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Abstract
In	vivo	tracking	and	monitoring	of	adoptive	cell	 transfer	has	a	distinct	 importance	
in	cell‐based	therapy.	There	are	many	 imaging	modalities	for	 in	vivo	monitoring	of	
biodistribution,	viability	and	effectiveness	of	 transferred	cells.	Some	of	 these	pro‐
cedures	are	not	applicable	 in	 the	human	body	because	of	 low	sensitivity	and	high	
possibility	of	tissue	damages.	Shortwave	infrared	region	(SWIR)	imaging	is	a	relatively	
new	 technique	by	which	deep	biological	 tissues	can	be	potentially	visualized	with	
high	resolution	at	cellular	 level.	 Indeed,	scanning	of	 the	electromagnetic	spectrum	
(beyond	1000	nm)	of	SWIR	has	a	great	potential	to	increase	sensitivity	and	resolu‐
tion	of	in	vivo	imaging	for	various	human	tissues.	In	this	review,	molecular	imaging	
modalities	used	for	monitoring	of	biodistribution	and	fate	of	administered	cells	with	
focusing	 on	 the	 application	 of	 non‐invasive	 optical	 imaging	 at	 shortwave	 infrared	
region	are	discussed	in	detail.

K E Y W O R D S

cell	tracking,	cell‐based	therapy,	molecular	imaging,	optical	fluorescence	imaging,	quantum	
dots,	shortwave	infrared,	shortwave	infrared	region

1  | INTRODUC TION

Organ	failure	is	a	catastrophic	phenomenon	of	many	human	chronic	
debilitating	diseases.	Plasticity	and	migration	capacity	of	stem	cells	

has	 opened	 up	 new	 prospects	 towards	 treating	 a	 wide	 range	 of	
human	diseases	in	recent	years	and	sheds	light	on	expanding	fields	
of	regenerative	medicine.1‐4	Cell‐based	therapy	is	an	interdisciplin‐
ary	 field	 in	 regenerative	medicine,	which	 can	 treat	 such	disorders	
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by	application	of	therapeutic	cells	instead	of	organ	transplantation.5 
The	success	of	cell‐based	therapies	and	their	clinical	translation	to	
humans	 depends	 on	 two	 properties	 of	 adaptive	 cell	 transferred:	
safety	and	efficacy.6	Despite	promising	cell	therapy	studies	stating	
improvement	and	recovery	of	damaged	organs,7‐9	there	are	still	con‐
troversial	findings	in	the	literatures	regarding	effectiveness10,11 and 
safety.12,13	Thus,	tremendous	challenges	have	been	come	up	in	the	
application	of	this	kind	of	treatment	in	regenerative	medicine,	which	
are	discussed	below.

2  | FAC TORS AFFEC TING CELL FATE

Biodistribution	pattern,	viability	and	fate	of	therapeutic	cells	in	the	
target	tissue	after	infusion	are	main	causes	of	contradictory	results	
among	published	studies.14	Thus,	ambiguity	in	the	engraftment	site	
and	cell	efficacy	after	transplantation	complicates	the	interpretation	
of	the	results	from	various	studies.	For	cell‐based	therapy	studies,	
size	of	infused	cells,	routes	of	cell	infusion,	cell	dosage,	infusion	rate,	
time‐point	 of	 cell	 transplantation	 and	host	 bio‐immunological	 fac‐
tors	may	affect	the	cell	translocation	and	engraftment	to	the	target	
tissue.15

2.1 | Cell size

It	 is	 suggested	 that	 increasing	 number	 of	 cell	 passages	 during	 in	
vitro	expansion	 leads	 to	 the	enlargement	and	widening	of	 the	cell	
size.	This	issue	is	considered	as	one	of	the	important	reasons	for	cell	
entrapment	in	lung	and	obstruction	of	subsequent	small	capillaries	
after	intravenous	cell	infusion.15‐17

2.2 | Route of cell delivery

Cell	delivery	route	has	also	a	major	effect	on	the	localization	and	fate	
of	transplanted	cells	in	the	living	body.

2.2.1 | Systematic cell delivery

Cell	 transplantation	 through	 the	systemic	circulation	 is	achieved	
via	 intravenous,	 intra‐arterial	and	 intraperitoneal	 routes.	Various	
animal	 studies	 have	 demonstrated	 that	 the	 vascular	 bed	 of	 the	
lung	is	the	first	place	where	intravenously	administered	cells	con‐
vene,	which	can	cause	small	venule	obstruction.14	Consequently,	
subsequent	 interaction	 with	 lung	 vascular	 endothelial	 cells	 af‐
fects	 their	 viability,	 biodistribution	 and	 clinical	 efficiency.16,18‐20 
Eggenhofer	et	al	studied	the	viability	and	biodistribution	of	intra‐
venously	infused	mesenchymal	stem	cells	(MSCs)	after	5	minutes	
and	1,	24	and	72	hours.	The	transplanted	cells	could	be	found	vi‐
able	in	the	lung	tissue	only	in	24	hours,	but	after	24	hours	post‐cell	
injection,	no	viable	cells	in	the	lung	or	other	tissues	such	as	liver,	
spleen	or	heart	were	found.21	Administration	of	cells	through	the	
arterial	route	can	bypass	the	pulmonary	pathway	and	facilitate	the	

translocation	of	cells	to	the	intended	organs.15,22,23	This	route	of	
infusion	can	enhance	 the	cell	 localization	and	engraftment	at	 is‐
chaemic	 brain24	 and	 damaged	 kidneys.22	 However,	 intra‐arterial	
administration	of	cells	may	compromise	arterial	blood	supply	and	
cause	accumulation	in	small	arteries,24‐26	leading	to	organ	infarc‐
tion.24	 Li	 et	 al	 demonstrated	 that,	 though,	 intra‐arterial	 neural	
progenitor	stem	cell	delivery	produces	successful	biodistribution	
and	engraftment	of	infused	cells	in	the	brain,	but	yielded	to	a	sig‐
nificant	mortality	of	animals	during	the	procedure.	The	reason	of	
high	mortality	during	cell	 administration	may	be	associated	with	
decreased	blood	supply	to	brain	parenchyma,	predisposing	it	to	is‐
chaemia,	thrombosis,	oedema,	high	intracranial	pressure	and	con‐
sequently	 death	 of	 animals.27	 Vulliet	 et	 al	 have	 investigated	 the	
safety	of	MSC	delivery	to	intracoronary	blood	flow	for	treatment	
of	myocardial	diseases.	They	 infused	MSCs	 into	 coronary	artery	
of	healthy	animal	models,	 and	7	days	after	 cell	 infusion,	healthy	
dogs	 exhibited	 signs	 of	 myocardial	 infarction.	 Histologic	 evalu‐
ation	 of	myocardial	 tissue	 proved	 acute	 ischaemia	 and	 subacute	
microinfarction	 likely	 due	 to	 enlargement	 of	MSC	 size	 during	 in	
vitro	expansion	or	high	dosage	of	MSCs.28	In	another	study,	high	
percentage	of	intra‐arterially	infused	MSCs	were	entrapped	at	the	
precapillary	 level	 due	 to	 greater	 size	 of	 these	 cells	 compared	 to	
the	 diameter	 of	microvessels.25	 Precapillary	 occlusion	 results	 in	
blood	flow	disturbance	and	ischaemia,	which	leads	to	consequent	
death.25	 It	has	been	also	claimed	 that	MSC	 infusion	 through	 the	
arterial	 route	 can	 increase	 the	 localization	 of	 cells	 to	 the	 target	
tissue	 (such	as	 ischaemic	brain	of	animal	models),	but	 it	 resulted	
in	failure	of	functional	recovery	of	the	damaged	parenchyma.29

