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Parameterizing time in electronic health
record studies
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ABSTRACT
....................................................................................................................................................

Background Fields like nonlinear physics offer methods for analyzing time series, but many methods require that the time series be
stationary—no change in properties over time.
Objective Medicine is far from stationary, but the challenge may be able to be ameliorated by reparameterizing time because clini-
cians tend to measure patients more frequently when they are ill and are more likely to vary.
Methods We compared time parameterizations, measuring variability of rate of change and magnitude of change, and looking for
homogeneity of bins of temporal separation between pairs of time points. We studied four common laboratory tests drawn from 25
years of electronic health records on 4 million patients.
Results We found that sequence time—that is, simply counting the number of measurements from some start—produced more
stationary time series, better explained the variation in values, and had more homogeneous bins than either traditional clock time or
a recently proposed intermediate parameterization. Sequence time produced more accurate predictions in a single Gaussian pro-
cess model experiment.
Conclusions Of the three parameterizations, sequence time appeared to produce the most stationary series, possibly because clini-
cians adjust their sampling to the acuity of the patient. Parameterizing by sequence time may be applicable to association and clus-
tering experiments on electronic health record data. A limitation of this study is that laboratory data were derived from only one in-
stitution. Sequence time appears to be an important potential parameterization.

....................................................................................................................................................
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INTRODUCTION
Most of health care is recorded with respect to the time that health
events occur, and researchers who use electronic health record data
must decide how to handle time. Often it is sufficient to ignore time
because the important question is whether the patient ever had the
condition, or to simply check if an event occurred within some relevant
time window or use simple aggregation such as mean or maximum.1,2

Fewer studies exploit the time of clinical data in detail. Some studies
use the clock time—that is, the actual time recorded for an event—to
detect phenotypes and correlations3–8 or to detect patterns.9–11 Other
studies use temporal abstractions that either are derived from clock
time12–16 or intervals of clock time17–19 or are extracted from narrative
text.20–23 More complex temporal processing may exploit algorithms
like dynamic and irregular-time Bayesian networks, but they also usu-
ally rely ultimately on clock time.24,25

When analyzing clinical data as a series of time points, one com-
mon assumption is that the distribution of the data does not change
over time, and this property is called stationarity.26 In theory, a system
is stationary if the parameters that determine the dynamics of the sys-
tem remain constant. In practice, the parameters may not be known,
and a more operational definition is that over a measured time range,
statistical properties of the system remain constant. This definition in-
cludes mean, variance, and differences between values. (See the first

four chapters of Kantz and Schreiber26 for a particularly concise and
comprehensible description of nonlinear time series analysis.) The ad-
vantage of stationarity can be seen in the following example of cluster-
ing patient types. If some patients’ longitudinal records have a mix of
episodes in which they are healthy with episodes in which they are se-
verely ill, then they may get clustered not with healthy patients nor
with severely ill patients, but with patients who are mildly ill—that is,
their average state in some sense—even though they never actually
participate in that mild state.

Clearly, health care can be nonstationary. The existence of health
care is based on patients becoming ill and the health care system at-
tempting to move them into a healthier state. Generally in research, in-
vestigators deal with this by picking patients who are similar and by
picking portions of their histories that are relatively stable. For high-
throughput analysis (e.g., cohorts of millions of patients), however, it
may be difficult to distinguish time periods of stability.

Fortunately, some analyses are relatively robust to nonstationarity.
In our previous correlation study,4 for example, despite lumping to-
gether over 20 years of data on millions of patients, we were able to
uncover logical temporal associations that described definitional,
physiological, and intention relationships. Seemingly nonstationary
processes may be stationary if viewed over a long enough time period
and represented with a sufficiently complex model.26
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In addition to nonstationarity, health care has a second limitation
not present in some other areas of research: sampling is highly bi-
ased. In traditional physiologic studies, experimenters use constant
and relatively accurate sampling of the physiologic parameters of in-
terest, and noise is expected to be uncorrelated with the processes
and not overly large compared to the signal.26 In health care, however,
patients are not measured evenly, but are measured according to a
clinician’s judgment, usually more frequently when the patient is
sicker, so the sampling rate varies with the patient state. The sampling
is multiscale, with time between samples ranging from seconds to
years. Furthermore, health care processes such as inpatient admission
also affect the recording of events, producing a complex feed-forward
loop.27–29

Handling these limitations requires new methods, and an exciting
new direction in nonlinear physics is to learn how to apply traditional
methods to imperfect measurements. For example, in some domains,
there are many short sequences that are individually insufficiently long
to represent the dynamics of the system, so there are methods to ag-
gregate those sequences, both outside of30 and inside of health
care.31 The latter study specifically addresses the irregularity of the
measurements, testing whether the sequences are sufficiently homo-
geneous to warrant analysis.

