% CO2.

2.6 | Cytokine and chemokine assays

Lung homogenates were diluted with equal volumes of lysis buffer

(300mM sterile saline [0.9%], 30mM Tris, 2 mM MgCl2, 2 mM CaCl2,

1% [v/v] Triton X‐100, 20 ng/mL Pepstatin A, 20 ng/mL Leupeptin,

20 ng/mL Aprotinin, pH 7.4) and placed on ice for 30minutes. After

centrifugation at 680g for 10minutes at 4°C, supernatants were

obtained and stored at − 80°C. The following cytokines and

chemokines were measured in lysates by enzyme‐linked immunosor-

bent assay according to the manufacturer’s instructions (R&D

Systems, Abingdon, UK): interleukin 6 (IL)‐6, tumor necrosis factor

(TNF)‐α, interferon (IFN)‐γ, and cytokine‐induced neutrophil

chemoattractant (KC).
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2.7 | Statistical analysis

Data are expressed as median and interquartile range, unless stated

otherwise. Results of the intervention group were compared to those

of the control group using Mann‐Whitney U tests. P < .05 was

considered to represent a statistical significant difference.

3 | RESULTS

3.1 | Influenza antibody treatment reduces
bodyweight loss during influenza and secondary
pneumococcal pneumonia

All mice survived until exsanguination. Mice receiving influenza

antibodies exhibited less loss of bodyweight compared with the

control group on day 5 (−4% [interquartile range, −3% to −5%] vs

−7% [−5% to −10%], P = .029) on day 7 after influenza infection (−2%

[−1% to −3%] vs −15% [−13% to −16%], P < .001), as well as following

secondary pneumococcal infection (+ 1% [0% to 2%] vs −12% [−9% to

−14%], P < .001] (Figure 1).

3.2 | Influenza antibody treatment reduces viral
load and pneumococcal outgrowth

Treatment with influenza antibodies resulted in lower viral loads

in BAL fluids compared with the control group (7 [2–14] vs 194

[107–314] RNA copies/µL, P < .001) (Figure 2), as well as almost a

4 log reduction in CFUs of S. pneumoniae in lung homogenates

compared with controls (3.3 × 101 vs 2.5 × 105 CFUs/mg, P < .001)

(Figure 3).

3.3 | Influenza antibody treatment reduces lung
injury after secondary pneumococcal pneumonia

Mice receiving AT10_002 influenza antibodies exhibited less pulmon-

ary edema, as measured by a lower lung wet weight compared with
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F IGURE 1 Relative bodyweight of mice treated with AT10_002

influenza antibodies vs controls, in a mouse model of influenza
infection and secondary pneumococcal infection

F IGURE 2 Viral loads in bronchoalveolar lavage fluids of

influenza‐infected mice with secondary pneumococcal pneumonia
treated with AT10_002 influenza antibodies vs control.
Measurements were performed after sacrifice at 18 hours

after pneumococcal infection

F IGURE 3 Bacterial outgrowth in lungs of influenza‐infected
mice with secondary pneumococcal pneumonia treated with
AT10_002 influenza antibodies vs control. Measurements were

performed after sacrifice at 18 hours after pneumococcal infection.
CFU, colony‐forming units

F IGURE 4 Wet lung weight in influenza‐infected mice with
secondary pneumococcal pneumonia treated with AT10_002

influenza antibodies vs control. Measurements were performed
after sacrifice at 18 hours after pneumococcal infection



the control group (68 [66 to72] vs 96 [82 to 104]mg; P < .001)

(Figure 4). Treatment also resulted in lower total cell count (53 × 104

[31 × 104 to 70 × 104] vs 91 × 104 [80 × 104 to 156 × 104] cells/mL;

P = .004) and protein levels in bronchoalveolar lavage fluid (BALF)

(458 [267 to 505] vs 558 [496 to 625] µg/mL; P = .04) compared with

the control group (Figure 5A,B). In addition, lower levels of TNF‐α, IL‐6,
KC, and IFN‐γ in BALF after pneumococcal infection were observed in

treated mice compared with the control group (TNF‐α: 24 [20–46] vs

375 [507–284] pg/mL; P < .001; IL‐6: 12 [6 to 46] vs 490 [320 to

1251] pg/mL; P < .001; KC: 74 [22 to 111] vs 583 [459 to 781] pg/mL;

P < .001; and IFN‐γ: 90 [16 to 345] vs 509 [306 to 864] pg/mL;

P = .004, respectively) (Figure 6A‐H). In lung homogenates, IL‐6 and

KC were also lower compared to the control group (153 [139 to 181]

vs 1160 [795 to 4253] pg/mL; P < .001 and 644 [502 to 921] vs 7066

[4560 to 12 825] pg/mL; P < .001, respectively), whereas no difference

was observed for TNF‐α (1538 [1382 to 1781] vs 1338 [1273 to

2080] pg/mL; P = .397). Of note, levels of IFN‐γ in lung homogenates

were higher in mice receiving AT10_002 compared with controls

(1136 [910 to 1250] vs 838 [681 to 916] pg/mL; P = .014).