Surprisingly,	 low‐dose	 cell	 delivery	 for	 treatment	 of	 ischaemic	
stroke	through	 intra‐arterial	pathway	 leads	to	the	 improvement	of	
inflammation	and	decreases	rate	of	embolus	formation	in	vessels.30

Another	undesirable	side	effect	of	intra‐arterial	cell	administra‐
tion	is	the	fragmentation	of	infused	cells	due	to	the	shear	forces	of	
arterial	 blood	 flow.	 These	 damaged	 cells	may	 be	 rapidly	 removed	
from	 the	 circulation	 through	 the	 liver	 and	 spleen,	 causing	 shorter	
blood	half‐life	of	infused	cells.15	Intraperitoneal	delivery	is	another	
pathway	for	systematic	delivery	of	cells	to	the	living	body	with	con‐
troversial	results.14	It	is	thought	that	cell	administration	through	the	
intraperitoneal	 cavity	 causes	 circumventing	of	 pulmonary	passage	
and	consequently	 can	 lead	 to	an	 increase	 in	 the	number	of	 trans‐
ferred	cells	to	the	target	organs.31	However,	it	has	been	shown	that	
cell	delivery	using	this	route	leads	to	the	aggregation	of	transplanted	
MSCs	with	the	host	immune	cells	after	several	minutes.	These	small	
and	large	aggregates	adhere	on	the	peritoneal	membranes	including	
omentum	and	mesentery.32	 These	masses	 cannot	 enter	 the	 blood	
circulation,	and	only	very	small	subsets	of	MSCs	that	do	not	aggre‐
gate	can	be	visualized	in	the	mesenteric	lymph	node	and	spleen	in	
the	 initial	minutes	after	 transplantation.	Moreover,	no	 trace	of	 in‐
fused	MSCs	can	be	found	in	the	other	organs	such	as	heart	or	liver.32 
Nonetheless,	the	results	of	another	study	emphasize	on	the	localiza‐
tion	of	transplanted	cells	in	the	inflamed	colon,	which	opens	up	new	
way	for	treatment	of	inflammatory	bowel	disease	using	stem	cells.33
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2.2.2 | Local injection

Theoretically	 local	 infusion	of	therapeutic	cells	to	the	parenchyma	
may	increase	the	number	and	retention	of	the	transplanted	cells	in	
the	target	tissue34	but	with	certain	concerns.22	Local	injection	in	the	
parenchyma	is	an	invasive	method	and	may	lead	to	further	damage	
to	the	target	tissue.35	Direct	intramyocardial	cell	delivery	developed	
cardiac	arrhythmias36	and	had	deteriorating	effect	on	the	heart.37

Conversely,	 other	 studies	 have	 reported	 that	 infusion	 of	 high	
dosage	of	therapeutic	cells	directly	to	the	myocardial	tissue	results	
in	increased	localization	of	transferred	cells,37	but	due	to	the	safety	
issues	related	to	cell	dose,	 implementation	of	this	technique	is	not	
feasible.	In	addition,	direct	intraparenchymal	cell	delivery	for	treat‐
ment	of	kidney	diseases	results	in	accumulation	of	transplanted	cells	
at	 the	 site	of	 infusion	and	did	not	distribute	 throughout	 the	 renal	
parenchyma.35	 Eventually,	 administration	 of	 large	 amount	 of	 cells	
into	the	hepatic	parenchyma	produced	cell	embolus	formation	in	the	
lung.38	Surprisingly,	there	are	reports	implying	that	this	pathway	of	
injection	cannot	increase	the	cell	viability	and	engraftment	in	target	
tissues.22,39

2.3 | Time‐point

In	addition,	time‐point	of	cell	transplantation	into	damaged	tissues	
can	have	a	significant	effect	on	cellular	localization,	engraftment	and	
regeneration	of	damaged	tissues.40	Erpicum	et	al	demonstrated	that	
timing	of	administration	of	MSCs	has	important	effect	on	outcome	
of	kidney	ischaemia/reperfusion	(I/R)	injury	in	small	animal	models.41 
Findings	from	their	study	show	that	administration	of	MSCs	before	
I/R	 injury	has	nephroprotective	effect	 compared	 to	MSC	adminis‐
tration	after	injury.41	MSC	infusion	before	liver	damage	has	signifi‐
cant	impact	on	promoting	liver	fibrosis.	On	the	contrary,	injection	of	
MSCs	in	resolution	phase	speeds	up	liver	regeneration.42,43

2.4 | Cell dose

Also,	characterization	of	optimal	cell	density	that	can	regenerate	the	
damaged	tissue	without	adverse	effects	such	as	tumorigenicity44 or 
embolus	formation45	is	controversial	and	there	is	no	comprehensive	
consensus	on	optimal	infused	cell	density.40	This	lack	of	consensus	is	
due	to	several	factors	that	are	involved	in	the	determination	of	cell	
dose	such	as	type	of	transplanted	cells,	recipient's	disease	and	route	
of	cell	transplantation.40	However,	investigators	demonstrated	that	
embolic	stroke	that	results	from	intra‐arterial	cell	delivery	is	due	to	
accumulation	of	cells	 in	the	blood	vessels	and	depends	on	the	cell	
numbers	that	are	transferred.46,47

2.5 | Cell infusion rate

In	addition,	cell	infusion	rate	must	be	adjusted	in	such	a	timing	that	
maximal	cell	viability	is	maintained	during	injection.48‐50	High	injec‐
tion	rates	increase	shear	forces,	resulting	in	cell	damages	and	viabil‐
ity	reduction.15,40

2.6 | Host bio‐immunological factors

It	 is	 also	 believed	 that	 majority	 of	 administered	 cells	 may	 en‐
counter	rapid	clearance	from	the	body	due	to	the	harsh	and	un‐
favourable	environmental	 conditions	 such	as	anoikis,	 ischaemia,	
inflammation51‐53	 and	 host	 immune	 reactions.54,55	 For	 instance,	
chronic	 inflammation	 at	 the	 target	 tissue	may	 inhibit	 regenera‐
tion	 process	 by	 preventing	 transplanted	 cell	 recruitment	 to	 the	
damaged	 tissue.51	 Also,	 it	 may	 lead	 to	 the	 cellular	 membrane	
damage	 through	 production	 of	 free	 radicals	 and	 cytokines.52 
Consequently,	the	success	and	efficacy	of	cell‐based	therapy	may	
be	hindered.

In	 summary,	 route	 of	 migration,	 biodistribution,	 dosages,	 me‐
chanical	entrapment	of	transplanted	cells	due	to	enlarged	size	during	
successive	in	vitro	expansion,	infusion	rate	and	host	immunological	
factors	might	have	detrimental	effects	on	cell	engraftment	and	fate	
in	accordance	with	Figure	1.	Therefore,	proper	cell	tracking	and	de‐
termination	of	homing	by	cell	imaging	is	critical	to	optimize	cell	ad‐
ministration	methods	and	to	characterize	the	efficacy	and	safety	of	
cell‐based	therapies.40

Accurate	tracking	and	in	vivo	real‐time	monitoring	of	the	injected	
cells	will	solve	the	discrepancies	between	various	studies	regarding	
localization,	engraftment	and	 interaction	of	cells	with	surrounding	
microenvironment.56

3  | MOLECUL AR IMAGING

Information	about	 therapeutic	cell	 function	and	 fate	 is	mostly	ob‐
tained	 from	 fluorescence	 microscopy	 and	 immunohistochemical	
methods	after	obtaining	biopsy	samples	from	the	patients.	However,	
these	methods	 are	 relatively	 invasive	 techniques	 and	may	 lead	 to	

F I G U R E  1   Important	factors	that	affect	cell	fate	and	efficacy	
after	administration	to	living	body



7908  |     FATH‐BAYATI eT Al.