This article addresses one piece of the puzzle. It may be possible
to reduce the effects both of nonstationarity and of irregular sampling
by reparameterizing time. Insofar as variables usually change more
quickly when the patient is ill, and the clinician samples more fre-
quently when the patient is ill, perhaps by considering alternatives to
clock time, we can make the data more homogeneous.

Background
Sequence time is an integer index of the number of measurements
starting with some first measurement as 1. Our earlier work32 showed
that sequence time may be better correlated with variables than clock
time. We investigated the stationarity and sampling of clinical data by
calculating the mutual information between pairs of glucose measure-
ments within patients.32 Mutual information can be used to quantify
the predictability of glucose, and we studied how the predictability var-
ied with clock time and with sequence time. Figure 1 is adapted from
that work. It shows that, as expected, the predictability of glucose
measurements decreases with increasing clock time between
measurements. It also shows that predictability drops even more
dramatically with increasing number of measurements between mea-
surements (sequence time). This finding led us to posit that there may
be better parameterizations of time than clock time. Further evidence
comes from the observation that while one might expect a strong cor-
relation between test values and time between tests, in fact, minimal
correlation has been found.33

Figure 2 shows a possible explanation. We called differences in
clock time Dt and differences in sequence time s. In general, patients’
data become more variable when the patient is ill. There are many
specific physiological exceptions, such as heart rate and fetal monitor-
ing, but on the whole, measured parameters move out of range during
illness (e.g., glucose out of control, drop in hemoglobin during bleed,
rise in white cell count, rise in temperature, and drop in blood pres-
sure). Clinicians tend to sample patients more frequently when they
are ill so that while the patient’s data may be changing more rapidly
than usual, the increased sampling may make up for the increase.
The overall effect is illustrated in the bottom of figure 2: variability with
respect to the sampling rate (sequence time, s) does not shift as
much as variability with respect to clock time. Thus medicine is a self-
regulating feedback loop that drives the timing of measurements.28

We subsequently studied how to aggregate time sequences
whether time was parameterized by clock time or sequence time.31 In
another study, we used clock time but constrained the measurements
to specific ranges of sequence time.34 This can be important if one is
applying a mechanistic model, which is usually driven by clock time
(e.g., reaction rates).35,36 That study34 demonstrated the strong reli-
ance of the univariate predictability of a variable on the number of
measurements between two values. Another approach is to warp time
through a transformation such as a power function5; this is effectively
an intermediate parameterization between clock time and sequence
time.

The goal of this article is to study different parameterizations of
time. Specifically, we seek a parameterization that maximizes statio-
narity and that makes measurements that are separated by similar
times most homogeneous across a patient’s record.

Our general approach is to study time in health records with the in-
tent that our findings could then be used in association and prediction
algorithms. We recognize that alternative approaches are possible.
One approach is to directly incorporate the irregularity of time into the
algorithms. Examples include subset time series of increasing
lengths,6 coarsened granularity with linear interpolation,7 or a hierar-
chical model that uses a linear dynamical system with a window-
based temporal model nested inside of it to handle the irregularity of
time.8 All three examples are set in the intensive care unit, where data
are measured irregularly but fairly frequently. In the general electronic
health record, measurements occur on multiple scales: minutes or
hours for intensive care units and years for outpatient care. No single
window size can adequately cover the breadth. A reparameterization,
on the other hand, may be able to accommodate multiple scales.
Several types of Bayesian networks have been used in the context of
irregular time series,24,25 but it remains unclear how nonstationarity
of the time series affects the results. Furthermore, using time repara-
meterization is not limited to a single algorithm or set of algorithms
and may potentially be applied in many situations.

