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ABSTRACT Understanding how genetic variation affects intermediate phenotypes, like DNA methylation or gene expression, and how
these in turn vary with complex human disease provides valuable insight into disease etiology. However, intermediate phenotypes are
typically tissue and developmental stage specific, making relevant phenotypes difficult to assay. Assembling large case–control cohorts,
necessary to achieve sufficient statistical power to assess associations between complex traits and relevant intermediate phenotypes, has
therefore remained challenging. Imputation of such intermediate phenotypes represents a practical alternative in this context. We used a
mixed linear model to impute DNAmethylation (DNAm) levels of four brain tissues at up to 1826 methylome-wide sites in 6259 patients with
Parkinson’s disease and 9452 controls from across five genome-wide association studies (GWAS). Six sites, in two regions, were found to
associate with Parkinson’s disease for at least one tissue. While a majority of identified sites were within an established risk region for
Parkinson’s disease, suggesting a role of DNAm in mediating previously observed genetic effects at this locus, we also identify an association
with four CpG sites in chromosome 16p11.2. Direct measures of DNAm in the substantia nigra of 39 cases and 13 control samples were used
to independently replicate these four associations. Only the association at cg10917602 replicated with a concordant direction of effect (P =
0.02). cg10917602 is 87 kb away from the closest reported GWAS hit. The employed imputation methodology implies that variation of
DNAm levels at cg10917602 is predictive for Parkinson’s disease risk, suggesting a possible causal role for methylation at this locus. More
generally this study demonstrates the feasibility of identifying predictive epigenetic markers of disease risk from readily available data sets.
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GENOME-WIDE association studies (GWAS) have been
successful in identifying associations between common

genetic variations, typically SNPs, and a common complex
disease or trait. However, despite this success GWAS have
provided only limited information about the mechanistic role
of genetic variation in the etiology of disease. In part, this
result follows from the challenge to map the exact location of
the causative variant and identify its functional consequence
as well as the highly polygenic nature of many phenotypes

targetedbyGWAS.Understandinghowheritabletissue-specific
cellular phenotypes (that is, intermediate phenotypes) vary
with respect to both the genotype and complex disease assists
us in the construction of medically relevant biological net-
works.To this end therehasbeenan increasing interest inboth
GWAS of intermediate phenotypes (Gibbs et al. 2010; Zhang
et al. 2010; Bell et al. 2011) and studies that link intermediate
phenotypes to complex diseases or traits measured at the
organism level, which we refer to as ultimate phenotypes
(Emilsson et al. 2008; Rakyan et al. 2011).

Compared to traditional GWAS these studies face several
challenges if the results are intended to inform on the bi-
ologicalmechanisms that lead to anultimatephenotype. First,
intermediatephenotypesare typically tissueanddevelopmen-
tal stage specific (Holiday and Pugh 1975; Eckhardt et al.
2006; Ladd-Acosta et al. 2007), necessitating prior knowl-
edge of a candidate tissue in which the intermediate pheno-
type mediates disease. Second, although current technology
provides a means to assay intermediate phenotypes on a
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genome-wide scale, samples frommany tissues of interest, such
as human brain, are difficult to obtain. As a consequence many
studies seeking to use samples from relevant tissues are of
limited size with larger-scale studies limited to intermediate
phenotypes observed in easily accessible tissues, most com-
monly whole blood samples. The imputation of difficult to
assay intermediate phenotypes fromgenetic information, anal-
ogous to the imputation of genotypes based on reference pop-
ulations, addresses these problems. We have previously
employed such an imputation approach for DNA methylation
(DNAm) and gene expression restricted to a small region to
fine map an observed genetic association (Rowe et al. 2013).
More recently a similar approach to that of Rowe et al. (2013)
was followed for imputation of whole blood gene expression
levels into a large GWAS cohort for various traits (Gamazon
et al. 2015). Here we combine existing Parkinson’s disease
case–control data sets with methylome-wide imputation of
brain tissue-specific DNAm levels to investigate the role of this
intermediate phenotype in Parkinson’s disease etiology.

TheviabilityofDNAmimputationisnot immediatelyapparent.
However, DNAm and other intermediate phenotypes, like gene
expression, do exhibit several important characteristics that dis-
tinguish themfromtheultimate traits that are typically the targets
of GWAS, like Parkinson’s disease. Intermediate phenotypes can
exhibit comparatively large genetic effects (Dermitzakis 2008)
because the number of molecular interactions separating them
from genetic variants is limited, thus limiting sources of noise.
Furthermore, significant portions of the heritability have been
found to be regional; for example, genetic markers in a genomic
region surrounding the gene or CpG locus for which expression
or DNAm is measured usually explain a large portion of the
phenotypic variance (Gibbs et al. 2010; Price et al. 2011; Quon
et al. 2013). We demonstrate that, in line with the results
obtained for gene expression (Gamazon et al. 2015), imputation
based on the local regional genetic variation is feasible for a large
number of DNAm sites represented by commercial arrays. This is
possible because the number of marker effects to be estimated is
low, which facilitates good prediction even with a moderate size
of reference sample.

Association testing of imputed intermediate phenotypes
with an ultimate phenotype is conceptually similar, but signif-
icantly different in motivation, to the use of alternative ap-
proaches based on multimarker association tests, like, e.g.,
polygenic risk scores or regional heritability estimates. Poly-
genic risk scores are primarily a statistical tool for increasing
power in association testing within a GWAS, for meta-analyses
across multiple GWAS data sets, and for genomic prediction.
Regional heritability estimates are similarly a tool to increase
power in association testing by combining information across
multiple genetic variants and reducing the multiple-testing
burden. Our motivation, on the other hand, is to make use
of disparate data sets and leverage their individual properties
so that the large and regional effects attributable to interme-
diate phenotypes measured in one data set can be com-
bined with the GWAS data for an ultimate phenotype. This
allows us to gain insight into the involvement of intermediate

phenotypes in the etiology of an ultimate phenotype beyond
what can be discerned from each data set individually. How-
ever, such predicted associations need to be confirmed based
on direct measurements. We therefore assayed DNAm in sub-
stantia nigra tissue from cases with Parkinson’s disease and
controls to test whether putative associations identified using
the imputation approach replicated in the target tissue.