tissue	damages	and	disruption	of	cellular	structures.57,58	In	addition,	
these	experimental	techniques	are	limited	by	not	being	able	to	trace	
cells	in	a	real‐time	manner.57

Molecular	 imaging	 technology	 is	 a	 growing	 and	 powerful	 plat‐
form	 that	 can	 provide	 valuable	 information	 about	 localization	 site	
and	fate	of	cells	after	transplantation.6	During	the	last	decades,	sev‐
eral	in	vivo	imaging	modalities	have	been	developed	for	researchers	
to	trace	delivered	cells	(Figure	2).	However,	each	of	them	has	its	dis‐
advantages	that	impede	their	applications	as	a	perfect	non‐invasive	
in	vivo	imaging	technique.58	The	ideal	modality	for	molecular	in	vivo	
imaging	must	be	able	 to	offer	accurate	 information	about	 the	sur‐
vival,	biodistribution	and	engraftment	of	cells	as	well	as	longitudinal	
functional	real‐time	response	of	damaged	tissue	to	cell‐based	ther‐
apy.6,59,60	Furthermore,	it	also	must	show	a	high	degree	of	specificity	
and	 sensitivity	 to	 obtain	 information	 about	 the	 adaptively	 trans‐
ferred	 cells	without	 inducing	 any	 harmful	 effects	 to	 the	 body.	 To	
address	these	requirements,	it	is	essential	to	develop	a	multifaceted	
imaging	technique	that	can	reach	to	rapid	clinical	adoption.56

3.1 | Molecular imaging and cell labelling

To	 track	 and	monitor	 translocation	 and	 fate	of	 administered	 cells,	
target	cells	have	to	be	labelled	by	contrast	agent	or	molecular	probes	
that	 can	 act	 as	 tracers.	 Two	main	methods	 could	 be	 used	 for	 cell	
labelling	 in	molecular	 imaging:	 direct	 and	 indirect	 labelling.	 By	 di‐
rect	 labelling,	 nanoparticles	 or	 chemical	 agents	 are	 delivered	 into	
the	cell	structure	prior	cell	administration	 into	the	body.	Although	
the	ex	vivo	 labelling	of	administered	cells	 for	various	 imaging	mo‐
dalities	is	simple	and	allows	accumulation	or	internalization	of	dye	in	
cell	surface	or	internal	structure	(unless	nucleus),	there	are	several	
challenges.	One	major	obstacle	is	that	intensity	of	signals	produced	
by	labelled	cells	reduces	with	cell	division	over	time;	thus,	direct	cell	

labelling	is	not	appropriate	for	long‐term	tracing	of	transferred	cells	
in	target	organs.	Other	challenges	of	direct	cell	 labelling	are	toxic‐
ity,	bleaching	and	limited	sensitivity	of	chemical	agents	used	for	cell	
labelling.	Indirect	labelling	is	carried	out	through	genetic	engineering	
of	cells	by	 reporter	genes	such	as	green	 fluorescent	protein	 (GFP)	
or	bioluminescent	luciferase.	Genetic	modification	of	cells	using	ex‐
ogenous	reporter	gene	that	target	the	cell	nucleus	results	in	stable	
expression	 of	 detectable	 proteins	 (bioluminescent	 or	 fluorescent	
proteins,	enzymes	and	receptors)	in	target	cells	and	future	progeny.	
However,	this	labelling	is	hampered	to	find	clinical	importance	due	
to	stable	 integration	of	 transgene	 into	cellular	genome	and	 risk	of	
mutagenesis.61,62

3.1.1 | Direct cell labelling

Direct	cell	labelling	in	molecular	in	vivo	imaging	can	be	done	by	vari‐
ous	compounds	 including	radioactive,	paramagnetic	or	fluorescent	
agents.63	For	MRI	(magnetic	resonance	imaging),	the	nanoparticles	
consist	of	superparamagnetic	 iron	oxide	 (SPIO)	nanoparticles,	per‐
fluorocarbon	 nanoparticles,	 gadolinium‐filled	 microcapsules	 and	
liposomes.61,64	Direct	 cell	 labelling	 for	 nuclear	 imaging	will	 be	 im‐
plemented	with	radioisotopes	such	as	111Indium	(111In)‐oxine	or	99m 
technetium	 (99mTc)	 chelates	 for	 single‐photon	 emission	 computed	
tomography	 (SPECT)	 imaging65	and	18F‐fluorodeoxyglucose	 (FDG)	
for	 positron	 emission	 tomography	 (PET).57,61For	 optical	 fluores‐
cence	imaging	(OFI),	direct	cell	labelling	can	be	done	using	lipophilic	
membrane	dyes	(including	PKH2,	PKH26,	PKH67,	DiD,	DiR),66 NIR 
I	(near‐infrared	region	I)	and	NIR	II	(near‐infrared	region	II)	emitting	
fluorophores.67	 For	 establishment	 of	 various	 compounds	 as	 safe	
materials	for	cell	labelling,	several	characteristics	are	mandatory,	in‐
cluding	lack	of	cellular	toxicity,	optimal	renal	clearance	and	stability	
in	biological	fluid	together	with	stability	during	cell	division.62,67

F I G U R E  2  Schematic	diagram	of	in	
vivo	molecular	imaging	modalities	used	for	
cell	tracking
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3.1.2 | Indirect cell labelling

The	 indirect	 cell	 labelling	 allows	 visualization	 of	 the	 administered	
cells	by	the	use	of	various	reporter	genes	such	as	iron‐storage	pro‐
tein,	 ferritin,	 in	MRI	detection,	 the	herpes	simplex	virus	thymidine	
kinase	 type	1	 (HSV1‐tk)	 and	human	membrane	protein	 sodium‐io‐
dide	 symporter	 (NIS)	 have	 also	 been	 used	 for	 positron	 emission	
tomography	 (PET)	 and	 hybrid	 SPECT/CT,	 respectively.61,68,69	 For	
bioluminescent	optical	 imaging,	firefly	 luciferase,	Renilla	 luciferase,	
Gaussia	luciferase,	Metridia	luciferase,	Vargula	luciferase	or	Bacterial 
luciferase	has	been	employed	as	 reporter	genes.70	Finally,	 indirect	
cell	labelling	technique	for	optical	fluorescence	imaging	is	achieved	
by	reporter	genes,	which	express	detectable	proteins	such	as	green	
fluorescent	protein	(GFP).6,70

3.2 | Molecular imaging modalities for in vivo 
cell tracking

3.2.1 | Computed tomography (CT)

Imaging	in	computed	tomography	relies	on	differential	absorption	of	
ionizing	X‐rays	by	various	tissue	components	in	the	body.71	However,	
utilization	of	the	ionizing	X‐rays	has	mutational	risks	and	may	dam‐
age	DNAs.61	Necessary	 instruments	for	CT	 imaging	 include	the	X‐
ray	source	and	rotating	detector	around	the	imaged	subject.72	Low	
cost	compared	to	other	non‐optical	imaging	modalities	and	excellent	
temporal	 resolution	 are	 the	 advantages	of	CT	 scan	 that	make	 it	 a	
potential	technique	to	visualize	and	track	stem	cells.73,74	The	image	
contrast	(differences	between	attenuation	of	the	X‐ray	photons	by	
various	tissue)	in	the	CT	scan	is	relatively	low	for	soft	tissues;	thus,	
it	 is	 imperative	 to	 use	 the	 contrast	 agents	 to	 distinguish	between	
the	various	soft	tissues.72,73	CT	scan	has	potential	application	in	the	
cell	 tracking	 and	monitoring	particularly	 in	 brain	 and	 lungs	whose	
development	is	relatively	slower	than	MRI	due	to	lower	contrast	of	
soft	tissue.73,74