A different, more explicit approach is to model the care process as
a set of temporal contexts so that temporal concept abstraction can be
tailored to the context.14–16 In other words, rather than pick one time
parameterization that hopes to accommodate all time scales, divide
the health record into contexts (e.g., intensive care unit stay, outpa-
tient care, or presence of a particular diagnosis or medication) and al-
low the algorithm (in this case, temporal abstraction) to treat each
context differently. In theory, this would offer the most flexibility, but it
is not applicable to all types of numeric algorithms that one might seek
to employ. Nevertheless, the approaches may complement each other.
For example, one could reparameterize time to regularize the time
series as much as possible and then perform temporal abstraction.

METHODS
We desire a time parameterization that maximizes stationarity of the
time series. There are effectively two primary sources of temporal in-
formation in the series: the clock time of measurements and the num-
ber of measurements between the members of any pair, which we
refer to as sequence time. We expect measurement values to change
over time, and we expect that values can drift further given greater
amounts of time. If a time series is stationary, however, we expect
that values will change about the same amount on average given
equal separations in time.

We can derive an intermediate warped time by using an exponent
to transform the difference in clock time between successive mea-
surements. This is illustrated in figure 3 using 1/3 as the exponent (la-
beled Dt1/3). Lasko et al5 arrived at this warping parameter (1/3)
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heuristically using domain knowledge and a human-guided search.5

Because clock time can be seen as warped time with an exponent of
1 and sequence time can be seen as warped time with an exponent of
0, warped time with an exponent of 1/3 can be seen as an intermedi-
ate between the two.

Experiment one
In our first experiment, we assessed the effect of time parameteriza-
tion on stationarity. We focused on two components of stationarity that
are likely to be affected by time parameterization: the rate of change
of a variable, which is defined in terms of time, and the magnitude of
change in a variable. While the latter is not defined in terms of time, it
may be affected by how measurements are grouped.

Assume M patients with Nm measurements each, recorded in
time. We will notate this time series by xi ðti ;j Þ, where i identifies the
index of the patient, j identifies the index of the measurement for pa-
tient i , t is the real time when the measurement was taken, and xi is
the measurement function; that is, xi ðti ;j Þ is the j ’th measured value
for patient i . Therefore, in the clock time parameterization, a patient
time series can be represented as pairs of times and measurements
as follows: ððti ;1; xi ðti ;1ÞÞ; ðti ;2; xi ðti ;2ÞÞ; . . . ; ðti ;Ni ; xi ðti ;Ni ÞÞÞ, and in
the sequence time parameterization, patient time series can be simi-
larly represented as pairs of indices and measurements as follows: ðð
1; xi ðti ;1ÞÞ; ð2; xi ðti ;2ÞÞ; . . . ; ðNi ; xi ðti ;Ni ÞÞÞ. Warped time raises the
difference in clock time between sequential measurements to a
power, with time between more distant measurements simply being

equal to the sum of the sequential jumps. For a warp factor of 1/3,
warped time is given as follows:

t
1
3

i;1;xi ti;1

� �� �
;
X2

j¼1

ti;j�ti;j�1

� �1
3;xi ti;2

� � !
; ... ;

XNi

j¼1

ti;j�ti;j�1

� �1
3;xi ti;Ni

� � ! !
;

where ti ;0 is defined as 0.
To assess stationarity, we quantified the degree to which rate of

change and magnitude of change of a variable varied over time for pa-
tients. Both quantities should remain stable over time for each patient
for a stationary process. We created time windows of size w and
broke each patient’s time series into nonoverlapping, adjacent tempo-
ral bins. The units of w depend upon the time parameterization.
We use k to index the Bi bins per patient. We estimated the variabil-
ity across bins of the patient’s median absolute value of rate of
change as follows: we use median rather than mean because the dis-
tributions may be highly skewed. For clock time, sequence time, and
warped time, the median rate of change for bin k in patient i is
given as ri ;k , r 0i ;k , and r 00i ;k , respectively:

ri;k ¼ medianj;j�12bink

��� xi ti;j

� �
� xi ti;j�1

� �
ti;j � ti;j�1

���� �
;