Imputing tissue-specific DNAm for four brain regions into
15,711 individuals from five case–control GWAS, we identi-
fied six candidate DNAm sites across two regions in chromo-
somes 16 and 17 showing association with Parkinson’s
disease case–control status. Wewere able to test four of these
six candidate sites that passed quality control (QC) in a sep-
arate data set of 39 cases and 13 controls. One of these asso-
ciations, cg10917602 in 16p11.2, replicated (P= 0.02) with
a concordant effect direction in this data set.

Materials and Methods

The general framework of the employed methodology, illus-
trated in Figure 1, builds on our previous work (Rowe et al.
2013) and is similar to transcriptome-wide imputation of
gene expression (Gamazon et al. 2015). In brief, we aimed
to assess potential association between DNAm in various rel-
evant tissues, denoted by z, with some ultimate phenotype of
interest p, in our case Parkinson’s disease. In the absence of a
data set comprising joint observations of z and pwe followed
an imputation approach to constructing such a data set. Spe-
cifically, we made use of one data set of joint observations of
genotypes g and intermediate phenotypes z to construct a
predictor for the latter. This predictor was applied to a second

Figure 1 Schematic illustration of the employed methodology. Nodes indicate
observable variables, with nodes of the same color indicating joint observations
within individuals. Associations tested are indicated by red double-ended ar-
rows. We combined information across various data sets. Using joint observa-
tions of genotypes and various intermediate phenotypes z, i.e., tissue-specific
observations of DNA methylation, given in a collection of training data sets we
learn a collection of imputation functions (directed arrows). These were then
applied to a series of GWAS data sets for Parkinson’s disease (p) to set up
association tests with the individual imputed intermediate phenotypes and
case–control status. Associations identified based on imputations were then
replicated in a data set of DNA methylation measured in substantia nigra of
cases with Parkinson’s disease and controls.
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data set of joint observations of genotypes and p, yielding a
set of ðp; ẑÞ pairs, with ẑ being predicted observations of z.
Using this data set we tested for association of p and ẑ: We
followed a linear mixed-model approach to imputation, as
has been previously applied in this setting (Rowe et al. 2013).

Wecall this general approachapredicted intermediate trait
association study (PITAS), that is, an imputation-based asso-
ciation study, and apply it using brain region-specific DNA
methylation levels and Parkinson’s disease as the intermedi-
ate and ultimate phenotypes, respectively. Specifically we
utilized case–control data from five GWAS of Parkinson’s dis-
ease (Table 1) in conjunction with a data set of DNAm from
four brain tissues. In the following we describe the details of
the imputation approach, its effect on statistical power, and
the various data sets involved in this study.

Statistical methods

Our imputation model, briefly summarized in the following,
has been utilized in previous work (Rowe et al. 2013) and is
similar to that used by Gamazon et al. (2015). Assume g is a
vector of standardized genotypes for a set ofm SNP markers,
such that E½g� ¼ 0 and varðgiÞ ¼ 1 for all markers. Let Sz be a
sample containing observations of ðg; zÞ pairs and Sp an in-
dependent sample, from a related population, containing
paired observations of g and p, where, as previously, indi-
cated z denotes DNAm levels at a CpG site and p denotes
the ultimate phenotype of interest, i.e., in our case Parkin-
son’s disease status. We base imputation of z on the standard
linear model for quantitative traits. Specifically we assume z
arises from a linear combination of a subset of local marker
effects and a further term capturing environmental and
unmodeled genetic effects, so that for individual i we have

zi ¼ aTxi þ bTzHgi þ ei; ei � Nð0;s2
eÞ;

whereH 2 f0; 1gmz 3m is an incidence matrix selecting a sub-
set of mz genetic markers local to the phenotype z and
bz 2 ℝmz is a vector of marker effects. While several ap-
proaches for estimation of the marker effects exist, we use
the empirical best linear unbiased predictor (eBLUP) (Rao
2003). The eBLUP arises by assuming a random-effects
model such that bz � Nð0;s2

gm
21
z IÞ; obtaining restricted

maximum-likelihood (REML) estimates ŝg; ŝe of sg and se;

and using these to estimate the effects as

b̂z ¼ argmax Pðbzjŝg; ŝe; SzÞ:

The estimated marker effects are then used to obtain an
imputed intermediate phenotype ẑj ¼ b̂

T
zHgj for individual j

in Sp: Association of ẑ and p can then proceed in the usual
fashion based on a suitable statistical test.

Specificity P-value

We define a specificity P-value as Pðt*, tzÞ;where t* and tz are
test statistics for association of p with a random intermediate
phenotype and z; respectively. We estimate a specificity P-value

by generating 1000 alternative hypothetical intermediate phe-
notypes and comparing their association statistics with the sta-
tistic observed on the imputed intermediate phenotype. These
generated intermediates were matched to the imputed interme-
diate phenotypes. Specifically, for the computationof a specificity
P for imputed intermediate z we sampled marker effect vectors
bi
z for i ¼ 1 . . . 1000 for the set ofmarkers used for imputation of

the corresponding intermediate phenotype. The effects were
sampled according to the prior distribution N

�
0; ŝ2

gm
21
z I

�
;

where ŝg is the REML estimate of the genetic standard deviation
for z. Generated intermediate phenotype i for individual j was
then computed as zij ¼ bi

z
THgj: Such alternative intermediates

therefore represent samples from an absolute null, based on our
prior assumptions on the distribution of marker effects. We also
experimentedwith permutations of themarker effects estimated
for z for generation of alternative intermediates, which yielded
qualitatively similar results. As test statisticsweused theP-values
obtained from the test for association.

