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Abstract
Life‐history theory suggests species that typically have a large number of offspring 
and high adult mortality may make decisions that benefit offspring survival in ex-
change for increased adult risks. Such behavioral adaptations are essential to un-
derstanding how demographic performance is linked to habitat selection during this 
important life‐history stage. Though studies have illustrated negative fitness con-
sequences to attendant adults or potential fitness benefits to associated offspring 
because of adaptive habitat selection during brood rearing, equivocal relationships 
could arise if both aspects of this reproductive trade‐off are not assessed simulta-
neously. To better understand how adaptive habitat selection during brood rearing 
influences demographics, we studied the brood survival, attendant parental survival, 
and space use of two sympatric ground‐nesting bird species, the northern bobwhite 
(hereafter: “bobwhite”; Colinus virgininanus) and scaled quail (Callipepla squamata). 
During the 2013–2014 breeding seasons, we estimated habitat suitability across two 
grains (2 m and 30 m) for both species and determined how adult space use of these 
areas influenced individual chick survival and parental risk. We found the propor-
tion of a brood's home range containing highly suitable areas significantly increased 
bobwhite chick survival (β  = 0.02, SE  = 0.006). Additionally, adult weekly survival 
for bobwhite was greater for individuals not actively brooding offspring (0.9716, 
SE  =  0.0054) as compared to brooding adults (0.8928, SE  =  0.0006). Conversely, 
brood habitat suitability did not influence scaled quail chick survival during our study, 
nor did we detect a survival cost for adults that were actively brooding offspring. 
Our research illustrates the importance of understanding life‐history strategies and 
how they might influence relationships between adaptive habitat selection and de-
mographic parameters.
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1  | INTRODUC TION

Animal space use is a fundamental pattern in wildlife ecology that 
constitutes important mechanisms used to conserve and man-
age species worldwide (Lack, 1933; Manly, McDonald, Thomas, 
McDonald, & Erickson, 2002; Morrison, Marcot, & Mannan, 2012). 
However, using this pattern to manage species can be misguided if 
the assumption that individuals are making selection decisions that 
maximize their demographic parameters (i.e., survival and/or fecun-
dity) is incomplete. Research has often shown that space use can be 
misleading indicators of habitat quality (i.e., ecological traps; Bacon 
et al., 2016; Donovan & Thompson, 2001; Gates & Gysel, 1978; van 
Horne, 1983) because individuals may not always be able to deter-
mine habitat quality and instead rely on environmental cues to guide 
space use (Kristan, 2003; Storch & Frynta, 1999). Furthermore, this 
relationship can be highly variable across species and vegetation 
communities (Bock & Jones, 2004). Thus, determining a link be-
tween space use and demographic parameters helps ensure the pre-
dictive capabilities of using such patterns for conservation purposes 
(Beerens, Frederick, Noonburg, & Gawlik, 2015; Folmer & Piersma, 
2012).

Further constrained within patterns of habitat selection is an 
understanding of how adult space‐use patterns influence offspring 
survival. This is because the patterns of space use for offspring of 
many species (i.e., broods and neonates) are often ascribed to paren-
tal decisions of nest/birth site selection and subsequent habitat use 
during important life‐history stages for offspring such as the brood-
ing period (Dreitz, 2009; Gibson, Blomberg, Atamian, & Sedinger, 
2017; Kolbe & Janzen, 2002; Lengyel, 2006). Such parental deci-
sions play a direct role in influencing offspring survival (Dreitz, 2009; 
Garrick, Amundson, & Seddon, 2017; Gibson et al., 2017; Kolbe & 
Janzen, 2002), which in turn can directly affect population dynam-
ics, as this life‐history stage may be a critical period in certain spe-
cies (Colwell, Hurley, Hall, & Dinsmore, 2007; Sandercock, Jensen, 
Williams, & Applegate, 2008).

Yet, such behavioral modifications during this important life‐
history stage may come at demographic consequences for associ-
ated adults (Blomberg, Sedinger, Nonne, & Atamian, 2013; Caudill 
et al., 2014; Reznick, 1985; Zhao, Fang, Lou, Swenson, & Sun, 2018). 
Evidence suggests that for species with a large number of offspring 
and low adult survival (i.e., r‐selected species), adult decision‐mak-
ing should reflect benefits toward offspring survival in exchange for 
increased adult risks, whereas the opposite tends to be true for spe-
cies that have longer‐lived adults and fewer offspring (Ghalambor 
& Martin, 2001). Such increased risks can be associated with phys-
iological constraints (i.e., changes in metabolic requirements during 
brood rearing [Dawson, Hinsley, Ferns, Bonser, & Eccleston, 2000; 
Dreitz, 2009]), behavioral changes (i.e., increased vigilance, de-
creased foraging opportunities, and space‐use change [Williams & 
Cooke, 1994; Zhao et al., 2018]), and/or changes in biotic interac-
tions such as increased predation risk due to novel behaviors asso-
ciated with an adult with offspring (i.e., feigning injuries [Bellrose 
& Holm, 1994; Ghalambor & Martin, 2001]). Thus, adult space use 

during these periods may be representative of environmental con-
ditions that are more suitable toward offspring survival as opposed 
to parental survival. These patterns could convolute how models of 
habitat use are used in conservation planning and wildlife manage-
ment if demographic consequences of such behavioral modifications 
are not considered.