r0i;k ¼ medianj;j�12bink

��� xi ti;j

� �
� xi ti;j�1

� �
1

���� �
;

r00i;k ¼ medianj;j�12bink

�����xi ti;j

� �
� xi ti;j�1

� �
ti;j � ti;j�1

� �1

3

�����
0
B@

1
CA:

Figure 1: Predictability of glucose plotted versus sequence time and clock time. Predictability is quantified as mutual infor-
mation between pairs of points separated by the given clock time and sequence time. At the shortest clock and sequence
time (far left), predictability is the highest. It drops off with increasing clock time, but it drops off more precipitously with in-
creasing sequence time, raising the possibility that sequence time is an important potential parameterization for time.
(Adapted from Albers and Hripcsak32).
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The coefficient of variation (cv) quantifies the standard deviation of the
median rate of change, normalized by the mean of the median rate of
change. A stationary time series should minimize cv, although it will
remain nonzero owing to variation produced by chance. We estimated
cv as follows for clock time:

cv ¼ 1

M

XM
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Bi�1

XBi

k¼1
ri;k � ri;k

� �2
q

1
Bi

XBi

k¼1
ri;k

;

with cv for sequence and warped time given analogously, replacing
ri ;k with r 0i ;k and r 00i ;k .

We compared the cv for the three time parameterizations for four
common laboratory variables: blood glucose, creatinine, potassium,
and sodium. We used data for all patients who had the laboratory test
performed from 1989 to 2011.

To do the comparison, we had to pick a time window size w for
each parameterization. The choice is a balance between having

enough points within each bin to get a stable estimate of the median
and having enough bins to detect a change over time. We tested
7–180 days for clock time, picking 30 days as the primary target. For
sequence time we tested 5–20 units and for warped time we tested
7–180 days raised to the one-third power. For our primary compari-
son, we picked the window sizes for sequence and warped time that
best matched the average proportion of patients with at least two bins
and the average number of measurements per bin for clock time at 30
days. To make sure that the choice of window size was not responsi-
ble for the result, we compared all combinations of window sizes (684
comparisons).

We used bootstrap estimates of variance37 to calculate 95% confi-
dence intervals for the coefficients and p values for the differences
between coefficients. p Values were Bonferroni corrected for 684
comparisons. We repeated the experiment for root-mean-square error
in place of the median absolute value of rate of change to ensure that
the choice of metric was not responsible for the result.

Figure 2: The relation between patient illness, sampling, and variability. The patient is stable, then becomes ill and re-
covers slowly; the patient is then lost to follow-up, and returns after unknown health. If the patient were observed very fre-
quently and regularly, one could calculate a detailed “variability with respect to clock time (Dt)” (e.g., glucose in the setting
of diabetes with an episode of poor control). In this example (but not necessarily in all cases), the variability increases with
illness. The clinician orders tests on the patient on the basis of the patient’s known level of illness (“Clinician sampling”),
missing the beginning of the illness, and over-sampling as the illness resolves until the clinician is comfortable with the pa-
tient’s status. After being lost to follow-up, the patient is somewhat off from baseline (either status post another illness or
due to drift over the missing time) and returns to stability. The “variability with respect to sequence time (s)” accounts for
both the variability with respect to time and the sampling rate, and it illustrates the degree to which the clinician success-
fully compensates for the change in variability.

Patient stable Patient ill Patient stable Lapse in visits Patient stable

(?)

Variability w.r.t. clock time (Δt):

Patient state:

Clinician sampling:

Variability w.r.t. sequence time (τ):

Time

Value
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We then repeated the above experiment using magnitude of
change ci ;k defined for all three time parameterizations as follows:

ci;k ¼ medianj;j�12bink
jxi;j ti;j

� �
� xi ti;j�1

� �
j

� �
;

The cv for ci ;k is defined analogously to that for ri ;k , replacing ri ;k

with ci ;k . It was expected that magnitude of change would be less
affected by time parameterization than rate of change because time is
not directly quantified in the definition (instead, time serves merely as
an index). Whereas for rate of change, the scale of the metric varies
widely between time parameterizations, for magnitude of change, the
scale should stay approximately the same. Even though the cv should
correct the scale, magnitude of change is less affected by bias if the
cv fails to correct the scale perfectly (e.g., due to chance variation, the
mean value in the denominator may not be a perfect correction for dif-
ferences in scale). Furthermore, at the very least, it ensures that any
improvement in stability of rate of change is not at the expense of
magnitude of change.