Power of imputed intermediate trait association studies

The use of imputed intermediate phenotypes in lieu of their
observations may adversely affect the statistical power to
detect associations with the ultimate phenotype. The exact
lossof statisticalpowerwill dependonmany factors, including
the relation of the intermediate and the ultimate phenotype
and the estimator used. In general, we may analyze the
statistical properties of the imputationmethodology by adapt-
ing the framework of Dudbridge (2013), which itself repre-
sents a generalization to polygenic risk scores of the results by
Daetwyler et al. (2008). To provide an indication of the ef-
fects that may be expected and an approximate guide we
examine the effect of imputation in a simple scenario. Spe-
cifically, we consider the effect in the context of a continuous
intermediate and ultimate phenotype within a fully linear
model. Assuming standardized z and p, i.e., E½p� ¼ 0;
varðpÞ ¼ 1 and E½z� ¼ 0; varðzÞ ¼ 1; we adopt a linear
model such that for individual i, pi and zi are related by

pi ¼ b0 þ bzi þ di; di � Nð0;s2
dÞ;

where b0 is an intercept and b 2 ð2 1; 1Þ is the effect of z
on p. Note that for the standardized intermediate phenotype

Table 1 Summary of Parkinson’s disease case–control data sets
used for imputation

Individuals

Study n cases n controls SNPs

WTCCC 1,872 5,496 478,165
NGRC 2,000 1,986 314,434
phs000089 913 786 487,531
phs000126 860 873 302,619
phs000394 614 311 304,762
Total 6,259 9,452

Study, dbGaP (http://www.ncbi.nlm.nih.gov/gap) study identifier or identifier used
in main text; SNPs, number of SNPs available for imputation, i.e., SNPs passing QC
shared with the methylation data set.
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s2
g equals the additive heritability h

2:We furthermore restrict
ourselves to the simpler least-squares estimator also used in
previous analyses (Dudbridge 2013), rather than the eBLUP,
which may be expected to yield better results. Formulas for
alternative estimators and case–control datamay be obtained
trivially by substituting the expressions for variances and co-
variances derived below into the appropriate equations of
Dudbridge (2013).

In general, the asymptotic noncentrality parameter of a x2

test for association between some univariate x and p is

l ¼ NpR2

12R2
with R2 ¼ covðx; pÞ2

varðxÞvarðpÞ;

on 1 d.f., where Np is the number of joint observations. The
power of the test at level a is given by

Pa ¼ 12F
�
F21

�
12

a

2

�
2

ffiffiffi
l

p �
þF

�
F21

�a
2

�
2

ffiffiffi
l

p �
:

For a studydesignwithdirect observationsof the intermediate
phenotypewemayapply these formulas directly, taking x ¼ z;
in which case we have R2

z ¼ b2:

Considering the use of imputations, we assume that the
estimate follows b̂ � Nðb;PeÞ; where the estimation noise
covariance

P
e is estimator dependent, but will typically be a

function of the training sample size Nz and sg: Under the
additional reasonable assumption that the estimation error
be independent of p we have covðẑ; pÞ ¼ covðz; pÞ2 covðe; pÞ
and varðẑÞ ¼ varðzÞ2 varðeÞ þ traceðPeÞ: Hence a loss of
power arises due to two factors, the failure to account for
the environmental component, a function of the heritability
of the intermediate phenotype, and the estimation error. As-
suming genetic markers are not in strong linkage disequilib-
rium and genetic effects are small, a commonly made
assumption (Dudbridge 2013), we may conservatively takeP

e � N21
z I so that varðẑÞ � h2 þmN21

z : Furthermore un-
der the assumed model, we have covðẑ; pÞ ¼ bh2; so that
R2
ẑ ¼ b2h2

��
1þmz

�
Nzh2

�21�
; where we recall that mz is

the number of markers used in imputation and Nz is the
sample size of the data set of observations of a specific in-
termediate phenotype.

Data sources

Wemake use of a total of six publicly available data sets from
the database of Genotypes and Phenotypes (dbGaP) that have
been previously reported in the context of a GWAS for DNA
methylation in brain tissue or Parkinson’s disease.

Thefirst data set,whichwe refer to as themethylation data,
was reported by Gibbs et al. (2010) and made available by
The Division of Aging Biology and the Division of Geriatrics
and Clinical Gerontology [National Institute on Aging (NIA)]
through the NCBI Data Repositories (dbGaP accession
phs000249.v1.p1, GEO series GSE15745). These data were
obtained from postmortem samples of tissue from four re-
gions of the human brain, specifically cerebellum (CRBL),
frontal cortex (FCTX), pons (PONS), and temporal cortex

(TCTX). The data comprise 150 individuals genotyped
for 561,466 SNPs with the Illumina HumanHap550v3.0
platform, levels of DNAm from the four brain tissues for
27,578 DNAm sites quantified using the Illumina Human-
Methylation27 Beadchip, and a list of potentially relevant
covariates: sex, age, postmortem interval, assay plate, and
study of enrollment.