Nonetheless,	different	studies	have	shown	that	gold	nanoparti‐
cles	(AuNP)	can	be	used	safely	to	label,	monitor	and	detect	mesen‐
chymal	stem	cells	by	conventional	CT	imaging	in	vivo.73‐75	However,	
high	dose	of	ionizing	X‐ray	radiation	requirements	is	the	major	dis‐
advantage	of	CT	 scan	 imaging	 to	monitor	 cellular	 localization	 and	
engraftment.74

3.2.2 | Nuclear medicine: PET and SPECT

Positron	emission	tomography	(PET)	imaging	is	based	on	radiotrac‐
ers	that	emit	positron.	After	production,	radiotracers	are	unstable,	
immediately	 lose	 their	energy	and	generate	some	particles	named	
as	 positrons.	 These	 particles	 interact	with	 neighbouring	 electrons	
via	 annihilation	 process,	 and	 two	 produced	 photons	 (each	 having	
511	keV	energy)	can	be	detected	by	PET	scanners.61,68,76,77	Cell	la‐
belling	PET	radiotracers	 include	2‐[F‐18]‐fluoro‐2‐deoxy‐D‐glucose	
(18F‐FDG)	 and	 [64Cu]‐pyruvaldehyde‐bis	 (N4‐methylthiosemicarba‐
zone)	 (64Cu‐PTSM).	Single‐photon	emission	computed	tomography	

(SPECT)	 imaging	 relies	on	detection	of	 two	 low‐energy	γ	 (gamma)	
photons	 being	 emitted	 from	 radioisotopes	 including	 111In‐oxine	
and	 technetium	 (99mTc)	 exametazime	 (99mTc‐hexamethyl	 propylene	
amine	oxime	[HMPAO]).57,68

Because	penetration	 in	 tissue	depth	 in	PET	and	SPECT	has	no	
limitation,	their	cell	tracking	sensitivity	is	high,	and	PET	is	more	sen‐
sitive	than	SPECT.78,79

Although	labelling	procedure	of	therapeutic	cells	with	PET	and	
SPECT	 radiotracers	 is	 easy	 in	 vitro,	 cell	 tracking	 and	monitoring	
should	be	performed	 immediately	as	a	 result	of	short	half‐life	of	
the	agents	in	vivo.	Radiotracers	that	are	currently	used	in	preclin‐
ical	and	clinical	studies	are	removed	through	liver	metabolism	and	
renal clearance.79‐82	Despite	 foregoing	 advantages	 of	 the	 radio‐
tracers,	 direct	 cell	 labelling	 has	 some	 limitations	 for	 in	 vivo	 cell	
monitoring	such	as	disruption	of	cell	viability,	impossibility	of	long	
time	study	due	to	the	short	half‐life	and	the	leakage	of	radiotrac‐
ers	into	the	extracellular	area.57,83,84	Indirect	cell	labelling	by	PET	
reporter	 genes,	 such	 as	 herpes	 simplex	 virus	 thymidine	 kinase	
type	1	(HSV1‐tk),	human	nucleoside	kinases	deoxycytidine	kinase	
(dCK)	and	thymidine	kinase	2	(tk2),	compensate	the	limitations	of	
direct	labelling	and	increase	uptake	of	the	radiotracers	into	cells.	
However,	because	HSV1‐tk	has	non‐human	origin	its	structure	in‐
duces	the	immune	response	in	host	tissue.	In	addition,	blood‐brain	
barrier	 is	the	main	obstacle	for	 intracerebral	use	of	this	reporter	
gene	 in	 humans.57,61,68	 In	 spite	 of	 some	 problems	 concerning	 to	
genetic	manipulations	of	therapeutic	cells,	indirect	labelling	by	re‐
porter	genes	provides	a	better	choice	for	cell	fate	tracing	in	com‐
parison	with	direct	method.5	For	example,	findings	from	previous	
study	have	revealed	that	NIS	reporter	gene	imaging	either	by	PET	
or	SPECT	can	be	implemented	in	animal	studies	for	assessment	of	
biodistribution,	survival	and	engraftment	of	cardiac‐derived	stem	
cells	 in	 the	myocardium.78	 But,	 in	 spite	 of	 high	 potential	 of	 PET	
reporter	 gene	 imaging	 for	 cell	 tracking,	 application	 of	 this	 tech‐
nique	 is	 restricted	to	preclinical	studies	due	to	 low	resolution	of	
PET	imaging	modality	at	cellular	level85	and	genetic	manipulation	
of	transferred	cells.5

3.2.3 | Magnetic resonance imaging (MRI)

Magnetic	 resonance	 imaging	 is	 a	 kind	 of	 non‐invasive	 imaging	
technique	 that	 uses	 a	 powerful	magnetic	 field	 to	 induce	 polariza‐
tion	of	hydrogen	nuclei	(protons)	in	water	molecules	or	fluorinated	
molecules	 (19F).	 By	 placing	 the	 sample	 in	 the	 magnetic	 field,	 the	
spins	 polarize	 towards	 the	main	magnetic	 field.	 After	 polarization	
and	alignment	of	 the	nucleus,	 radiofrequency	 (RF)	pulse	 is	applied	
to	the	sample	that	leads	to	excitation	of	nuclei	and	thus	causes	ex‐
citation	 from	 lower	 energy	 to	 higher	 and	 an	 unstable	 state.	After	
removing	 RF	 pulse,	 the	 nuclei	 polarize	 towards	 the	 original	 mag‐
netic	field	and	transit	to	lower	energy	state.	So,	the	excess	energy	
of	nuclei	is	released	while	emitting	RF	signals	being	detected	by	RF	
coils.57,58,68,86	Relaxation	period	is	the	duration	of	the	time	that	takes	
for	 the	nucleus	to	transit	 from	high	energy	 level	 to	 its	basic	state.	
There	are	three	types	of	the	relaxation	times	 in	the	MRI	 including	
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longitudinal	relaxation	time	(T1),	transverse	relaxation	time	(T2)	and	
T2	without	rephasing	(T2*).86,87	Each	tissue	component	has	its	own	
specific	 relaxation	 time	 T1/T2	 in	 the	 body,	which	 varies	 between	
different	tissues.	The	contrast	agents	in	the	MRI	are	classified	as	T1	
and	T2	agents,	and	make	differences	between	various	soft	tissues.	
Therefore,	in	vivo	cell	tracing	and	monitoring	would	be	possible	for	
cell‐based	therapies	by	using	several	MRI	contrast	media.68

Longitudinal	relaxation	time	agents	(paramagnetic‐based	agents,	
eg	gadolinium)	offer	positive	contrast	(bright)	by	reducing	adjacent	
hydrogen	proton	T1	 relaxation	 time.	T2	agents	 (iron‐based	agents	
and	 reporters)	 reduce	 the	T2	 relaxation	 time	of	hydrogen	protons	
and	 offer	 hypointense	 (dark)	 contrast.	Other	MRI	 contrast	 agents	
include	 diamagnetic	 or	 diamagnetic	 chemical	 exchange	 saturation	
transfer	 (DIACEST),	 paramagnetic	CEST	 (PARACEST)	 and	perfluo‐
rocarbon	 (19F)	agents.68,86,88	Prior	 to	 in	vivo	administration,	 thera‐
peutic	cells	must	be	labelled	directly	by	the	MRI	contrast	agents	or	
indirectly	through	genetic	engineering	with	the	MRI	reporter	genes	
such	 as	 ferritin,	 tyrosinase	 or	 β‐galactosidase.5,57	 However,	 all	 of	
these	reporter	genes	used	in	the	MRI	cell	tracking	and	visualization	
do	not	demonstrate	appropriate	efficacy.5,89	Cell	labelling	with	SPIO	
and	fluorine	attracts	more	attention	for	 future	clinical	use.86	Also,	
CEST	agents	could	be	involved	in	immunological	or	other	reactions	
that	are	not	still	known.86,87	Due	to	the	low	sensitivity	of	PARACEST	
agents	 such	 as	 Gd3+,	 ensuring	 the	 presence	 of	 adequate	 contrast	
between	 the	 various	 regions	 in	 the	 body	 requires	 large	 amounts	
of	these	contrast	agents.	Thus,	application	of	PARACEST	media	 in	
higher	concentration	for	long	period	of	time	may	result	in	toxic	ef‐
fects.	The	major	limitation	related	to	the	cell	labelling	with	the	iron	
oxide	nanoparticles	 is	 that	macrophage	engulfs	 labelled	cells	after	
cell	death	in	the	body.	Thus,	approximately	10%	of	these	nanoparti‐
cles	can	be	seen	in	the	macrophages	and	finally	lead	to	misinterpre‐
tation	of	results	related	to	the	location	and	survival	of	therapeutic	
administered	cells.5,90	 Indirect	 labelling	of	 the	 transplanted	cells	 is	
implemented	by	the	genetic	manipulation	via	MRI	reporter	gene,	but	
this	 method	 lacks	 sufficient	 sensitivity	 for	 the	 cell	 detection.68,89 
MRI	offers	 the	best	anatomical	position	of	 the	cell	graft	but	 lacks	
adequate	information	about	function,	viability	and	behaviour	of	the	
transplanted	cells.90