Experiment two
To give a reader a more concrete view of the effect of nonstationarity
and the potential improvement afforded by sequence time, our second
experiment compared the homogeneity of changes in values stratified
by the clock time between them. For pairs of measurements j and j 0

within patient i , we plotted the typical change in value
(xi ti ;j
� �

� xi ti ;j 0
� �

) for a series of clock time differences (ti ;j � ti ;j 0 ) on

a logarithmic scale, ranging from about an hour to about a year. We
used the same four variables: blood glucose, creatinine, potassium,
and sodium. We carried out the experiment for all pairs of sequential
measurements (i.e., difference in sequence time, j � j 0, equal 1,
labeled s ¼1) and for all possible pairs of measurements (regardless
of number of measurements in between).

Experiment three
In our third experiment, we studied the relationship between different
time parameterizations and the degree to which measurements sepa-
rated by a given difference in time tended to differ by the same
amount. We created 10 bins of time separation for each parameteriza-
tion. Specifically, we stratified all pairs of measurements into 10 dec-
iles of logarithm-scaled time in three dimensions: clock time,
sequence time, and warped time using an exponent of 1/3. We
sampled about 10 million pairs randomly from all possible pairs. We
used bins as predictors and median absolute value of magnitude of
change as the outcome, and we created a series of linear regression
models to assess dependencies among the time parameterizations.
We considered a parameterization to be better if pairs within its bins
are more homogeneous. In the regression results, this shows up as
follows: an ideal parameterization should have relatively large positive
coefficients that are statistically significant, and the other predictors
should be smaller and less significant. We repeated the experiment for
the four variables, and we repeated the experiment at other warp val-
ues: 1/2, 1/4, 1/7, and 1/100.

Figure 3: Time parameterizations. Ten measurements for one variable for one patient are shown. Measurements are plot-
ted according to their clock time (labeled Dt). The clock time between measurements is shown for several points: the sec-
ond through fourth (0.2 d and 0.6 d for a total of 0.8 d) and the last two (165.2 d). Also shown is sequence time (s) of 1 for
sequential measurements and 2 from the second to the fourth point, and warped time (Dt1/3) of 0.58 and 0.84 for a total of
1.42, and 5.49 for the last two. Note that the total warped time from the second to the fourth measurement is not the cube
root of the total clock time, 0.8, but rather the sum of 0.58 and 0.84; that is, the cube root is taken only between sequential
measurements.

Clock time (days)
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Δt=165.2d

0 1 2 3 4 168

Δt=.2d

τ=1
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Experiment four
In the fourth experiment, we illustrated the use of time reparameteri-
zation for prediction. We performed probabilistic predictions of future
values given previous values in time series of glucose values. To do
this, we leveraged the Bayesian formulation of a stochastic process

known as Gaussian processes.38,39 This probabilistic model has been
used to model patient data in previous work and is a natural one for
noisy irregularly sampled time series.5,40,41

A total of 400 patients with at least 11 glucose values were ran-
domly selected from the clinical data warehouse. Half of these patients
were randomly assigned to the development cohort and half were ran-
domly assigned to the validation cohort.

As in the first experiment, assume M individuals with Nm meas-
urements each, and measurement function xi ðti ;j Þ. A Gaussian proc-
ess is fully specified given a mean function, mðzÞ, and a covariance
function, kðz ; z 0Þ.

f zð Þ � GPðm zð Þ; k z; z0ð ÞÞ

where in this case we have chosen the mean function to be a con-
stant, m zð Þ ¼ a and the kernel to be k z ; z 0ð Þ ¼
h0e �h1

2 |z�z 0 |2

 �

þ h2 þ h3zT z 0.
In our case, either the measurement times ti ;j or the measurement

indices j represent z , and the measurement values are represented by
the Gaussian process f ðzÞ with added noise: xi ti ;j