The remainingdata sets, referred toas theParkinson’s data,
comprise SNP genotypes, obtained with varying genotyping
platforms, for individuals with Parkinson’s disease and un-
affected control subjects. Three of the data sets were
obtained through the NCBI Data Repository (dbGaP acces-
sions phs000089.v3.p2, phs000126.v1.p1, and phs000394.
v1.p1). In addition, we compiled a data set using Wellcome
Trust Case Control Consortium (WTCCC) data sets obtained
from the European Genome–phenome Archive (EGA). Spe-
cifically, the WTCCC data set comprises cases with Parkin-
son’s disease (EGA data set ID EGAD00000000057) and
WTCCC2 controls from the 1958 British Birth Cohort and
UK Blood Service Control Group (EGA data set IDs
EGAD00000000022 and EGAD00000000024) genotyped us-
ing the Illumina platform. Finally, we used data for individu-
als with Parkinson’s disease and unaffected control subjects
from the NeuroGenetics Research Consortium (NGRC), for
which details regarding recruitment and quality control pro-
tocols have been reported previously (Hamza et al. 2010).
Consistent quality control procedures as described below
were applied across all five data sets, and information regard-
ing individual data sets is summarized in Table 1.

Quality control for genotype data

In all data sets genotyped samples were considered for
downstream analysis if they were successfully typed for
95%of theSNPs assayed. SNPmarkerswere included if they
were typed in at least 95%of individualswithin the data set,
were in Hardy–Weinberg equilibrium at P $ 0.0001, and
had a minor allele frequency $ 0.01. In the Parkinson’s
data an additional quality control metric was applied and
SNPs were included only if the difference in missing geno-
types between cases and controls was not statistically sig-
nificant (chi-square test; P . 0.00001). In both the
methylation data and the Parkinson’s data the inbreeding
coefficient F was estimated from the observed genotype
frequencies of SNPs on the X chromosomes and it revealed
each sample to be of recorded sex. Additionally, in the
Parkinson’s data we excluded all individuals who shared
a proportion.0.0625 of their genome identical by descent
with any other individual in the same data set. In the meth-
ylation data, multidimensional scaling of the genotypic
data and comparison with individuals from Yoruba in
Ibadan (Nigeria), Japanese in Tokyo, Han Chinese in
Beijing (China), and Utah residents with ancestry from
northern and western Europe from the Centre d’Etude du
Polymorphisme Humain collection (CEU) participating in
the International HapMap Project (International HapMap
Consortium 2003) showed the population sample to be
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homogeneous and of northern and western European de-
scent. Where available we used self-reported ethnicity to
exclude individuals of none White-European descent from
the five Parkinson’s data sets. Due to the lack of this in-
formation in the WTCCC data set we assessed ancestry
based only on the first two principal components of the
individuals in combination with individuals from the HapMap
reference population (International HapMap Consortium
2003). Similar examination of the first two principal compo-
nents of individuals in the other data sets with individuals
from the HapMap did not suggest the need for additional
filtering based on genetic ancestry. Using principal compo-
nent analysis across all data sets from the methylation and
Parkinson’s data we confirm that there is no stratifica-
tion present among the data sets (Supplemental Material,
Figure S1).

Quality control of DNAm data

Tissue samples from each of the four brain regions were in-
cluded for analysis if$95% of the 27,578 DNAm sites assayed
were detected above background noise levels at P # 0.01,
leaving sample sizes of 102, 109, 120, and 125 for the CRBL,
FCTX, PONS and TCTX, respectively. Similarly, individual
DNAm sites were considered for downstream analysis if they
were detected above background noise levels at P # 0.01
for$95% of the samples assayed. Additionally, DNAm probes
listed in the Illumina HumanMethylation450 v.1.2 Manifest
File (available at http://support.illumina.com) as containing
a SNP within their probe sequence were removed. Recorded
sex of each sample was checked against the average level of
DNA methylation calculated from CpG sites located on the X
chromosome. The methylation levels of each CpG site were
rank transformed and adjusted for all the available covari-
ates, which were sex, age, time of the sample extraction from
death, study of the sample, and processing plate of the
sample.

Analyses: quality of imputation

To assess the quality of imputation we used fivefold cross-
validation for 125 samples and 1826 DNAm sitesmeasured in
the temporal cortex, which were found to have nonzero cis-
heritability (P, 0.05) based on SNPs located within 1 Mb of
a specific DNAm site. Accuracy was measured as the correla-
tion between the residual and the predicted phenotype.

Association of imputed DNAm and Parkinson’s disease

Imputation in each of the Parkinson’s data sets was based on
postquality control SNPs shared by the data set with the meth-
ylation data. Previous work indicates that a significant portion
of variation in methylation is due to cis genetic effects (Gibbs
et al. 2010; Quon et al. 2013) and we imputed DNAm level
based on local genetic variation from markers within 61 Mb
surrounding the DNAm site, using REACTA (Cebamanos
et al. 2014). Distances were computed based on B37 posi-
tions and information of the DNAm site location found in the
HumanMethylation27_270596_v.1.2manifest file. Using this

approach, local regions contained between 2 and 787 SNPs
(Figure S2). We restricted imputation to DNAm sites for
which the local variation explained a significant proportion
of the phenotypic variation (P , 0.05).

Within each data set, association of imputed DNAm and
case/control status was tested by means of a logistic re-
gression, for each DNAm site in each of the four regions.
Within each data set we adjusted the analysis for available
covariates, which for all data sets included gender, age, and
the first two principal components obtained from the ge-
notypes. Additionally, we adjusted for the source of the
sample in the Parkinson’s data set phs000394. Where
available, age was taken as age of onset for Parkinson’s
disease cases.

An overall measure of association was obtained by com-
bining results across the five data sets in a meta-analysis. As
thedata sets stem fromdisparate studies of varyingdesignand
varying implementation details, we opted to base the meta-
analysis ona random-effectsmodel. Specifically,we combined
the regression coefficients obtained by logistic regression
within each data set, using the Hedges–Vevea procedure
(Schmidt et al. 2009). Finally, we used a Bonferroni correc-
tion to account for multiple comparisons and obtain adjusted
significance thresholds across all imputed DNAm sites for
each of the four brain regions.