3.2.4 | Optical imaging

Current	in	vivo	imaging	techniques	(MRI,	PET,	SPECT	and	CT	scan)	
that	 are	 used	 extensively	 in	 the	 clinic	 for	 diagnostic	 purposes	 are	
classified	 as	 tomographic	 imaging	modalities.	 They	 are	 dependent	
on	deep	penetrating	radiations	such	as	the	X‐ray	(CT),	high‐energy	
subatomic	 particles	 (PET	 and	 SPECT)	 and	 strong	 magnetic	 fields	
(MRI).91,92	 These	 imaging	 systems	 contain	 some	 problems	 such	 as	
lack	of	 appropriate	 spatiotemporal	 resolution,	which	 is	 substantial	
for	in	vivo	single‐cell	tracking.92‐94	Optical	imaging	modalities	have	
been	discovered	many	decades	ago	for	in	vitro	studies	of	biological	
tissues.	The	extension	of	these	techniques	towards	non‐invasive	in	
vivo	imaging	with	light	photons	opens	new	approaches	towards	ex‐
ploring	the	cellular	dynamics	and	behaviour	without	harmful	effects	

on	the	living	body.72	Optical	imaging	techniques	rely	on	the	detec‐
tion	of	transmitted	light	(photons)	through	biological	tissues.95	The	
light	can	be	generated	through	two	main	approaches	including	bio‐
luminescence	(BLI)	and	fluorescence	techniques.95

Indeed,	therapeutic	cells	can	be	 labelled	 indirectly	through	ge‐
netic	engineering,	using	bioluminescent	reporter	gene	such	as	firefly	
luciferase	or	fluorescent	reporter	gene	such	as	GFP.96	Furthermore,	
cells	 can	 be	 labelled	 directly	 by	 uptaking	 exogenous	 fluorophores	
such	as	organic	dyes	and	nanoparticles	emitting	fluorescence	light.62

Optical bioluminescence imaging (BLI)

Optical	bioluminescence	imaging	is	based	on	genetic	modification	of	
cells	with	reporter	genes	and	is	considered	as	a	promising	method	to	
track	cell	localization	and	destiny	in	live	animals.	Indeed,	biolumines‐
cence	imaging	relies	on	the	detection	of	emitted	lights	from	geneti‐
cally	modified	 cells	 that	 express	 enzyme	proteins	 during	 chemical	
reactions	 in	body.	Firefly	 luciferase	 (isolated	 from	Photinus pyralis,	
North	American	 firefly),	Renilla	 luciferase	 (isolated	 from	Renilla re‐
niformis,	a	click	beetle)	and	Gaussia	luciferase	(isolated	from	Gaussia 
princeps)	 are	 photoprotein‐enzymes	 that	 catalyse	 D‐luciferin	 sub‐
strate	 in	the	presence	of	ATP	and	O2	causing	 light	mission.

5,57,70,97 
By	 integrating	 reporter	 genes	with	 the	 genome	 of	 cells,	 they	 can	
stably	express	 luciferase	proteins	and	can	be	monitored	 longitudi‐
nally	for	 in	vivo	imaging.	Therefore,	bioluminescence	imaging	does	
not	 require	 additional	 excitation	 light	 source,	 and	 light	 scattering	
would	be	minimal	due	to	administration	of	substrate	inside	the	body.	
Also,	imaging	depth	of	tissue	will	be	possible	in	live	small	animals.5 
Additionally,	as	mammalian	cells	do	not	express	endogenous	 lucif‐
erase,	in	vivo	bioluminescence	imaging	offers	the	greatest	sensitivity	
compared	to	tomographic	imaging	technique.5	Furthermore,	owing	
to	 the	 generation	 of	 bioluminescence	 signal	 only	 in	 the	 live	 cells,	
biodistribution	and	fate	of	live	cells	can	be	traced	in	vivo	using	BLI.	
Despite	mentioned	advantages,	the	bioluminescence	light	is	attenu‐
ated	in	depth	of	tissues	restricting	molecular	in	vivo	imaging	to	small	
animal	assessment.	In	addition,	immune	response	and	genetic	modi‐
fication	are	 formidable	 challenges	 that	 limit	 the	 translation	of	 this	
technique	 to	clinical	 studies	due	 to	 insertion	of	 the	 reporter	gene	
with	the	genome	of	infected	cells.5,57,70,97

Optical fluorescence imaging (OFI)

Labelling	of	therapeutic	cells	for	optical	fluorescence	imaging	can	be	
done	through	indirect	or	direct	labelling.

Optical	fluorescence	imaging	using	indirect	labelling,	as	mentioned	
above,	was	implemented	by	genetic	engineering	of	target	cells	to	ex‐
press	 fluorescent	 reporter	proteins.	Fluorescent	 reporter	gene	 tech‐
niques	rely	on	fluorochromes	such	as	green	fluorescent	protein	(GFP)	
that	is	excreted	from	Aequorea	Victoria	jelly	fish	as	a	by‐product	un‐
covered	 in	1961.	Other	 fluorescent	proteins	 include	 fluorochromes,	
which	emit	red	and	far‐red	light	and	also	mutant	forms	of	the	GFP	gene	
that	emit	yellow	or	cyanin	light.57,72,98,99	Attenuation	of	excitation	and	
emission	wavelengths	of	 fluorescent	 reporter	proteins	 such	 as	GFP,	
due	to	scattering	and	absorption	by	the	biological	tissue,	impedes	fur‐
ther	penetration	of	photons.	Consequently,	signal	generation	becomes	
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weak	and	this	technique	cannot	be	implemented	for	in	vivo	tracking	
and	monitoring	of	administered	cells	in	live	animal	models.	Other	ob‐
stacles	such	as	immunogenicity	and	toxicity	of	GFP	along	with	weak	
signal	and	genetic	manipulation	of	cells	cause	a	limited	application	of	
this	protein	to	ex	vivo	analysis	of	therapeutic	cells	and	post‐mortem	
immune	histochemical	evaluation	of	excised	tissues.57,72,98