4 | DISCUSSION

The current study is the first to investigate the effect of broadly

neutralizing influenza antibody treatment in a murine postin-

fluenza bacterial infection model. Treatment with AT10_002

significantly reduces loss of bodyweight, viral load, and bacterial

outgrowth. This effect was associated with reduction of lung

injury, as demonstrated by lower wet lung weight, lower cell count,

and lower protein levels in BALF. Moreover, lower BALF levels of

pro‐inflammatory cytokines were observed in the treatment

group.

The observed treatment effect may be attributed to a less‐
severe course of influenza infection, thereby retaining the ability

of the host to prevent or combat secondary infection. The current

study could not distinguish between lung injury caused by

influenza infection and bacterial infection. However, mice receiv-

ing AT10_002 had lower viral loads and already exhibited less loss

of bodyweight before inoculation with S. pneumoniae, suggesting a

less‐severe primary influenza infection. It is well established that

the virus, bacteria, and host interact with each other in the

development of secondary bacterial pneumonia. Influenza virus

infection can impair the host response against bacterial invaders in

several ways, including an increased adherence and invasion of

bacteria due to virus‐induced damage of the epithelium30,31 and

decreased mucocilliary velocity and bacterial clearance.32 Further-

more, the innate host response can be dysregulated, including

decreased phagocytosis of neutrophils33,34 and desensitization of

alveolar macrophages.35 The adaptive response can also be

impaired during severe influenza infection, which may increase

the susceptibility of the host to bacterial superinfection.36

There were distinct effects of AT10_002 on IFN‐γ levels, a key

cytokine mediator in antiviral immunity. IFN‐γ inhibits viral replica-

tion directly and has numerous immunomodulatory effects, including

promoting Th0 differentiation to Th1 cells, which leads to an

adaptive response. In postinfluenza pneumonia however, IFN‐γ
appears to suppress the host response, possibly by inhibiting

phagocytosis of bacteria.37 In our study, we found lower IFN‐γ in

BALF but higher IFN‐γ in lung homogenates of mice receiving

antibody treatment compared with controls. We hypothesize that a

lower IFN‐γ response in the lung compartment is the result of a lower

viral load, which might have led to less epithelial damage and

increased clearance of bacteria. We are however unsure as to how to

interpret the high IFN‐γ level in lung homogenates. This may suggest

a more adequate systemic host response to bacterial infection, a

treatment effect prior to bacterial infection, or a specific binding in

the assay.

The current study has several limitations. AT10_002 antibody

treatment was highly effective when administered 2 days after

influenza infection; however, it remains to be determined

whether treatment at a later time point or during secondary

bacterial infection is equally beneficial. In addition, survival

experiments are needed to study the effects of AT10_002

treatment on mortality. These were not performed as the focus

of this project was to study bacterial loads and markers of

inflammation and lung injury. Furthermore, adverse effects of

AT10_002 are unknown and should be closely monitored when

tested in a clinical trial.
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F IGURE 5 A,B, Total cell count and protein levels in BALF in influenza‐infected mice with secondary pneumococcal pneumonia treated

with AT10_002 influenza antibodies vs control. Measurements were performed after sacrifice at 18 hours after pneumococcal infection.
BALF, bronchoalveolar lavage fluid
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F IGURE 6 A‐H, Pulmonary cytokines and chemokines in BALF and lung homogenate influenza‐infected mice with secondary pneumococcal

pneumonia treated with AT10_002 influenza antibodies vs control. Measurements were performed after sacrifice at 18 hours after
pneumococcal infection. BALF, bronchoalveolar lavage fluid; IFN, interferon; IL, interleukin; KC, cytokine‐induced neutrophil chemoattractant;
TNF, tumor necrosis factor



In conclusion, we show that early treatment with influenza

antibody AT10_002 significantly reduced weight loss, lung injury,

bacterial outgrowth, and inflammation in a mouse model of influenza

infection, followed by secondary pneumococcal pneumonia.

Currently, several phase 2 studies are ongoing with similar broadly

neutralizing HA antibodies in primary influenza infection.25 Results

from these studies will help determine the significance of our

promising findings.
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