For significant sites we also fitted a model including local
genotypes. Specifically we fitted a genomic linear mixed
model with a genomic relationship matrix computed on ge-
notypes local to theCpG site and includingpredictedDNAmat
the site as an additional fixed effect. We fitted individual
models in each of the Parkinson’s data sets and combined

Figure 2 Cross-validation results for 1826 heritable DNAm sites mea-
sured in the TCTX. The mean accuracy across the five validation sets is
plotted against the theoretical upper limit for the accuracy, the square
root of the heritability. The line of best fit for the regression of the mean
accuracy on the square root of the heritability is shown and is computed
as y ¼ 0:73x2 0:09 with r2 = 0.52.
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the estimates of the effect of predicted DNAm, using the
Hedges–Vevea procedure.

GWAS results are based on the same procedure as used for
testing imputedmethylationassociations. Specifically,wealso
used logistic regression, including the same covariates, within
each data set, with all SNPs availablewithin each data set that
passed quality control included in the individual GWAS.
Results were combined across studies, using the Hedges–
Vevea procedure, and genome-wide significance was based
on a Bonferroni-adjusted threshold of 0.05.

Reproduction in substantia nigra

DNAmethylationwasassayedusing theHumanMethylation450
Beadchip in substantia nigra tissue samples of 40 cases and
44controls obtained fromtheParkinson’sUKBrainBankand the
Medical Research Council (MRC) Edinburgh Brain and Tissue
Bank. We applied the same quality control procedures as de-
scribed previously for DNAm data. With a significant age differ-
ence between the case and control groups (mean age 78.0 years
for cases and 53.8 years for controls) we restricted the analysis
to individuals.60 years of age (39 cases, mean age 77.8 years;
13 controls, mean age 78.4 years) to avoid confounding of age
and disease status effects. After QC four of the sites identified
through imputation were present in our data (cg10917602,
cg09038914, cg08929103, and cg02301815). We tested for
differential methylation between cases and controls at these
sites by performing a logistic regression of methylation level
on case–control status, while adjusting for the covariates age,
gender, and postmortem interval.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Results

Quality of imputation

Cross-validation demonstrated that accuracy of DNAm impu-
tation from local SNPswas high. As seen in Figure 2, themean
accuracy across validation sets scaled, as expected, with the
theoretical upper limit, which is the square root of the esti-
mated trait cis-heritability. Overall the mean accuracy ranged
from20.0006 to 0.79 with an overall average of 0.27 (Figure
S3). To assess the performance of imputation relative to this
limit across all traits we normalized themean accuracy across
validation folds by dividing by the square root of the esti-
mated trait cis-heritability. The normalized mean accuracies
for the 1826 DNAm sites ranged between20.0012 and 1.115
with a mean of 0.5409 and approximated a normal distribu-
tion (Shapiro–Wilk normality test; P-value for the deviation
from normality = 0.2402). We verified that the resulting
normalized mean accuracy below zero and greater than
one, for one and three DNAm sites, respectively, could be
attributed to sampling variation. Additionally, we found that
the number of SNPs used to capture the regional effects did
not explain a substantial proportion of the variance in the
estimates of the normalized accuracy (r2 = 0.0580). Taken

Figure 3 Effects of heritability and intermediate training sample size on statistical power. Observed denotes direct observations of the intermediate
phenotype. (A) Achievable power as a function of the sample size of the target data for varying heritabilities of the intermediate phenotype. Dashed
lines indicate the power for perfect predictions of the genetic component, providing an upper bound on the achievable power, and solid lines indicate
the power with imputation based on Nz ¼ 200 observations of the intermediate phenotype. (B) The effect of Nz ; the number of observations of
intermediate phenotypes, for a fixed heritability of h2 ¼ 0:4: In both A and B the effect size b is fixed to achieve a power of 0.8 when using 5000 direct
observations of the intermediate phenotype, while mz ; the number of markers utilized for imputation, is 100.
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together these results suggest that for a majority of DNAm
sites exhibiting significant cis-heritability, DNAm levels can be
reliably imputed from SNP effects estimated in the same
tissue.

Comparison of statistical power

Weexamined the loss of statistical power resulting fromusing
imputed intermediate phenotypes as opposed to their obser-
vations. Using the derived expressions for the statistical
power, we evaluate the power at level a as a function of
sample sizes of the training and target data sets, Nz and Np;

the number of genetic markers used for imputation, m; the
effect of the standardized intermediate phenotype on the
standardized ultimate phenotype, b; and the cis-heritability
of the intermediate phenotype, h2: By cis-heritability, we are
referring to the heritability captured by the local genotype
that may not necessarily correspond to the total genomic

heritability of the intermediate phenotype. Figure 3 illus-
trates the statistical power of imputation-based association
testing for a realistic set of parameters. In particular, we eval-
uate the power as a function of the heritability of the inter-
mediate phenotype (Figure 3A). Although imputation
represents a severe penalty on statistical power, even if per-
fect predictions of the genetic component were to be
obtained, for realistic sizes of imputation target data sets
Np; we may still expect to outperform the power achievable
on data sets of direct observations, which may be expected to
have sample sizes on the order of hundreds of individuals.We
also considered the effect of the number of observations of
intermediate phenotypes (Figure 3B). Specifically we evalu-
ated the effect on statistical power across a range of sample
sizes representative of currently available data sets, from the
DNAm data sets used in this study (Nz � 120) to the whole
blood gene expression data used by Gamazon et al. (2015)