Previous research exploring the links between habitat selec-
tion during the postnesting period and offspring survival has been 
inhibited due to logistical constraints and thus has been lacking 
until recently (Bock & Jones, 2004). Moreover, a dearth of knowl-
edge exists for precocial species, likely due to past logistical con-
straints associated with highly mobile offspring (Bloom, Clark, 
Howerter, & Armstrong, 2013; Bock & Jones, 2004; Orange et al., 
2016), and the studies that have investigated these species have 
been somewhat ambiguous in linking habitat selection and off-
spring survival (Aldridge & Boyce, 2007; Bloom et al., 2013; Dreitz, 
2009; Gibson et al., 2017; Gregg & Crawford, 2009; Mathews, 
Tyre, Taylor, Lusk, & Powell, 2011). Similarly, though many studies 
illustrate fitness consequences for adults associated with adap-
tive behavior during the brooding life‐history stage (Blomberg 
et al., 2013; Hagen, Pitman, Sandercock, Robel, & Applegate, 2011; 
Mangelinckx, Davis, Allen, Sullivan, & Blomberg, 2018; Zhao et al., 
2018), rarely have studies linked adaptive brooding behaviors to 
offspring survival while simultaneously assessing fitness con-
sequences of the attending adults. By decoupling these two 
demographic consequences, equivocal results may arise when 
attempting to link adaptive habitat selection to either offspring 
survival or attending adult survival separately because this pat-
tern in space use may be more beneficial toward an unobserved 
demographic parameter rather than the observed parameter 
(Uboni, Smith, Stahler, & Vucetich, 2017). Thus, attempting to un-
derstand concurrent demographic trade‐offs between offspring 
survival and adult survival associated with brood habitat selec-
tion is important when assessing the conservation implications of 
these behavioral modifications.

Using radiotelemetry data of individual chicks and brooding 
adults, we sought to determine whether multiscale habitat suitability 
indices (HSIs; Bacon et al., 2016; Guisan & Thuiller, 2005) associated 
with behavioral modifications of brooding adults directly influenced 
chick survival in two sympatric precocial species of Galliformes 
(northern bobwhite [Colinus virginianus; hereafter “bobwhite”] and 
scaled quail [Callipepla squamata]; Figure 1). Furthermore, we sought 
to determine whether such behavioral modifications by adults re-
sulted in an increased risk for the associated adults by assessing 
weekly survival probabilities. We chose these two ground‐nesting 
species as they occur sympatrically in areas of the Great Plains, 
USA, allowing for a direct comparison on how relative variations 
in life‐history strategies (Davis et al., 2017) and habitat use during 
the breeding season (Tanner et al., 2015) influence the link between 
demographic parameters and behavioral adaptations. The study of 
sympatric and closely related species may help to better describe 
the habitat–demographics link and identify factors that may limit 
population growth and viability of these species (Ackerman, Herzog, 
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Takekawa, & Hartman, 2014; Koons & Rotella, 2003; Sieving, 
1992; Varo, 2008). Previous research has indicated divergent re-
productive strategies (Davis et al., 2017) within areas of sympatry 
between these two species (i.e., scaled quail having higher adult sur-
vival though generally producing less offspring compared to bob-
white [Rollins, 2000]). Thus, we sought to better understand how 
these relative differences in reproductive strategies influence how 
changes in habitat selection are linked to adult and offspring demo-
graphic parameters. We hypothesized that (a) greater HSI values 
would be positively associated with higher offspring survival, that (b) 
changes in spatial grains across HSIs would result in differing HSI/
offspring demography relationships because of the limited mobility 
that brooding adults have during this life‐history stage, and that (c) 
behavioral adaptations associated with adults selecting for greater 
HSI values for offspring survival would result in decreased survival 
of the attending adults.

2  | MATERIAL S AND METHODS

2.1 | Study area

We conducted our study at the 11,315‐ha Beaver River 
Wildlife Management Area (BRWMA) in western Oklahoma (lat 
36°50′21.62″N, long 100°42′15.93″W), managed by the Oklahoma 
Department of Wildlife Conservation. The BRWMA primarily 
consists of upland rangeland characteristic of a sand sagebrush 
(Artemisia filifolia) community with the floodplain of the Beaver 
River transecting it. The primary soil types composing BRWMA are 
Tivoli fine sand soils in the uplands and Lesho silty clay loam in the 
floodplain.

During our study period (summers of 2013–2014), annual pre-
cipitation ranged from 394 mm in 2014 to 503 mm in 2013, with 
both years having drier conditions than the long‐term (1981–2010) 
average of 560 mm for this area (Brock et al.., 1995; McPherson et 
al., 2007). Furthermore, average summer (May–July) temperatures 
ranged from 25.7 to 27.2°C in 2013 and 25.3 to 30.1°C in 2014, 
generally exceeding the long‐term average summer temperature 
of 25.3°C for this region (Brock et al., 1995; McPherson et al., 
2007). The study area was under meteorological drought condi-
tions throughout the entirety of our study, with 2013 being under 
D2 (severe), D3 (extreme), and D4 (exceptional) drought conditions 
30%, 40%, and 30% of the year. This is compared to 2014, which 
was under D2, D3, and D4 drought conditions 24%, 61%, and 15% 
of the year (The National Drought Mitigation Center [Lincoln, 
Nebraska, USA], U.S. Department of Agriculture, National Oceanic 
and Atmospheric Administration).

2.2 | Bird capture and monitoring

Bobwhite and scaled quail adults were captured using baited 
walk‐in funnel traps and were fitted with 7‐g necklace‐style VHF 
radio‐transmitters (Advanced Telemetry Solutions, Isanti, MN). 
Nests were located via radiotelemetry and monitored daily after 
they were initially found. After hatching, broods were monitored 
daily via the radio‐marked adult until the chicks reached 8–12 days 
old when they were captured for attachment of radio‐transmit-
ters. We used a combination of methods (Andes et al., 2012; Smith 
et al., 2003) to capture chicks. Following capture, chicks were held 
in a small portable cooler with a warm water bottle to prevent 
hypothermia. We attached transmitters to 50%–66% of chicks 
captured in each brood. Chicks were fitted with 0.45‐g suture‐
style transmitters that had an expected battery life of 21–23 days 
(American Wildlife Enterprises, Monticello, FL). Transmitters were 
attached using methods described by Burkepile, Conelly, Stanley, 
and Reese (2002) and Dreitz, Baeten, Davis, and Riordan (2011). 
Attachment and capture protocols were approved by Oklahoma 
State University's Institutional Animal Care and Use Committee 
(ACUP #AG132 and #AG11‐22). We acknowledge that a limita-
tion of our study is that some individual chicks likely experienced 
mortality before our 8‐  to 12‐day‐old capture period, and thus, 

F I G U R E  1  Male northern bobwhite (Colinus virginianus; A) 
and scaled quail (Callipepla squamata; B) at Beaver River Wildlife 
Management Area, Beaver County, Oklahoma, USA

(a)

(b)
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all survival estimates and space‐use relationships exclude this 
initial period of high posthatch mortality (Terhune, Palmer, & 
Wellendorf, 2019).