� �
� Nðf ti ;j

� �
; bÞÞ

in the case of clock time parameterization and xi ti ;j
� �

� Nðf jð Þ; bÞÞ
in the case of sequence time parameterization. Performing a prospec-
tive prediction given previous observations requires evaluating the
conditional distribution of the measurement at either the next mea-
surement time or the next measurement index. Detailed derivations
can be found in Rasmussen.38

In the case of clock time, the base time unit was defined to be 71
days (the expected time between glucose measurements) because
this placed the clock time and sequence time parameterizations on
equal footing with respect to average spacing. Maximum a posteriori
values for the set of parameters fa; b; h0; h1; h2; h3g were learned
based on the development set of patients using the L-BFGS algorithm.

To quantify the difference in performance between these models,
the macro-averaged difference in predictive log-likelihood between
clock time and sequence time parameterizations was evaluated. From
the 11th point forward, we evaluated p ti jt 1:i�1ð Þ. The bootstrap was
used to evaluate the standard error of the differences.

RESULTS
Experiment one
Figure 4a shows the results of comparing rate of change for the three
parameterizations for the four variables at a window size of 30 days
for clock time, 5–10 units for sequence time (depending on the vari-
able), and 5.6 days

1
3 for warped time. Sequence and warped time

were both significantly less variable (more stationary) than clock time,
and sequence time was statistically significantly less variable than
warped time. Figure 4b shows the comparison for magnitude of
change, and again sequence time was less than warped time, and
warped time less than clock time. Of all the comparisons to sequence
time (2 metrics, 4 variables, 19 total bin sizes), there was only one
match where another parameterization beat sequence time: for potas-
sium at a window size of 180 days in clock time and five units in se-
quence time, and this comparison was highly mismatched for window
size. One other comparison was not statistically significant, and in all
other comparisons for all laboratory variables, sequence time was sta-
tistically significantly more stable than the other parameterizations.
The root-mean-square results were similar to median absolute value.

Experiment two
Figure 5 shows the result for all possible pairs (labeled any) and for
sequential measurements (labeled s¼ 1) for the four tests. As

Figure 4: Stationarity with different time parameteriza-
tions. The effect of time parameterization on (a) rate of
change and (b) magnitude of change is shown for four
laboratory tests. Coefficient of variation (standard devi-
ation divided by mean) of the median absolute value of
rate of change and of magnitude of change is plotted
for clock time, warped time, and sequence time.
Sequence time shows the least variability in all cases.
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Figure 5: Variability of laboratory tests versus clock time. The median and quartiles of the average difference between
measurements that are separated by a given clock time, shown in logarithmic deciles in days. “Any” implies all pairs were
included. “s¼ 1” implies that only pairs of sequential points were included. The magnitude of the differences increases
with increasing clock time, as expected, but when sequence time is held to 1, the association essentially disappears.
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expected, for all possible pairs (any), the median change and variabil-
ity of the change (interquartile range) increased with longer time
scales. The effect is most noticeable for creatinine and for sodium,
and less so for glucose and for potassium. Creatinine and sodium are
slower changing than glucose and potassium, so we may simply not
have gone down to a short enough time scale to effectively freeze the
glucose and potassium measurements, whereas creatinine and so-
dium are expected to change little on the shorter times scales (hours).
For example, glucose may change within minutes35 yet measurements
usually occur over hours or more.

The results for sequential measurements (s¼ 1) are striking.
There is no increase in variability of changes as time scale increases
(if anything, that for glucose drops). Furthermore, for creatinine and
sodium, the magnitude of the change for the all possible pairs (any) is
bigger than that for sequential measurements (s¼ 1) by a factor of
three to five. This goes along with the hypothesis presented in figure
2. Over time and on average, clinicians tend to order tests when they
are deemed necessary. Healthy patients are naturally sampled less of-
ten. When they become ill, laboratory tests relevant to the illness are
sampled more frequently, and as they recover, the frequency drops.
Thus clinicians appear to naturally but perhaps unconsciously sample
to aim for a constant rate of change.

Experiment three
The result of the third experiment is shown in table 1. The table shows
regression coefficients and statistical significance for the three time
parameterizations to predict variability of values (i.e., median magni-
tude of change between values separated by a given time separation).
Several models are shown for each laboratory test, each model using
different combinations of predictors (blank cells in the table imply that
the predictor was not included in the model).