Figure 4 Heritable methylome-wide association P-values obtained by meta-analysis. The individual plots show P-values for association of imputed DNA
methylation with Parkinson’s disease for four different brain tissues. In each tissue only heritable (P , 0.05) methylation sites were considered. The
shaded horizontal line indicates significance within a tissue at a Bonferroni-corrected threshold of 0.05. Tick marks at the top of each plot indicate
locations of Parkinson’s disease susceptibility loci previously identified by GWAS, obtained from the GWAS catalog (Welter et al. 2014) with shading
indicating the P-value of the association (darker shading corresponds to lower P-values).
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(Nz � 900).We observe that withmodest increases of sample
sizes for tissue-specific intermediate phenotypes, as are
expected to become increasingly available through efforts
like, for example, the GTex project (Lonsdale et al. 2013),
we obtain significant gains in power. In particular, we note
that even for sample sizes of 800, direct association testing on
observations of the intermediate phenotype achieves, for the
same effect size, only a power of 0.20 (at a ¼ 0:05).

Association of predicted methylation with
Parkinson’s disease

Considering only methylation sites with cis-heritability (P ,
0.05), we obtained predictions for 1793, 1717, 1635, and
1826 sites in CRBL, FCTX, PONS, and TCTX, respectively.
Meta-analysis results across the different data sets for asso-
ciation are illustrated in Figure 4 and summarized in Table 2
(see Table S1 for full results and Figure S4 for forest plots of
the effects). We found six methylation sites across two re-
gions that showed significant association for at least one tis-
sue after adjusting formultiple testingwithin tissue (adjusted
P , 0.05). The relation of the GWAS and PITAS in regions
surrounding these loci is illustrated in Figure 5. An isolated
site, cg10917602 (TCTX), is located on chromosome 16. As
can be seen in Figure 5, this site is not located near any SNPs
showing significant association in our GWAS meta-analysis.
However, it is ,1 Mb from rs11865038 and rs14235, both
reported previously (Pankratz et al. 2012; Nalls et al. 2014)
to be associated with Parkinson’s disease susceptibility (at
P = 4 3 1027 and P = 2 3 10212, respectively) and that
represent the only variants on chromosome 16 contained in
the GWAS catalog (Welter et al. 2014) in relation to Parkin-
son’s disease-associated traits. Neither of these SNPs is con-
tained in any of the genotype data sets used in this study. Both
of these SNPs are located at the edge of a linkage block in
CEU HapMap individuals containing SNPs with elevated as-
sociation with DNAm at cg10917602 (see Figure S5). How-
ever, the association of predicted DNAm at cg10917602 in
TCTX with Parkinson’s disease status remained significant
(P = 0.002) if a polygenic effect for the local genotypes
was included in themodel (Figure S6). All other sites to reach

significance, cg02301815 (CRBL, FCTX, TCTX), cg07321605
(FCTX), cg08929103 (CRBL, FCTX), cg09038914 (FCTX),
and cg14154330 (FCTX, PONS), are located in a 2.5-Mb
region on chromosome 17. This coincides with a region
containing a number of SNPs that were found to be signif-
icantly associated with case–control status, although
cg07321605, the most telomeric DNAm site, is located
�1.7 Mb upstream of the closest SNP reaching significance
in the GWAS meta-analysis of our data, i.e., rs11012. Fur-
thermore, rs199533 (in MAPT), which is the strongest as-
sociation (P= 6.73 10216) within the region of significant
SNPs in our GWAS meta-analysis, has been previously
reported as being associated with Parkinson’s disease
(Hamza et al. 2010), as have been various other SNPs in
this region (Nalls et al. 2014).

To assess whether identified associations were a conse-
quence of a general enrichment of disease-associated genetic
markers in the proximity of the known genetic association loci
or specific to the DNAm phenotype, we followed a simulation
approach. If the association is not specific to DNAm but a
consequenceof thegeneral enrichmentof geneticmarkers,we
would expect alternative intermediate phenotypes, of equal
heritability, to also show association with the ultimate phe-
notype. Hence, to assess the specificity of any observed asso-
ciation we estimated the probability of seeing an alternative
simulated intermediate phenotypewith greater association to
the ultimate phenotype. We report this probability as the
“specificity P-value” (see Table 2) and observe that all iden-
tified associations were found to be highly specific to the
DNAm phenotype.

Replication in substantia nigra tissue from cases with
Parkinson’s disease and normal controls

We replicated the putative associations identified based on
imputations using a data set of DNAm assayed in substantia
nigra of 39 cases and 13 controls. Following quality control,
we were able to test four of the six methylation sites identi-
fied previously, specifically cg10917602, cg09038914,
cg08929103, and cg02301815. The cg10917602 site repro-
duced with P = 0.02 and a concordant direction of effect,

Table 2 Summary of association results for imputed DNAm with Parkinson’s disease

Site Chr. BP Tissue h2 Association P Specificity P

cg10917602 16 30,996,630 TCTX 0.14 (7.2 3 1024) 4.5 3 1026 0.003
cg07321605 17 41,804,527 FCTX 0.18 (4.8 3 1023) 4.4 3 1027 0.006
cg09038914 17 42,992,567 FCTX 0.14 (8.2 3 1023) 1.9 3 1025 0.007
cg14154330 17 43,503,401 FCTX 0.10 (3.4 3 1022) 2.2 3 1026 0.009

PONS 0.18 (3.5 3 1024) 1.6 3 1028 0.001
cg08929103 17 43,860,355 FCTX 0.10 (1.9 3 1022) 3.4 3 1027 0.004

CRBL 0.15 (3.0 3 1022) 5.0 3 1026 0.015
cg02301815 17 44,249,491 FCTX 0.11 (6.4 3 1023) 2.2 3 10216 ,0.001