Following capture, chicks were located daily. We located broods 
by homing (White & Garrott, 1990) to a distance of 15–20 m to min-
imize disturbance. If all radio‐tagged chicks in a brood died, radio‐
tagged brooding adults were flushed on a weekly basis to verify 
the presence of at least one chick with a brooding adult to estimate 
habitat use and movement. To minimize the effect of variation in 
diurnal habitat selection that can influence habitat analysis (Taylor, 
Church, & Rusch, 1999; Taylor & Guthery, 1994), we alternated 
collection of daily telemetry locations between two time periods: 
active (sunrise–11:00 and 16:01–sunset) and loafing (11:01–16:00). 
Daily brood locations were used to calculate a relative index of aver-
age daily movement for broods (Tanner et al., 2016). We estimated 
this index by using the Euclidean distance between daily consecutive 
brood locations (Brøseth & Pedersen, 2010; Lohr, Collins, Williams, 
& Castelli, 2011) and averaged them across the population. The av-
erage daily movement values for both bobwhite (179.1 m, standard 
error [SE] = 9.6 m) and scaled quail (214.7 m, SE = 8.4 m) were used in 
subsequent analyses described in the following sections.

2.3 | Habitat suitability analysis for broods

To determine habitat suitability on our study site, we used a maxi-
mum entropy algorithm, Maxent version 3.3.3 (Phillips & Dudík, 
2008). Traditionally, this algorithm has been used for species dis-
tribution models or ecological niche models (Elith et al., 2011). 
However, Maxent may also be useful in determining smaller scale 
patterns of space use or habitat selection (Baasch, Tyre, Millspaugh, 
Hygnstrom, & Vercauteren, 2010; Tanner, Elmore, et al., 2017). We 
integrated the radiotelemetry locations from our broods as the oc-
currence dataset for our modeling exercise. Any identical occur-
rence locations (i.e., multiple locations within the same pixel of our 
environmental layers) were removed from the dataset prior to run-
ning models. Furthermore, we eliminated any broods with occur-
rence locations or home ranges located outside the extent of our 
study area as determined by the extent of our environmental layers 
used for modeling.

2.3.1 | Environmental layers

Similar to Tanner, Elmore, et al. (2017) and Tanner, Papeş, et al. 
(2017), environmental layers used for our Maxent modeling pro-
cedure represented the configuration and structure of vegetation 
within our study site. An initial vegetation layer was created using an 
Iso Cluster Unsupervised Classification method from 2‐m resolution 
satellite imagery which was collected in July of 2013. This exercise 
resulted in a vegetation layer consisting of 10 primary cover types: 
mixed shrub, sand sagebrush, mixed grass, shortgrass/yucca, sparse 
vegetation, bare ground, salt cedar, open water, developed areas, 
and agriculture/food plots. Descriptions of these 10 primary cover 
types are given in Appendix S1.

To incorporate variability in resource selection across multiple 
scales, we used environmental layers at both 2 m and 30 m grains 
(discussed here) and across two extents: the buffered home range 
and study site extents (discussed in the next section). We incor-
porated both changes in grain and changes in extent to meet the 
qualifications of a multiscale study as described by McGarigal, Wan, 
Zeller, Timm, and Cushman (2016). To incorporate a change in grain, 
we used Block Statistics and the Resample tools in ArcGIS 10.2 
(ESRI, 2011) with a majority rule for classification.

Following the creation of our vegetation layer, we calculated a 
normalized difference vegetation index (NDVI). Furthermore, we 
used FRAGSTATS 4.2.1.603 (McGarigal, Cushman, & Ene, 2012) 
and the vegetation layer to create class‐ and landscape‐level met-
rics to incorporate as environmental layers for Maxent models. 
FRAGSTATS metrics were calculated using a round moving window 
with a radius of 215 m, which was equivalent to the maximum aver-
age daily movement of broods across both species during our study. 
To limit any chance of correlation or redundancy in metrics included 
in our analysis (Ritters et al., 1995), we selected FRAGSTATS metrics 
from our study area that were previously shown to be influential in 
space‐use analyses for bobwhite during the breeding season (Tanner, 
Elmore, et al., 2017; Tanner, Papeş, et al., 2017). We also excluded 
any metrics that were highly sensitive to change when incorporat-
ing a change in grain size (Lustig, Stouffer, Roigé, & Worner, 2015). 
Based on these criteria, we included 14 metrics: the coefficient of 
variation in patch size for mixed shrub, total landscape edge density 
(m/ha), edge density of specific vegetation types (mixed shrub, sand 
sagebrush, salt cedar, bare ground, and shortgrass/yucca), mean 
area of all vegetation patches (m2), mean area bare ground and sand 
sagebrush patches (m2), perimeter–area fractal dimension (i.e., shape 
complexity across all patches), perimeter–area fractal dimension of 
mixed shrub and sand sagebrush patches, and the contagion index. 
The contagion index is a measure of interspersion of patch types and 
the overall patch dispersion, such that it is based on the probability 
of finding a pixel of type i adjacent to a pixel of type j (O'Neill et al., 
1988). Thus, a value of 0 represents a landscape where every pixel 
is a different patch type and is maximally interspersed, and a value 
of 100 represents a landscape where all patch types are maximally 
aggregated (McGarigal et al., 2012). For all layers, we reclassified “no 
data” cells within the extent of our study site to 0 before incorpo-
rating them into the Maxent algorithm (Foley, Rueda, Peterson, & 
Wilkerson, 2008).