Surprisingly, as a sole predictor (models G5, P5, etc.) clock time is
a relatively poor predictor of variation. Sequence time and warped
time are both predictive of variation on their own for all the laboratory
tests (G6, G7, P6, P7, etc.). For multivariable models, once sequence
time is included in a model, the other predictors are negative or not
significant (G2, G4, P1, P2, P4, S1, S2, S4, C1, C2, C4), with one ex-
ception (G1) in which clock time has a smaller positive correlation.
Therefore, sequence time, which has the most positive and most sig-
nificant set of regression coefficients (see the sequence time column
in table 1), explains most of the variation in the bins, and therefore
should have the most homogeneous bins, especially for creatinine. We
repeated the analysis on a subset with other powers such as 1/2, 1/4,
1/7, and 1/100, and the results were similar to those in table 1 (which
uses 1/3).

Experiment four
The macro-averaged predictive log-likelihood was 0.071 (95% CI,
0.034–0.117) higher (more predictive) for sequence time parameter-
ized data than clock time. Figure 6a and b demonstrate the posterior
distributions for the two parameterizations on two patients. The poste-
rior distribution for sequence time (figure 6a.2 and b.2) follows
the trends in the observations well with most lying within the poste-
rior one standard deviation area, whereas clock time (a.1 and b.1)
do not track well, possibly due to the varying granularity of the
measurements.

DISCUSSION
Of the three parameterizations, we found that sequence time made
the time series statistically significantly more stable in terms of rate of
change and magnitude of change over time and appeared to create

Table 1: Dependence of variability of values on trans-
formed time

Modela Predictor

Clock
time

Sequence
time

Dt1/3 warped
time

Glucose

G1 2.8*** 6.2*** –5.1***

G2 –0.6** 2.8***

G3 –1.7*** 3.2***

G4 4.6*** –2.8***

G5 0.6NS

G6 2.2***

G7 1.5***

Potassium

P1 –0.008 NS 0.045*** –0.040***

P2 –0.009** 0.028***

P3 –0.015*** 0.026***

P4 0.040*** –0.019***

P5 0.005**

P6 0.028***

P7 0.021**

Sodium

S1 –0.01 NS 0.50*** –0.28***

S2 –0.27*** 0.42***

S3 –0.36*** 0.45***

S4 0.61*** –0.32***

S5 –0.08 NS

S6 0.39***

S7 0.22**

Creatinine

C1 –0.006 NS 0.117*** –0.030 NS

C2 –0.026** 0.086***

C3 –0.046*** 0.072***

C4 0.126*** –0.057***

C5 0.003 NS

C6 0.065***

C7 0.042***

aThe models are the different combinations of predictors (clock, se-
quence, and warped time): all three, all pairs, and each one.
*Significant at p< 0.05; **significant at p< 0.01; ***significant at
p< 0.001; blank cell implies that the predictor was not included in
that model.
NS, not significant.
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the most stationary process for the laboratory variables. Once pairs of
measurements were stratified by sequence time, further division by
clock time or warped time had less effect, especially for creatinine.
This is in contrast to clock time, for example, where stratifying by
clock time resulted in bins of pairs that could be further separated by
sequence time. Using other warp exponents, such as 1/2, 1/4, 1/7,
and 1/100, produced a result similar to 1/3; sequence time was still
superior. We note that this does not eliminate nonstationarity; it only
removes or reduces the temporal component. These results imply that
clinicians do appear to correct for changes in variability fairly well,
similar to what is illustrated in figure 2, and that parameterizing by se-
quence time should maximize stationarity.

We illustrated the use of sequence time in a Gaussian process
model and demonstrated statistically significantly improved prediction.
Graphs of the posterior distributions suggest an explanation: the model
that uses sequence time appears to track features of the time series
better.