CRBL 0.18 (1.5 3 1022) 2.1 3 1026 0.015
TCTX 0.19 (5.4 3 1025) 1.9 3 1026 0.013

Chr., chromosome; BP, base pair position in genome build 37; h2, estimated regional additive DNAm heritability, with P against the null hypothesis of zero heritability given in
parentheses; association P, P-values for association of DNAm and case–control status obtained by meta-analysis across all five Parkinson’s data sets; specificity P, probability
of finding an alternative local intermediate phenotype of matched h2 with smaller association P, estimated based on meta-analysis of 1000 alternative intermediate
phenotypes.
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with hypermethylation at the site associated with Parkinson’s
disease susceptibility (change of one standard deviation in
methylation level leads to a change in odds ratio of 0.27, 95%
C.I. = [9.07 3 1022, 0.81]), while cg02301815 reproduced
with P = 0.03 but with a discordant effect direction (see
Table S2 for full results).

Discussion

We have demonstrated the viability of imputation-based
association studies for tissue-specific DNA methylation in
general. Specifically we have shown that a small discovery
set consisting of samples taken from a relevant tissue is
sufficient to predict with accuracy the genetic component of
DNAmlevels in the same tissue. These results are in contrast to
the difficulties observed in predicting complex traits (for in-
stance, disease risk) based on genotype information. This is,
however, not unexpected due to two factors. First, the
expected proximity, in terms of molecular interactions, of
DNAm and the genotype leads to a reduction in biological
noise. Second, the genetic variance is concentrated in cis-
effects, which allows us to follow a regional approach that

greatly reduces the number of model parameters, thus re-
ducing the estimation error. These factors are not unique to
DNAmethylation but hold for other intermediate phenotypes
as is demonstrated by results obtained in gene expression
(Gamazon et al. 2015).

While we restrict imputation to the genetic component of
the intermediate phenotype, it can be extended to include
environmental components by utilizing estimated fixed ef-
fects during prediction, provided corresponding covariates
have been observed in both estimation and the target data set.
Including such effects may in general be expected to increase
the power for detecting associations and may be of particular
relevance for DNAm.

A natural question arising in the context of imputation,
which previous applications failed to address, is the loss of
statistical power. Statistical power to detect significant asso-
ciations will in general be larger using direct observations of
the phenotype compared to the same number of imputed
observations. On the other hand, using imputation we may
increase statistical power by augmenting any available data
sets of relevant joint observations of intermediate and ulti-
mate phenotype with additional data lacking observations of

Figure 5 Regional comparison of GWAS and imputed DNA methylation association results. We show the P-values of association with Parkinson’s
disease for SNPs (bottom) and imputed DNA methylation at heritable sites (P , 0.05) across four brain tissues (top) in regions containing significant
predicted association of DNA methylation with Parkinson’s disease. Specifically, we show a region on chromosome 16 (left) containing cg10917602
(significant in FCTX and PONS) and a region on chromosome 17 near the previously reported association locus in MAPT containing five DNAm sites
significant in at least one tissue (see Table 2). Dashed lines in the top plots indicate the most stringent imputed methylome-wide significance threshold
of the four tissues and those in the bottom plots the genome-wide significance threshold for SNP associations. For GWAS, results for SNPs present in all
five or only in a subset of studies are shown in blue and gray respectively, and additionally, locations of SNPs mentioned in the main text are indicated at
the top of the plot.
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the former. In practice, a more relevant consideration is the
allocation of resources in the design of a study. In particular,
should investigators concentrate all resources on obtaining a
joint data set, obtain a limited joint data set together with an
extended GWAS data set, or concentrate purely on a GWAS
data set for the ultimate phenotype? We have derived equa-
tions for the statistical power (seeMaterials andMethods) that
allow for comparison of various designs within the first two
options, allowing investigators to make informed decisions.

We studied associations between DNA methylation in four
brain tissues andParkinson’s disease and identified associations
in two regions, only one of which is located near previously
robustly identified disease-associated genetic variants. We are
able to replicate the association in oneof these regions based on
direct measurements of DNAm in substantia nigra of cases with
Parkinson’s disease and controls. However, because the repli-
cation sizewasmodest, it would be desirable to perform further
confirmatory replications in other well-powered cohorts.
Despite this, it is worth highlighting that a standard GWAS
meta-analysis applied to our data did not yield any significant
associations near the identified CpG site on chromosome 16.
This illustrates the potential of imputation approaches to iden-
tify novel associations. Considering the five sites upstream of
the MAPT locus, failure to replicate for the three tested candi-
dates could be a consequence of the lower power of the repli-
cation study. In particular, we may compare MAPT with other
robustly reported Parkinson’s disease-associated regions, like,
e.g., the regions around SNCA and HLA on chromosomes 4 and
6, respectively (Hamza et al. 2010; Nalls et al. 2014), both of
which contained significant associations in our GWAS meta-
analysis. DNAm sites located in close proximity to these regions
did not reach significance. Taken together with the specificity
of the association with DNAm, as confirmed by the specificity
P-values, this suggests that the observed associations at MAPT
are not a consequence of an underlying enrichment of generic
disease-associated markers in cis with the DNAm sites. Rather
we may speculate about the role of DNAm in mediating the
effects of genetic variation at the MAPT locus, noting that the
distance between genetic marker and DNAm site is consistent
with previous suggestions of DNAm as an intermediate of a
genetic effect (Liu et al. 2013, 2014).