We also included distance‐based variables that included the 
Euclidean distance (m) to anthropogenic features including oil/gas 
structures, artificial surface water sources, and four different types 
of roads (county road, primary WMA road, restricted access WMA 
road [truck and all‐terrain vehicle {ATV} access], and restricted ac-
cess WMA road [ATV traffic only]). We separated roads into four cat-
egories to represent varying levels of potential human disturbance 
(i.e., road traffic), as differences in bobwhite hazard rates have been 
indicated based on classified road types on our study site (Tanner 
et al., 2016). We only included functioning artificial water sources 
(windmills with water tanks, gallinaceous guzzlers, and solar water 
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wells that were providing surface water) in our analysis as they have 
been shown to influence bobwhite and scaled quail space use on our 
study site (Tanner et al., 2015). We did not differentiate between 
functioning and nonfunctioning oil/gas wells to create our distance 
raster as only 6% of these wells were considered nonfunctioning 
(Tanner et al., 2016). Spatial oil/gas well data were obtained from the 
Oklahoma Corporation Commission in 2013, county road data were 
obtained from the Oklahoma Department of Transportation (http://
okmaps.org/ogi/search.aspx), and all other road data were mapped 
via ground‐truthing efforts. The vegetation, NDVI, distance‐based, 
and FRAGSTATS layers were included as environmental layers in our 
initial modeling exercise described in the next section.

2.3.2 | Second‐order Maxent modeling

We used a two‐stage approach to model habitat suitability for both 
bobwhite and scaled quail through Maxent. These two stages in-
cluded an analysis for second‐order selection (i.e., individual home 
ranges) and an analysis for the entire population across our study 
site. Because we had repeated sampling of individuals (radiote-
lemetry) which were used for the occurrence (or presence) dataset 
for Maxent models, we initially built Maxent models for individual 
broods within their buffered home ranges (Baldwin, 2009). Brood 
home ranges were calculated using a 95% fixed‐kernel method 
with least squares cross‐validation within the Geospatial Modelling 
Environment 0.7.2.1 (Beyer, 2012) and were buffered by the species' 
specific average daily movement patterns (Peters et al., 2015). We 
estimated home ranges for broods with ≥30 radiotelemetry locations 
(Seaman & Powell, 1996). To do this, all environmental layers were 
clipped to an individual's buffered home range. Similar to a back-
ward stepwise variable selection approach (Gherghel, Brischoux, & 
Papeş, 2018; Hastie, Tibshirani, & Friedman, 2001), we initially elimi-
nated highly correlated variables (|r| ≥ 0.7; Dormann et al., 2013) and 
variables that had ≤5% contribution to model accuracy gain (Phillips, 
Anderson, & Schapire, 2006; Phillips & Dudík, 2008; Sahlean, 
Gherghel, Papeş, Strugariu, & Zamfirescu, 2014) for individual brood 
models. If two variables were highly correlated, we retained the vari-
able that had the highest contribution to model accuracy gain. This 
resulted in idiosyncratic variable suites for each brood which were 
derived from our initial 22 environmental variables described above.

Individual Maxent models were initially run using default input 
values. This included the use of 10,000 background pseudo‐absence 
points, a regularization multiplier of one, 500 iterations per model, 
and a convergence threshold of 0.00001. However, if an individual's 
buffered home range had <10,000 cells, we adjusted the number of 
background points to represent 90% of the cells within that home 
range. Models were replicated 100 times using a bootstrap method 
(Araújo, Marcondes‐Machado, & Costa, 2014), and 25% of occur-
rence locations were held out as a test dataset to test the validity 
of our models (Sahlean et al., 2014). We used 10 percentile train-
ing presence as the threshold method to estimate the test omission 
error because this threshold method generally outperforms other 
threshold rules (Liu, White, & Newell, 2013).

Once all individual brood models were run, we used a Kruskal–
Wallis test (Zar, 1999) to determine which variables were most in-
fluential in determining habitat suitability across all individuals by 
species (Baldwin, 2009). Variable influence was measured by each 
of their contributions to model accuracy gain, and the variables with 
the statistically greatest contributions to model accuracy gain (based 
on the results of the Kruskal–Wallis test) were retained. The vari-
ables that were retained after this step were then carried forward to 
build a first‐order Maxent model to determine habitat suitability at 
the study site extent. All procedures described in this section were 
completed at both 2 m and 30 m grains.

2.3.3 | First‐order Maxent modeling

A first‐order Maxent model was created for both species at both 2 m 
and 30 m grains using the radiotelemetry occurrence data and the 
variables that were retained from the steps described in the previous 
section. All procedures described in the previous section were used 
to create first‐order Maxent models. However, to account for model 
complexity, we calibrated our individual models by using different 
values for the regularization multiplier, which has been shown to sig-
nificantly influence model performance (Radosavljevic & Anderson, 
2014; Tanner, Papeş, et al., 2017). We compared average test omis-
sion errors across first‐order models using regularization multiplier 
values of 0.25, 0.50, 1.00, 1.50, 2.00, 4.00, 6.00, 8.00, and 10.00 
(Radosavljevic & Anderson, 2014). Models with different regulari-
zation multiplier values were repeated 10 times. We then tested 
for differences in the average test omission errors of these mod-
els through a one‐way analysis of variance (ANOVA) and a post hoc 
Tukey HSD pairwise comparisons test (α = 0.05) using PROC GLM 
in SAS 9.4. The regularization multiplier value that resulted in the 
statistically lowest average test omission error was used for the final 
model for each species across both grains.

We used the logistic output from Maxent to obtain values of 
habitat suitability for each species across both grains. This ultimately 
created a map within the extent of our study site in which each cell 
had a probability of habitat suitability for each species. These values 
in theory could range from 0 to 1, with 1 representing a cell with 
100% probability of habitat suitability for a specific species. These 
suitability values were then carried forward into our survival analy-
ses to determine how habitat suitability influenced individual chick 
survival (described below).

2.4 | Habitat suitability analysis 
for nonbrooding adults

To determine whether brooding adults were differentially select-
ing habitat as a function of behavioral adaptations associated with 
brooding activities, we compared the habitat suitability indices cre-
ated for brooding adults to habitat suitability indices created for 
nonbrooding adults using occurrence locations (i.e., radiotelemetry 
locations) of nonbrooding adults that were obtained during the 
brooding season for bobwhite and scaled quail (June 23–October 20 

http://okmaps.org/ogi/search.aspx
http://okmaps.org/ogi/search.aspx
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and June 9–October 12, 2013–2014, respectively). To create habitat 
suitability indices for nonbrooding adults, we used the Maxent algo-
rithm and followed an identical protocol as described in the previous 
three sections. Thus, we obtained two unique nonbrooding habitat 
suitability indices for each species (i.e., 2 m and 30 m grains) and 
considered these nonbrooding indices to be representative of what 
was available to brooding adults based on what the rest of the popu-
lation was using.