Direct	labelling	of	therapeutic	cells	for	OFI	generally	consists	of	
in	vitro	cell	labelling	prior	to	in	vivo	administration	by	fluorophores	
(fluorescent	probe)	or	nanoparticles.	Then,	labelled	cells	are	excited	
using	photons	in	defined	wavelengths	of	spectral	region	and	emitted	
light	from	cells	is	detected	with	high	sensitive	detector	or	camera.97 
Aside	from	limited	length	of	penetration	in	deep	biological	tissues,5 
beneficial	effects	of	fluorophores	in	vivo	include	cost‐effectiveness,	
high	sensitivity	and	high	spatial	resolution	necessary	for	cell	moni‐
toring.100	OFI	is	one	of	the	most	promising	modalities	that	can	open	
new	ways	for	non‐invasive	in	vivo	cell	visualization	without	the	use	
of	 ionizing	 radiation.62	However,	 this	modality	 is	hampered	by	 the	
light	 scattering	and	absorption	along	with	 inherent	 tissue	autoflu‐
orescence	that	corrupt	signal	detection	by	detector	due	to	the	high	
ratio	 of	 background	 noise	 to	 signal	 in	 the	 visible	 region	 (between	
400	 and	 650	 nm)	 of	 electromagnetic	 spectrum.	Autofluorescence	
of	a	 tissue	mostly	emanates	 from	NADPH,	 flavins	and	collagen.101 
Translocation	of	 light	photons	 through	a	 turbid	media,	 such	as	bi‐
ological	 tissues	 that	 consisting	 of	 endogenous	 chromophores,	
eventuates	in	three	main	components:	diffusive,	ballistic	and	snake	
photons.	The	ballistic	and	snake	photons	consist	of	beneficial	infor‐
mation,	but	the	diffusive	photons	make	some	noise	and	lack	useful	
data	for	imaging	procedure	due	to	the	haphazard	scattering.102,103

Major	 endogenous	 chromophores	 (light	 absorbers)	 that	 signifi‐
cantly	 absorb	 the	 light	 in	 the	visible	 light	 include	water,	 lipids,	 oxy‐
haemoglobin	 and	 deoxyhaemoglobin	 that	 particularly	 has	 a	 high	
absorption	 peak	 in	 the	 visible	 region	 of	 the	 spectrum.100,102,104‐106 
Also,	the	morphology,	size	and	composition	of	tissues	can	act	as	light	
scatter.104	The	scattering	and	absorption	features	of	 the	 light	 in	 the	
turbid	media,	for	example	human	body,	result	 in	disruption	of	image	
contrast.	Reduction	of	image	contrast	with	increasing	the	tissue	depth	
depends	on	the	 issues	 including	blurring	of	 images	and	reduction	of	
photons.	Scattering	of	photons	that	haphazardly	transmit	through	bi‐
ological	tissue	makes	images	blurry,	and	absorption	by	different	com‐
ponents	 of	 tissue	 reduces	 detectable	 photons.104	 Estimation	 of	 the	
scattering	and	absorption	can	be	performed	by	energy	Beer‐Lambert's	
intensity	law.102	Therefore,	increasing	the	depth	of	tissue	in	the	living	
body	negatively	affects	the	contrast	and	finally	leads	to	the	reduction	
of	sensitivity	and	spatiotemporal	resolution	of	the	 image.102	So,	one	
of	the	main	goals	of	in	vivo	optical	imaging	is	increasing	the	depth	of	
photon	penetration	in	biological	tissues.

4  | BIOIMAGING IN SWIR REGION

The	use	of	visible	region	of	electromagnetic	spectrum	in	the	range	
of	400‐650	nm	is	suitable	to	get	image	from	accessible	or	superficial	
tissues	such	as	colon	and	skin,	but	not	for	structures	locating	in	the	

deeper	parts	of	the	body	such	as	nucleus	or	stem	of	the	brain	due	to	
the	scattering	and	absorption	by	tissue	components.107

During	 the	 last	 two	decades,	many	efforts	have	been	made	to	
increase	image	contrast	by	diminishing	between	the	tissue	scatter‐
ing	and	absorption	of	 light	photons	along	with	reducing	disruptive	
autofluorescence	signals	due	to	increasing	the	tissue	depth	to	avoid	
potential	deleterious	effects	of	tissue	parameter	on	in	vivo	fluores‐
cence	imaging.108

The	 results	 of	 the	 various	 studies	 demonstrated	 that	 longer	
wavelength	 lights	 have	 more	 penetration	 depths	 than	 the	 visible	
light.	This	phenomenon	is	due	to	the	decrease	in	photon	scattering	
and	absorption	by	biological	tissues.	Extending	optical	fluorescence	
imaging	from	the	visible	region	(400‐650	nm)	to	near‐infrared	region	
of	the	spectrum	(650‐900	nm,	called	NIR	I	optical	window	or	thera‐
peutic	window)	offers	considerable	improvement	in	the	image	con‐
trast	compared	to	fluorescent	imaging	in	the	visible	region.	Indeed,	
by	using	longer	wavelengths	in	the	NIR	I	window,	the	transparency	
of	opaque	tissue	will	increase	as	a	result	of	the	better	penetration	of	
photons	to	the	tissue	media.	Also,	at	the	longer	wavelengths,	auto‐
fluorescence	of	the	biological	tissue	does	not	visualize	or	is	negligi‐
ble.109‐111	By	using	the	NIR	I	biological	window	for	imaging	purposes,	
non‐invasive	 in	 vivo	 fluorescence	 imaging	 of	 different	 organs	 and	
monitoring	of	cell‐based	therapy	are	possible.112	Furthermore,	 it	 is	
beneficial	for	medical	utilization	such	as	optical	spectroscopy	due	to	
the	use	of	longer	wavelengths	of	spectra	along	with	accessible	and	
cost‐effectiveness	of	silicon‐based	detectors.113