A challenge in the analysis of multiple phenotypes in
observational data is the assignment of causality. While the
chosen terminology of intermediate and ultimate phenotype
might suggest a causal chain fromgenotype to intermediate to
ultimate phenotype, it is important to note that we cannot
distinguish between correlation and causation, and the di-
rection thereof, in identified associations between inter-
mediate and ultimate phenotypes. However, an important
advantage of the imputation framework arises when applied
to case–control data. Specifically, althoughwe cannot discern
causality, we may gain information concerning whether
changes in cell phenotypes are an antecedent or a conse-
quence of disease. This question, which cannot be addressed
using a typical case–control design, is important for the con-
struction of individualized disease risk predictors. Using an

imputation methodology can help identify predictive associa-
tions, i.e., differences in DNAm that predict disease risk. In par-
ticular, imputationmay be used to establish whether associations
identified in a standard case–control epigenomewide association
study are predictive. To this end we may test for association of
imputed rather than observed values at these sites. Provided
these imputations are based on estimates obtained from a sepa-
rate random sample of the population, they will be independent
of disease status. Thus a significant association for imputed values
provides evidence for the predictive nature of the changes found
in the observed data. In our particular case we hypothesize that
the association at cg10917602 is an antecedent of Parkinson’s
disease, and a closer examination ofmethylation in this region as
part of a prospective study could lead to the development of a
marker for Parkinson’s disease risk andestablish the causal nature
of these changes.
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Figure S1: Joint Principal Component Analysis across genotypes of individuals who 

passed quality control procedures from all datasets used in this study. The analysis 

was performed using the set of SNPs shared across all five datasets. For better 

visualisation each dataset is plotted into a separate replication of the common 

coordinate frame. 



 

Figure S2: Total number of SNPs local to each of the 4890 DNAm sites assayed in 

at least one of the four brain tissues; range is from 2 to 787. 

  



 

 

Figure S3: Histogram of mean prediction accuracies across imputed DNAm sites. 

  



 

 

 

Figure S4: Forest plots for significant associations. Error bars indicate 95% 

confidence intervals, with marker size proportional to the weight assigned to each 

individual study in the meta-analysis. 



 

 

Figure S5: Association of local genotypes with DNAm at cg10917602. We plot the 

−𝑙𝑜𝑔10𝑃 values for effects from a GWAS analysis of local SNPs and covariates on 

DNAm at cg10917602 across the four brain tissues. Additionally we plot the local 

linkage disequilibrium structure in Hapmap CEU individuals in terms of  𝑟2. The 

locations of the two SNPs with previously reported association to Parkinson’s 

disease, neither of which is present in the available genotypes, are indicated. Also 

indicated are the positions of SNPs with lowest P values for association with DNAm 

at cg10917602 in each of the four tissues.   



 

Figure S6: Meta-analysis of association of predicted DNAm at cg10917602 with 

Parkinson’s disease status when including a local polygenic effect. Error bars 

indicate 95% confidence intervals for estimated effects of the fixed effect for DNAm 

in a linear mixed model including a random effect based on the local genotypes. 

Combined results was obtained using the Hedges-Vevea procedure and is 

significant with P =0.002.       

 

 

 

 

 

  



Table S1: Results of association tests of imputed DNAm with Parkinson’s disease 

status for loci identified in the discovery dataset, for all datasets.   

Site Tissue Study Association P 

cg02301815 CRBL WTCCC 6.1  10-5 
  NGRC 0.01 
  phs000089 0.69 
  phs000126 0.28 
  phs000394 0.24 
 FCTX WTCCC 0.1  10-5 
  NGRC 0.9  10-5 
  phs000089 0.13 
  phs000126 9.6  10-5 
  phs000394 1.3  10-3 
 TCTX WTCCC 4.2  10-5 
  NGRC 0.2  10-5 
  phs000089 0.42 
  phs000126 3.2  10-3 
  phs000394 1.5  10-2 

cg07321605 FCTX WTCCC 1.8  10-4 
  NGRC 5.5  10-3 
  phs000089 0.52 
  phs000126 0.19 
  phs000394 2.8  10-2 

cg08929103 CRBL WTCCC 7.1  10-3 
  NGRC 2.9  10-2 
  phs000089 0.18 
  phs000126 0.07 
  phs000394 1.0  10-2 
 FCTX WTCCC 1.0  10-3 
  NGRC 3.7  10-2 
  phs000089 4.3  10-2 
  phs000126 2.0  10-2 
  phs000394 0.11 

cg09038914 FCTX WTCCC 3.8  10-3 
  NGRC 0.20 
  phs000089 0.36 
  phs000126 5.1  10-3 
  phs000394 0.09 

cg10917602 TCTX WTCCC 1.7  10-2 
  NGRC 5.6  10-3 
  phs000089 4.5  10-2 
  phs000126 8.0  10-3 
  phs000394 0.65 

cg14154330 FCTX WTCCC 7.4  10-4 
  NGRC 0.20 
  phs000089 0.22 
  phs000126 3.5  10-3 
  phs000394 0.07 
 PONS WTCCC 2.4  10-5 
  NGRC 1.3  10-5 
  phs000089 0.48 
  phs000126 1.1  10-3 
  phs000394 1.7  10-2 

 



Table S2: Results of association tests for reproduction. Effect direction indicates 

whether hyper- or hypo-methylation at the site was associated with Parkinson’s 

cases. Concordant Effect indicates whether the direction of effect matches that 

observed in the imputation study. 

Site Association P  Effect 
Direction 

Concordant Effect 

cg10917602 0.02 hyper  

cg09038914 0.64 hyper  

cg08929103 0.30 hypo  

cg02301815 0.03 hypo  

 



File S1: Shell script to perform intermediate phenotype imputation. The scripts impute.sh requires the 
plink and REACTA software to be installed. Information regarding script usage can be obtained by calling 
impute.sh –h. (.zip, 3 KB) 
 
 
Available for download as a .zip file at: 
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.185967/-/DC1/FileS1.zip 
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