Once pairwise (brooding and nonbrooding) habitat suitability 
indices for each species at each grain were created, we estimated 
the amount of similarity between the indices to determine the mea-
sure of divergent space use associated with behavioral adaptations 
of parents with broods. To estimate similarity between indices, we 
estimated the relative rank (RR) metric (Warren & Seifert, 2011) 
through ENMTools (version 1.4.4; Warren, Glor, & Turelli, 2010). This 
metric is an estimate of the probability that any two patches of hab-
itat have the same relative ranking for pairwise models (rather than 
quantifying similarity based on suitability values) and was used (as 
opposed to other similarity metrics for niche modeling) because we 
were interested in the relative prioritization of habitat across pair-
wise indices (Warren, Wright, Seifert, & Shaffer, 2014). Values range 
from 0 (low similarity of relative ranking) to 1 (complete similarity 
of relative ranking). We created a null distribution of the RR met-
ric in ENMTools using the background similarity test function with 
100 Maxent pseudoreplications that used a random sample of back-
ground pixels as occurrences instead of brooding and nonbrooding 
locations. We then determined whether the empirical RR values 
estimated from the pairwise brooding/nonbrooding index compari-
sons were contained within the null distribution of the RR metrics. If 
the empirical RR values were not within the null distribution, we con-
sidered the RR metric to be statistically significant (thus indicating 
differential space use between brooding and nonbrooding adults).

2.5 | Chick survival analysis

To estimate the daily survival probabilities of individual chicks by 
species, we used the nest survival model in Program MARK (version 
9.0; Cooch & White, 2017; White & Burnham, 1999) as it allows for 
potential gaps in monitoring events and staggered entry of individu-
als into a population (Dinsmore, White, & Knopf, 2002). As the bat-
tery life of our transmitters was ~21–23  days, we estimated daily 
survival up to 20  days after transmitter attachment. Since chicks 
were caught ~8–12 days after hatch, this 20‐day period after trans-
mitter attachment was used to represent the stage of a chick's life 
history in which they are incapable of thermogenesis (Lusk, Guthery, 
Cox, DeMaso, & Peoples, 2005) and highly reliant on brooding adults 
for survival.

We attributed mortalities or signal losses that occurred within 
three days of transmitter attachment to be caused by transmitter 
failure or capture‐related mortality. If this occurred, the associ-
ated chicks were censored from survival analysis (Larson, Clark, & 
Winterstein, 2001). When radio‐tagged chicks were located at a dis-
tance >100 m from the brooding adult, we checked individual chicks 

for potential mortalities. If fates of chicks were unknown due to loss 
of transmitter signals, we right‐censored individual history encoun-
ter files to the last date they were known to be alive.

Independence of sample units is an important assumption when 
implementing survival analyses (Cooch & White, 2017) as a violation 
of this assumption could underestimate sample variances (Schmutz, 
Ward, Sedinger, & Rexstad, 1995). To test for independence of indi-
vidual chicks within broods, we first used a bootstrapping simula-
tion process in Program MARK to estimate an overdispersion factor 
(ĉ; Bishop, White, & Lukacs, 2008). A ĉ > 1 would be indicative of 
overdispersion and a lack of independence for individuals within 
groups, while a ĉ < 1 would indicate underdispersion with individ-
uals being highly independent within groups (Bishop et al., 2008). 
We initially built models that were representative of time trends. 
This included the covariates linear time, quadratic time, and ordi-
nal date of hatch. Global, additive, and univariate models were built 
using these three covariates, and the most parsimonious model was 
considered the model with the lowest Akaike's information criterion 
(AICc) value adjusted for small sample sizes (Burnham & Anderson, 
2002). We then ran a bootstrapping simulation process on the most 
parsimonious model with 5,000 iterations (Chernick, 1999) and used 
a unique brood identification number to identify blocks of data. The 
ĉ values obtained from these bootstrap simulations were then ap-
plied to the remaining model‐building strategies employed for the 
entire dataset.

Additionally, we included two variable suites representing daily 
weather conditions and landscape/vegetation composition (i.e., 
HSIs). Though our initial hypotheses were related to understand-
ing how adaptive habitat selection of brooding adults influenced 
offspring survival, we tested effects of weather conditions be-
cause they have been shown to significantly influence habitat se-
lection and survival of these species during brood rearing (Carroll, 
Davis, Elmore, Fuhlendorf, & Thacker, 2015; Terhune et al., 2019). 
We obtained daily weather conditions from three weather stations 
(WeatherHawk 232) that were oriented west‐to‐east across our 
study site (mean distance between weather stations: 13 km). To do 
this, we used the weather station closest to the centroid of a brood's 
home range. Conditions were recorded every hour at each weather 
station. Weather variables included in our analysis were as follows: 
average daily ambient temperature (°C), maximum daily ambient 
temperature (°C), minimum daily ambient temperature (°C), average 
daily variance in ambient temperature, maximum daily solar radia-
tion (W/m2), average daily wind speed (km/hr), daily precipitation 
(mm), and average daily relative humidity (%). We conducted a prin-
cipal component analysis (PCA) using singular value decomposition 
in Program R (v.3.4.3) to reduce the amount of variables and correla-
tion among variables within our survival analysis. To determine the 
optimum number of principal components to retain in our analysis, 
we used the broken‐stick stopping rule (Jackson, 1993). Based on 
this stopping rule, we retained two principal components (PCs) for 
our survival analysis. PC1 (44.7% of explained variance) represented 
hot dry days, while PC2 (18.8% of explained variance) represented 
cooler and more humid days with precipitation events (Appendix S2).
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Finally, landscape/vegetation composition variables included six 
variables representing habitat suitability values derived from our 
final first‐order Maxent models. To derive habitat suitability vari-
ables for our survival analysis, we used the logistic probability of suit-
ability maps from our final first‐order Maxent models and separated 
cells into categories using Jenks natural breaks classification (Jenks, 
1967). We chose to limit the number of categories that habitat suit-
ability values are grouped in by selecting the category in which the 
goodness of variance fit begins to increase at a decreasing rate (i.e., 
the point of inflection). This was to prevent an arbitrary selection for 
the number of categories we split our data into. For both species, 
across both grains, the point of inflection for goodness of variance 
fit values was three categories (Appendix S3). We arbitrarily refer 
to these categories as “low,” “medium,” and “high” habitat suitability 
values (Table 1). Once cells were classified, we calculated the per-
centage of each brood's home range that was composed of low, me-
dium, and high habitat suitability cells and incorporated these values 
into our survival analysis.