Optical	 spectroscopy	 using	 exogenous	 fluorophores	 that	 emit	
light	 in	 the	 range	of	NIR	 I	window	 is	 extensively	used	 in	 the	 clinic	
as	an	important	diagnostic	method	to	evaluate	blood	flow	inside	the	
brain	and	determine	tumour	margin	for	precise	resection	and	removal	
of	cancerous	tissue	during	surgery.114,115	In	addition,	imaging	by	op‐
tical	 properties	 of	 tissue	 and	 by	 endogenous	 tissue	 chromophores	
such	as	lipid,	water	and	collagen	contents	can	be	a	valuable	method	in	
label‐free	studies.	It	can	help	to	diagnose	malignant	overgrowth	from	
benign	 or	 normal	 tissue	 structure.114‐118	 Also,	 technical	 advances	
such	as	sensitive	detectors	in	NIR	region,	laser	light	sources	and	life	
science	technologies	can	eliminate	mutational	risk	percentage	in	op‐
tical	 mammography.114,115	 In	 addition,	 NIR	 I	 fluorophores	 possess	
applicable	quantum	yield	and	high	resistance	against	photobleaching	
and	chemical	degradation.	So,	 these	agents	can	be	utilized	 to	 label	
various	 kinds	 of	 cells	 to	visualize	 cellular	 dynamics	 and	 fate	 in	 the	
living	body.119	Thus,	optical	imaging	in	NIR	I	region	can	play	a	crucial	
role	in	tailoring	infused	cells	by	assessing	their	localization	and	viabil‐
ity.	However,	the	major	limitation	of	optical	fluorescence	imaging	for	
clinical	 translation	 is	 still	 the	 limited	depth	of	 light	penetration	and	
poor	spatial	resolution	due	to	the	high	scattering.62,120	Despite	pos‐
sibility	of	non‐invasive	in	vivo	NIR	I	optical	imaging,	obtaining	clearer	
image	with	increasing	depth	of	tissue	cannot	be	optimal	choice	due	to	
the	high	level	of	light	scattering	by	biological	tissues.121	Light	scatter‐
ing	in	the	tissue	depth	eventuates	higher	background	noise‐to‐signal	
ratio	 and	minimizes	 the	 sensitivity	 of	NIR	 I	 light	 to	 deep	 scanning	
of	tissue.121	Thus,	for	further	penetration	of	light	inside	the	opaque	
tissues,	imaging	in	the	NIR	I	optical	window	cannot	satisfy	the	clinical	
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needs.	Acquired	data	 from	water	 absorption	 characteristic	 in	NIR	 I	
region	and	 longer	wavelength	 regions	 show	a	 strong	peak	 in	 these	
regions	that	consequently	leads	to	reducing	in	image	contrast.115,118 
Image	contrast	depends	on	the	absorption	and	scattering	of	light	pho‐
tons,	and	in	the	visible	and	NIR	I	region	of	electromagnetic	spectrum,	
scattering	phenomenon	in	tissue	is	a	Mie‐type.115,118,121	The	previous	
studies	have	demonstrated	that	the	scattering	phenomena	can	be	de‐
creased	by	using	longer	wavelengths	beyond	1000	nm.115,121	Hence,	
NIR	I	optical	imaging	extends	to	longer	wavelengths	known	as	short	
wave	infrared	(SWIR)	region	results	in	better	penetration	of	light	to	
the	opaque	tissues.	It	is	good	to	be	noted	that	wavelength	of	SWIR	
biological	window	is	approximately	between	1000	and	2500	nm.122 
In	addition	to	the	decrease	in	the	scattering	of	light	in	the	SWIR	re‐
gion,	autofluorescence	emanated	from	biological	tissue	has	reached	
to	minimal	level	or	could	not	be	seen.104,106	There	are	three	other	bi‐
ological	windows	in	the	SWIR	region:	NIR	II	window	(second	window,	
at	1100‐1350	nm),	NIR	III	window	(third	window	also	called	golden	
window,	at	1600‐1870	nm,	ideal	for	brain	imaging)	and	NIR	IV	window	
(fourth	NIR	window,	ranging	from	2100	to	2350	nm,	suitable	for	the	
optical	imaging	of	bone).122	The	third	window	is	called	as	the	golden	
window	because	the	transparency	of	brain	tissue	is	maximum	in	this	
region	of	the	spectrum	due	to	the	higher	absorption	of	lipid	in	com‐
parison	with	 other	windows.113,122	 In	 extended	NIR	 (SWIR	 region),	
the	length	of	the	light	photon	penetration	in	depth	is	fundamentally	
greater	than	NIR	I	window.	This	is	demonstrated	by	applying	exoge‐
nous	fluorophores	such	as	single‐wall	carbon	nanotube	(SWCNT)	at	
beyond	1000‐nm	wavelengths.118,123,124	Zhang	et	al	determined	the	
depth	of	light	penetration	in	opaque	tissues	from	the	SWIR	region	at	
wavelengths	of	900	nm	to	1650	nm	by	using	hyperspectral	imaging	
in	combination	with	estimation	of	 spatial	Michelson	contrast.	Their	
results	demonstrated	that	biological	 imaging	 in	the	SWIR	region	by	
wavelengths	of	1300	to	1375	nm	offers	the	optimal	depth	of	photon	
penetration	and	consequently	greater	transparency	of	turbid	biologi‐
cal	media.	In	spite	of	these	measurements,	they	were	not	able	to	de‐
termine	the	contrast	in	longer	wavelengths	beyond	1650	nm	due	to	
the	lack	of	highly	sensitive	camera.107	In	another	study	by	Sordillo	et	
al,	total	attenuation	length	of	different	tissues	in	the	SWIR	windows	
showed	higher	 lengths	of	 tissue	 transmittance	of	SWIR	 light	 in	 the	
sample,	in	comparison	with	NIR	I	light.	Results	of	their	study	showed	
that	as	the	lipid	is	the	major	chromophore	in	the	second	and	third	NIR	
windows,	these	regions	can	be	optimal	for	the	imaging	and	studying	
organs	 containing	 lipids	 such	 as	 brain,	 normal	 prostate	 and	normal	
breast.	 Also,	 third	 and	 fourth	windows	 are	 appropriate	 for	 normal	
and	 abnormal	 bone	 tissue	 assessments	 because	 of	 higher	 collagen	
content	of	bone,	which	acts	as	the	main	chromophore	and	has	large	
absorption	peak.122	It	has	been	demonstrated	that	deep	tissue	imag‐
ing	could	be	possible	using	SWIR	optical	imaging	due	to	deep	photon	
penetration	that	allows	higher	resolution	imaging	compared	to	other	
modalities.122	Non‐invasive	in	vivo	optical	imaging	in	the	SWIR	region	
is	in	its	beginnings	and	should	be	explored	by	further	efforts.	Deeper	
penetration	of	photon	is	necessary	for	appropriate	spatial	and	tem‐
poral	resolution	at	the	cellular	 level	that	 is	an	essential	prerequisite	
for	more	advances	 in	 the	cell‐based	 therapies.	Further	 advances	 in	

optical	 imaging	 using	 the	 SWIR	 region	 of	 spectra	 rely	 on	 develop‐
ment	of	powerful	laser	sources,	sensitive	camera	and	suitable	SWIR	
emitter	fluorophores.68,92,107,118,122,125	Until	2014,	development	of	in	
vivo	optical	imaging	in	SWIR	region	had	been	prevented	mainly	due	
to	the	lack	of	high	sensitive,	low‐cost,	high	quantum	yield	detectors	
(cameras)	 and	 SWIR	 emitter	 fluorophores	 together	 with	 advanced	
laser	 source.	 Thus,	 SWIR	 technology	 encountered	 with	 several	 is‐
sues	 that	 led	 to	 the	 restricted	 development	 of	 this	 field.	This	may	
be	mainly	due	to	regulations	pertaining	to	national	defence	such	as	
International	Traffic	in	Arms	Regulations	(ITAR).126	Recently,	by	elim‐
inating	 borders	 in	 the	 application	 of	 high	 sensitive	 indium	 gallium	
arsenide	 (InGaAs)–based	 detectors	 in	 research,	 along	 with	 super‐
continuum	laser	technology,	imaging	via	SWIR	opens	new	prospects	
to	 accelerate	 the	 applications	 of	 this	 technique	 for	 non‐invasive	 in	
vivo	 tracing	of	 administered	 cells	 (Figure	3).125,126	As	various	 kinds	
of	 therapeutic	cells	do	not	have	sufficient	 fluorescence	particularly	
in	SWIR	range,	these	cells	should	be	labelled	with	SWIR	emitter	ma‐
terials	to	be	distinguished	from	surrounding	area	(Figure	3).	Same	as	
NIR	 I	 fluorophores	such	as	 indocyanine	green	 (ICG)	and	methylene	
blue	(MB)	that	are	used	in	clinic,	several	factors	are	prerequisite	for	
SWIR	fluorophores	to	be	approved	by	Food	and	Drug	Administration	
(FDA)	for	preclinical	and	clinical	studies.	These	factors	 include	suit‐
able	 renal	clearance,	 lack	of	any	cellular	 toxicity	or	photobleaching,	
stability	 in	biological	 fluids	and	emitting	 in	SWIR	windows	of	spec‐
trum	with	high	quantum	yields	 that	make	optimal	 fluorescence	 im‐
aging	 available.68,92,125,127	 However,	 extensive	 implementation	 of	
in	vivo	 SWIR	optical	 imaging	 for	 clinical	 use	 has	 been	 impeded	 by	
a	 lack	of	bright,	non‐toxic	fluorophores	with	high	quantum	yield.128 
Various	studies129‐141	 that	aimed	to	develop	SWIR	fluorophores	 in‐
volved	production	of	several	compounds	including	inorganic	carbon	
nanotubes,129‐136	various	types	of	quantum	dots	 (Ag2S,	Ag2Se,	 InSb	
and	 InAs‐based	 quantum	 dots),137‐140	 rare‐earth	 nanoparticles,104 
IR‐polyethylene	glycol	(PEG)	nanoparticles,141	organic	CH1055‐PEG	
molecule91	and	Pt	nanowires.142,143

In	spite	of	various	SWIR	emitting	fluorophore	production	during	
recent	years,	quantum	yields	of	 these	 fluorescent	probes	are	very	
low.144	Therefore,	construction	of	SWIR	emitting	materials	that	offer	
better	efficiency	in	the	SWIR	region	is	highly	needed.	For	example,	
almost	 all	 of	 the	 fluorophores	 that	 are	utilized	 for	optical	 imaging	
in	NIR	II	biological	window	have	a	very	low	quantum	efficiency	and	
cannot	produce	longer	wavelength	light	photons.	This	leads	to	shal‐
low	penetration	of	 light	 photons	 into	 the	biological	 tissues145 and 
limits	SWIR	imaging	to	small	animal	models.