That clock time and warped time had smaller negative coefficients
when sequence time is included may have an interesting

interpretation. It implies that given the same sequence time (e.g., all
pairs of points separated by five measurements), increasing clock
time is associated with less variability. This implies that clinicians are
not quite correcting for illness enough and that, in fact, a time inver-
sion might be useful. Measurements closer together in clock time, on
average, are really further apart in terms of their variability. One can
imagine a different warped time that uses a small negative exponent,
such as –1/5, which does in fact invert time. While a negative-expo-
nent warping is possible, the simplicity of sequence time offers greater
understanding and, because time is expressed as integers, it may lead
to more efficient algorithms.

We recommend that researchers consider parameterizing by se-
quence time in their mining and clustering experiments that do not, by
their nature, require clock time. While they could measure the im-
provement in stationarity as we did in the first experiment, we have
not yet correlated size of improvement in stationarity with improve-
ment in performance. If the experiment requires clock time, for exam-
ple because the data are linked to a mechanistic model set in clock
time or because resulting predictions must be interpreted in terms of

Figure 6: Effect of time parameterization on Gaussian process modeling. Posterior distributions for the time series of two
patients, (a) and (b), for clock time parameterization (a.1 and b.1) and sequence time parameterization (a.2 and b.2). The
dark gray areas indicate one standard deviation around the posterior mean and light gray areas indicate two standard devi-
ations. The clock time parameterization appears to miss important series features because of the inconsistency of the
granularity of the measurements.

(a.1)

(b.1)

(a.2)

(b.2)
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clock time, then we suggest that the researcher parameterize by clock
time but consider stratifying by sequence time or incorporating se-
quence time as an additional input to the model.

Parameterizing by sequence time may have an important added
advantage in the context of patient privacy. Because all dates can
be removed, retaining just the sequence of events, such a data set
may qualify for Safe Harbor42 rendering it nonhuman-subjects
research.

This work builds on previous work to bring methods from time se-
ries analysis, including nonlinear physics, into biomedical informatics
and specifically, health record analysis. We loosely refer to this as the
“physics of the medical record.”28 Our article in Chaos31 details an ap-
proach to aggregating short sequences of data across patients, with a
subsequent article on assessing its bias.43 The approach was de-
signed to accommodate both clock time and sequence time, and we
provide a method to quantify heterogeneity in the data set. We applied
this and related approaches to creatinine data,34 glucose data, 35,36

and seizures in the neurological intensive care unit.44 Lasko et al5 also
used time series analysis methods in using unsupervised learning to
address noisy, sparse, irregular health record data, applying it to uric
acid laboratory data to distinguish clinical context. This article presents
a complementary way to assess heterogeneity specifically related to
time parameterization.

As noted in the Background section, a number of alternative
approaches exist. A number of researchers have directly accommo-
dated the irregularity of time into their algorithms.6–9,24,25 Whereas
this handles the temporal irregularity, it remains unclear what effect
the non-stationary of the series has on the results, and each approach
is relatively specific to its algorithm. Our current approach to measur-
ing stationarity might be employed to test the effect on some of these
alternative methods. The explicit modeling of temporal context14–16

more directly handles nonstationarity in the sense that the time series
may be stationary within each context. Once again, our approach to
measuring stationarity might be employed to verify the explicit model-
ing. In addition, it might be beneficial to apply the explicit modeling
to a reparameterized time series or to intervals17–19 derived from rep-
arameterized time (e.g., use 5-measurement intervals instead of 6-
month intervals).

Our main limitations are the use of data from a single medical cen-
ter and the restriction to laboratory tests. We believe that given the
breadth of the medical center, which includes both inpatient and out-
patient data, there are unlikely to be major differences in overall time
structure from other large health systems. The use of laboratory data
provides frequently sampled, continuous data. The analysis could not
be done in this way on categorical data. Nevertheless, further valida-
tion is warranted.

CONCLUSIONS
Medicine is nonstationary and irregularly sampled, and it may benefit
from alternate time parameterizations. We developed an approach to
compare time parameterizations. We found that of clock time, se-
quence time, and warped time, sequence time produced the most
stability in rate of change and magnitude of change over time,
and it best predicted the degree of changes between pairs of mea-
surements for four laboratory variables. This finding implies that clini-
cians do in fact adjust their sampling rate to accommodate increased
variability of the patient state during illness. We recommend that re-
searchers consider parameterizing by sequence time, and if clock
time is required, consider accounting for sequence time in other
ways.
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