We conducted a correlation analysis on all variables and elimi-
nated any variables that were highly correlated (|r| ≥ 0.70) before our 
model‐building exercise. The percentage of medium habitat suitabil-
ity cells within a brood's home range were dropped for both species 
and both grains as these variables were highly correlated with other 
habitat suitability values. We employed a purposeful model‐building 
strategy (Hosmer, David, Lemeshow, & Sturdivant, 2013) to identify 
the best performing model for chick survival by species, in which 
each species was modeled under a different framework. We initially 
assessed univariate models and retained variables with a p < 0.25 to 
build a global model. We then individually removed variables with a 
p > 0.05 from the global model based on the strength of the p value 
until a model contained only variables that had p < 0.05. Variables 
that were initially eliminated from our analysis were then added back 
to the reduced global model to determine whether the significance 
of the relationship had changed after incorporating other additive 
effects.

Once model building was complete, we determined the most par-
simonious model based on the quasi‐AICc values (QAICc; Burnham & 
Anderson, 2002). We considered models with a ΔQAICc < 2 to be 
competitive models for explaining variability in chick survival and 
considered variables that had β estimates whose 95% confidence 
intervals excluded 0 to be significant to chick survival (Burnham & 

Anderson, 2002). Daily survival rates were obtained from the most 
parsimonious model, and we used the Delta method (Powell, 2007) 
to compute 20‐day survival rates and associated error rates.

2.6 | Post hoc parental survival analysis

We estimated daily survival probabilities of radio‐collared bob-
white and scaled quail adults from June 23–October 20 and June 
9–October 12, respectively. These two periods corresponded with 
the same temporal extent of the brood survival analyses associated 
with this study. To estimate survival probabilities, we use the nest 
survival model in Program MARK (White & Burnham, 1999). Our 
objective was to determine whether individuals that were involved 
with brooding activities were at greater risk of mortality than those 
that were not brooding. As such, we included three variables in the 
adult survival analysis: time, quadratic time, and the brooding status 
of the individual (i.e., either actively brooding or not brooding). Both 
male and female adults were included in our analysis as both sexes 
participate in brooding activities. If an individual ceased brooding 
activities, we right‐censored their encounter history on the last day 
they were observed brooding and then created a new encounter his-
tory beginning on the next day they were observed without a brood 
(Mangelinckx et al., 2018). We implemented the same purposeful 
model‐building strategy used in our chick survival analysis and com-
pared explanatory models to a null model. Similarly, we considered 
models with a ΔAICc < 2 to be competitive models for explaining 
variability in adult survival and considered variables that had β esti-
mates whose 95% confidence intervals excluded 0 to be significant 
to adult survival (Burnham & Anderson, 2002).

3  | RESULTS

During the breeding seasons of 2013–2014, a total of 102 bob-
white (2013  =  45, 2014  =  57) and 95 scaled quail (2013  =  23, 
2014 = 72) chicks were captured and fitted with radio‐transmit-
ters. This represented a total of 25 (2013 = 12, 2014 = 13) and 
20 (2013  =  6, 2014  =  14) different broods for bobwhite and 
scaled quail, respectively, in which home ranges and average 
daily movement patterns were estimated. Though scaled quail 
broods had larger home ranges compared to bobwhite (scaled 

TA B L E  1  Low, medium, and high habitat suitability categories in which cells from rasters derived from population‐level Maxent models 
were classified based on their individual values. Occurrence data for Maxent models represented radio‐transmitter locations for northern 
bobwhite (Colinus virginianus) and scaled quail (Callipepla squamata) broods during the 2013–2014 breeding seasons at Beaver River WMA, 
Oklahoma, USA. Three categories were chosen based on Jenks natural breaks classification. Percentages represent the percent of our study 
site classified in the associated category

Species Grain (m) Low % Medium % High %

Northern bobwhite 2 0–0.150 56 0.151–0.408 24 0.409–0.801 20

30 0–0.120 69 0.121–0.382 21 0.383–0.844 10

Scaled quail 2 0–0.189 39 0.190–0.430 31 0.431–0.800 30

30 0–0.192 47 0.193–0.446 32 0.447–0.800 21
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quail = 65.84 ha, SE = 11.69; bobwhite = 45.58 ha, SE = 5.41), they 
were not statistically different (t = −1.57, p = 0.13). However, aver-
age daily movements of scaled quail broods (214.70 m, SE = 8.38, 
n = 429) were greater than bobwhite broods (179.07 m, SE = 6.92, 
n = 670; t = 3.33, p < 0.01).

3.1 | Habitat suitability modeling for broods

There were no differences in the model performance of regulariza-
tion multiplier values for both the 2 m (p = 0.14) and 30 m (p = 0.06) 
bobwhite brood first‐order models. Therefore, a regularization mul-
tiplier value of one was used for both of these models. However, 

a regularization multiplier value of 10 was used for both the 2 m 
(p = 0.02) and 30 m (p = 0.02) scaled quail brood first‐order models 
as these values were shown to have the best average test omission 
errors. Based on average test omission errors, first‐order models 
performed well for both bobwhite (2 m =  0.11, 30 m =  0.14) and 
scaled quail (2 m = 0.10, 30 m = 0.10) broods.