An	interesting	published	study	has	revealed	the	beneficial	effects	
of	narrow‐range	quantum	dots	 (QDs)	 for	 fluorescence	 in	vivo	 imag‐
ing	purposes.125	 Results	of	 this	work	demonstrated	 that	 application	
of	QDs	that	emit	light	photons	in	SWIR	region	of	spectra	is	a	prom‐
ising	approach	for	deep	tissue	imaging	in	preclinical	and	intravital	mi‐
croscopy	 (IVM)	studies.	Nonetheless,	 for	quantum	dots	 to	be	useful	
fluorophores	for	the	preclinical	applications	including	cell	 labelling,	a	
complete	 study	 of	 their	 biocompatibility	 and	 long‐term	 optical	 effi‐
ciency	is	necessary	because	of	the	presence	of	toxic	heavy	metals	in	
chemical	composition	of	QDs.125	Thus,	the	rational	design	of	quantum	
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dots	or	other	molecular	probes	that	lack	any	toxicity	along	with	high	
quantum	yield	is	critical	for	obtaining	clear	images.125,128

4.1 | Tracking of cell fate using SWIR light

Optical	fluorescence	imaging	is	expected	to	contribute	to	the	develop‐
ment	of	 cell‐based	 therapy	because	 it	 can	detect	 labelled	 cells	with	
high	resolution.6,146,147	However,	tracing	of	the	cell	translocation	and	
fate	in	vivo	using	conventional	fluorescent	dyes	and	reporter	genes	as	
mentioned	earlier	 is	almost	 impossible.	This	 is	due	to	 the	 limitations	
mainly	emanated	from	the	inherent	autofluorescence	characteristic	of	
biological	tissues,	scattering	and	absorbance	of	 light	passing	through	
the	living	body.73,148	In	the	last	years,	several	types	of	nanoparticles,	
mainly	QDs,	represent	satisfying	properties	such	as	suitable	resolution	
and	sensitivity	and	adjustable	emission	in	the	SWIR	(NIR	II)	regions	for	
in	vivo	monitoring	of	administered	cells.	Then,	they	can	be	used	as	good	
replacements	for	conventional	fluorescent	agent	that	emit	light	in	the	
visible	or	NIR	I	regions.94,149	For	example,	Chen	and	coworkers	evalu‐
ated	tropism	of	mesenchymal	stem	cells	for	cutaneous	wound	healing	
in	the	small	animal	model	using	Ag2S	quantum	dots	that	emit	light	in	
the	biological	SWIR	window.	They	demonstrated	the	dynamic	process	
of	Ag2S	QD‐labelled	MSC	biodistribution	and	homing	in	response	to	
SDF‐1α	on	the	cutaneous	wound	healing.94	Considering	high	sensitiv‐
ity	and	resolution	at	the	cellular	level	for	optical	imaging	in	the	SWIR	
region,	 researchers	 also	 can	 evaluate	 the	 tumour	 cell	 deposits	 in	 its	
early	stages	in	addition	to	monitoring	of	the	dynamic	cellular	behav‐
iour.150,151	For	this	reason,	Tao	et	al	have	investigated	the	growth	of	the	
tumour	in	the	early	stage	in	the	small	animal	model.	They	initially	im‐
planted	the	ovarian	cancer	cells	in	the	intraperitoneal	cavity	of	the	ani‐
mal	model.	After	two	weeks,	they	visualized	the	early	tumour	deposits	
using	nanoparticles	that	emit	signals	in	the	NIR	II	region.	The	tumour	
deposits	were	 undetectable	 by	 using	 exogenous	NIR	 I	 fluorophores	

or	intrinsic	LUC	and	red	fluorescent	protein	(RFP)	reporter	genes	that	
conventionally	used	to	monitor	tumour	growth	and	tumour	response	
to	various	therapies.	The	promising	results	of	this	study	can	provide	an	
innovative	method	to	image	various	tumour	cells	in	the	early	stages	of	
growth	by	SWIR	imaging	technology.150	Moreover,	it	is	promising	that	
using	further	achievements	in	the	field	of	SWIR	imaging,	investigators	
can	detect	the	cancer	cells	that	metastasize	to	the	other	surrounding	
tissues.	Also,	according	to	the	results	of	this	study,	it	is	promising	that	
researchers	 can	 accurately	 assess	 the	 safety	 and	 potential	 tumori‐
genicity	of	the	infused	cells	after	cell	administration.

Despite	 several	 promising	 studies	 in	 the	SWIR	 region	of	 spec‐
trum	related	to	therapeutic	cell	visualization	and	detection,	higher	
efficient	 and	 biocompatible	 SWIR	 emitting	 fluorophores	 are	
needed	for	further	advancement	in	this	field	of	molecular	imaging.	
Consequently,	SWIR‐based	imaging	can	open	up	new	ways	towards	
non‐invasive	in	vivo	fluorescent	imaging	with	high	spatial	and	tem‐
poral	resolution	at	cellular	levels.

5  | CONCLUSIONS

Because	there	are	critical	challenges	related	to	the	translation	of	
cell‐based	 therapy	 to	 the	 clinic,	 in	 vivo	 tracking	 of	 infused	 cells	
for	 the	purpose	of	 cell	 engraftment	 and	 fate	 is	 essential	 for	ob‐
taining	insights	about	therapeutic	cell	efficacy.	With	this	respect,	
optical	 fluorescence	 imaging	 in	 SWIR	 windows	 (extended	 NIR)	
is	 thought	 to	be	a	great	 imaging	modality	due	 to	 its	 inherent	 in‐
creased	 lengths	 of	 light	 penetration	 in	 non‐homogeneous	 and	
opaque	tissues.	Thus,	researchers	can	achieve	better	 image	con‐
trast	and	high	spatiotemporal	resolution	necessary	for	in	vivo	cell	
tracking	using	this	modality.	There	has	been	focused	on	applica‐
tions	of	SWIR‐based	 in	vivo	 imaging	during	the	 last	years	due	to	

F I G U R E  3  Schematic	illustration	of	
optical	instrumentations	for	cell	tracking	
with	SWIR	light
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lack	of	destructive	 ionizing	 radiation	compared	 to	other	 imaging	
modalities	 (such	 as	 PET,	 SPECT	 and	 CT)	 along	 with	 other	 men‐
tioned	 advantages	 (Table	 1).	 Therefore,	 optical	 imaging	 in	 SWIR	
region	of	the	electromagnetic	spectrum	is	currently	being	pursued	
as	 a	 potential	 replacement	 for	 conventional	 imaging	 technique.	
However,	our	prospect	of	cell	tracing	using	SWIR	imaging	is	that	
this	modality	can	be	critical	 in	addressing	of	obstacles	related	to	
acceleration	 of	 cell‐based	 therapy	 to	 clinic.	 Further	 evolution	 in	
the	SWIR	emitter	fluorophores	could	allow	researchers	to	obtain	
high‐quality	images	that	lack	artefacts	at	cellular	level	from	tissue	
depth	without	causing	harmful	effects	on	living	body.
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