Habitat suitability analyses at the first‐order resulted in idio-
syncratic variable suites for each brooding species across both 
grains (Table 2; Appendices S4–S7). The 30 m bobwhite brood 
model and the 2 m scaled quail brood model had >50% of the 
variability explained by a single variable. Specifically, the dis-
tance from county roads explained 72% of the variability for the 
30 m bobwhite brood first‐order model and the distance from 
surface water explained 53.2% of the variability for the 2  m 
scaled quail brood model. The relationship between HSI and dis-
tance from county roads was unimodal for the 30 m bobwhite 
brood model, in which probability of habitat suitability increased 
as distance from county roads increased up to approximately 
2,000 m (Appendix S5). For the 2 m scaled quail brood model, 
probability of habitat suitability decreased as the distance from 
surface water increased up to approximately 5,000 m (Appendix 
S6). The top contributing variable for the 2 m bobwhite brood 
model (contagion index; 43.9% variable contribution) indicated 
a unimodal relationship between habitat suitability and the con-
tagion value, in which the highest probability of habitat suitabil-
ity occurred at intermediate levels of vegetation interspersion 
(contagion indices from 41–47). The 30  m scaled quail brood 
model had the most variable uncertainty based on variable 
contributions (Table 2). However, the top contributing variable 
(distance from walk‐in only roads) suggested that probability of 
habitat suitability decreased as distance from walk‐in only roads 
increased (Appendix S7). Based on Jenks natural breaks classi-
fication, areas that were given high HSI values had the lowest 
coverage across our study area for both species and across both 
grains (Table 1).

3.2 | Comparison of habitat suitability indices for 
brooding and nonbrooding adults

Occurrence locations from 76 bobwhite and 42 scaled quail non-
brooding adults were used to create first‐order habitat suitability 
indices for nonbrooding individuals. Average variable contribu-
tion to model accuracy gain and idiosyncratic relationships with 
probability of habitat suitability and environmental covariates for 
nonbrooding models can be found in Appendices S8–S12. There 
were no differences in the model performance of regularization 
multiplier values for 2 m (p  =  0.51) nonbrooding bobwhite first‐
order models, and thus, a regularization multiplier value of 1 was 
used. Differences in regularization multiplier values existed for 
the 30 m bobwhite (p  =  0.04), 2  m scaled quail (p  =  0.02), and 
the 30 m scaled quail (p = 0.01) first‐order nonbrooding models, 
and regularization multiplier values of 4, 6, and 1.5 were used for 
these models, respectively. Based on average test omission errors, 

TA B L E  2  Variables used in the final first‐order Maxent models 
for northern bobwhite (Colinus virginianus) and scaled quail 
(Callipepla squamata) broods across two grains during the breeding 
seasons from 2013 to 2014 at Beaver River WMA, Oklahoma, USA

Species
Grain 
(m) Variable

Contribution 
(%)a

Northern 
bobwhite

2 Contagion index 43.9

Distance from primary WMA 
roads (m)

33.3

Distance from surface water 
(m)

16.7

Distance from oil/gas pad (m) 6.1

30 Distance from county roads 
(m)

72

Edge density (m/ha) 12.2

Distance from ATV only roads 
(m)

9.2

Distance from primary WMA 
roads (m)

6.6

Scaled quail 2 Distance from surface water 
(m)

53.2

Coefficient of variation in 
mixed shrub patch size

25.6

Distance from county roads 
(m)

12.1

Distance from ATV only roads 
(m)

6.4

Contagion index 2.7

30 Distance from walk‐in only 
roads (m)

29.5

Coefficient of variation in 
mixed shrub patch size

26.7

Distance from surface water 
(m)

17

Distance from ATV only roads 
(m)

11

Distance from county roads 
(m)

10.4

Edge density (m/ha) 5.4

aContribution represents the average variable contribution to model 
accuracy gain for MAXENT models. 
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first‐order models for nonbrooding adults performed well for both 
bobwhite (2 m = 0.09, 30 m = 0.10) and scaled quail (2 m = 0.08, 
30 m = 0.12).

A comparison of first‐order models for brooding versus non-
brooding bobwhite adults indicated relative rank values of 0.64 and 
0.69 for the 2 m and 30 m models, respectively. For scaled quail, 
relative rank values of 0.80 and 0.87 were estimated for 2 m and 
30 m models, respectively. Based on null distributions of relative 
rank values, all four empirical relative ranks comparing the similarity 
between brooding and nonbrooding habitat suitability models were 
statistically significant (Figure 2), indicating a divergence in space 
use by brooding adults compared to nonbrooding adults. However, 
bobwhite models indicated a much higher pattern of habitat use 
divergence by brooding adults, in which the empirical relative rank 
value was 0.27 units away from a null distribution for the 2 m models 
and 0.24 units away from the null distribution for the 30 m models 
(Figure 2). Conversely, empirical relative rank values for scaled quail 
models were 0.14 units away from the null distribution for 2 m mod-
els and 0.06 units away for the 30 m models (Figure 2). This suggests 
that there was a greater amount of similarity in space use between 
brooding and nonbrooding adults for scaled quail when compared 
to bobwhite.

3.3 | Chick survival

Our baseline temporal survival models suggested no support for tem-
poral survival trends for bobwhite chicks (null model AICc = 161.21, 
w  =  0.28) and no support for temporal survival trends for scaled 
quail chicks (null model AICc = 171.59, w = 0.39). Overdispersion fac-
tors calculated from these baseline temporal models suggested that 
there was variance inflation due to a lack of independence between 
individuals for scaled quail chicks (ĉ = 1.54), whereas underdisper-
sion and independence were evident for bobwhite chicks (ĉ = 0.52).

The most parsimonious survival model for bobwhite chicks was 
the univariate model with the variable representing the percentage 
of high habitat suitability values included within a brood's home 
range at the 30 m grain (β = 0.02, SE = 0.006, w = 0.41; Table 3). 
Though three other models had a ΔQAICc < 2, only the 30 m high 
suitability variable was considered significant based on confidence 
intervals not overlapping 0. Based on this model, daily survival rate 
(DSR) for bobwhite chicks was 0.9917 (SE = 0.0017), which extrap-
olated to an overall 20‐day survival rate of 0.8474 (SE  =  0.0298). 
The beta estimate for 30 m high suitability values in this model indi-
cated an increase in 20‐day survival rates for bobwhite chicks when 
a brood's home range had greater amounts of high HSI (Figure 3). 

F I G U R E  2  Null distributions of the relative rank metrics for northern bobwhite (Colinus virginianus; 2 m grain [A] and 30 m grain [B]) and 
scaled quail (Callipepla squamata; 2 m grain [C] and 30 m grain [D]) created from 100 pseudoreplications of Maxent models that compared 
randomly selected locations from brooding and nonbrooding adult locations collected during the breeding seasons from 2013 to 2014 at 
Beaver River WMA, Oklahoma, USA. Empirical relative ranks estimated from habitat suitability indices used in our analyses are indicated 
with a black arrow
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The 20‐day survival rate for bobwhite chicks was estimated as 0.91 
(SE = 0.03) when a brood's home range was composed of 100% of 
high habitat suitability areas and decreased to 0.60 (SE = 0.11) when 
it was comprised of 0%.

For scaled quail chick survival, we did not detect any direct 
impacts of space use on chick survival as the null model was the 
best supported model (w = 0.20; Table 4). Though eight univariate 
models had ΔQAICc < 2, all β coefficients for these parameters had 
confidence intervals overlapping 0. The overall DSR for scaled quail 
chicks was 0.9747 (SE = 0.0059), and the overall 20‐day survival rate 
(0.5993, SE = 0.0720) for scaled quail chicks was statistically lower 
than that of bobwhite chicks.

3.4 | Adult survival

A total of 187 bobwhite (39 brooding adults) and 114 scaled quail (31 
brooding adults) were included in our adult survival analyses. The 
most parsimonious model for the northern bobwhite adult survival 
analysis indicated the reproductive status (i.e., either brooding or 
nonbrooding) of adults influenced survival probabilities (β = −1.38, 

SE = 0.31; Table 5). The estimated DSR was 0.9839 (SE = 0.0038) 
for brooding adults and was 0.9959 (SE  =  0.0008) for nonbrood-
ing adults. This resulted in weekly survival probabilities of 0.9716 
(SE = 0.0054) and 0.8928 (SE = 0.0006) for nonbrooding and brood-
ing adults, respectively (Figure 4). Conversely, there was no support 
for the reproductive status of an adult influencing adult survival for 
scaled quail as the null model was our best supported model (Table 5). 
The univariate model for reproductive status was included within a 
ΔAICc < 2. However, the β coefficient had confidence intervals that 
overlapped 0 (β = −0.65, SE = 0.59), and thus, this effect was not con-
sidered statistically significant (Figure 4). Based on the null model, 
the estimated DSR was 0.9976 (SE = 0.0007) for scaled quail which 
resulted in a weekly survival probability of 0.9832 (SE = 0.0048).

4  | DISCUSSION

It is evident based on our results that adaptive decisions made 
by brooding adults can directly influence the survival of individ-
ual chicks, yet may come at a cost of increased parental risk for 

Model QAICc ΔQAICc wb Model likelihood Kc Qdeviance

30 m high 
probabilityd

300.09 0.00 0.36 1.00 2 296.09

30 m high prob-
ability + 2 m low 
probability

301.56 1.46 0.17 0.48 3 295.54

30 m high prob-
ability + 30 m low 
probability

301.75 1.66 0.16 0.44 3 295.73

PC2e + 30 m high 
probability

301.86 1.77 0.15 0.41 3 295.84

Linear time 305.46 5.36 0.03 0.07 2 301.45

Null 305.50 5.41 0.02 0.07 1 303.50

2 m high probability 305.72 5.62 0.02 0.06 2 301.71

2 m low probability 306.24 6.15 0.02 0.05 2 302.23

Quadratic time 306.32 6.23 0.02 0.04 2 302.31

PC1e 306.79 6.69 0.01 0.04 2 302.78

Home range size 
(ha)

307.16 7.07 0.01 0.03 2 303.15

PC2 307.31 7.21 0.01 0.03 2 303.30

Ordinal date of 
hatch

307.40 7.31 0.01 0.03 2 303.39

30 m low probability 307.47 7.38 0.01 0.03 2 303.46

aModel performance was determined based on the lowest quasi‐Akaike's information criterion 
value corrected for small sample sizes (QAICc). The model‐building strategy was based on guide-
lines created by Hosmer et al. (2013). 
bModel weight. 
cNumber of parameters. 
dHigh and low probability refer to metrics representing the percent of a brood's home range that is 
made up of high and low probability of habitat suitability values as described in Table 1. 
ePC1 represented hot dry days, while PC2 represented cooler and more humid days with precipita-
tion events (Appendix S2). 

TA B L E  3  Best performing modelsa  
from the nest survival model in Program 
MARK estimating northern bobwhite 
(Colinus virginianus) chick survival from 
2013 to 2014 at Beaver River WMA, 
Oklahoma, USA
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some species. Specifically, bobwhite chick survival was directly 
influenced by parental behavioral modifications that increased the 
amount of high HSIs within their home range, yet parental risk was 
greater for adults actively brooding. This likely represents a trade‐
off between parental risk and offspring survival, in which bobwhite 
adults are selecting for areas that may directly influence chick sur-
vival at the risk to their own survival. Our results indicate that both 
bobwhite and scaled quail were behaviorally modifying their space 
use during the brood‐rearing stage when compared to nonbrooding 
adult space use. Such behavioral adaptations during the brooding 
period are common in other Galliformes (Dinkins, Conover, Kirol, & 
Beck, 2012; Gibson et al., 2017; Mangelinckx et al., 2018; Zhao et 
al., 2018), and previous research has indicated an evident pattern 
of altered space use for brooding bobwhite (Carroll et al., 2015). 
However, the degree to which individuals modify their space use 
during this period can vary across space, time, and species. For in-
stance, we found a greater degree of altered space use for brood-
ing bobwhite when compared to brooding scaled quail (Figure 2). 
Though life‐history theory would suggest that both species should 
be expected to incur a cost due to these behavioral changes, we 
observed clear divergent rates of alternative reproductive strat-
egies between species during the same time period (Davis et al., 
2017), suggesting that interspecific differences in brooding strate-
gies may be expected in sympatric species. Such relationships offer 

important insight into the conservation of these species during a 
vulnerable and important life‐history stage.

Life‐history theory suggests that there should be a trade‐off 
between parental risk and offspring success for short‐lived species 
(Ghalambor & Martin, 2001; Stearns, 1976). However, direct off-
spring success to such behavioral modifications from attending par-
ents may be hard to quantify due to logistic constraints associated 
with marking individuals at such a vulnerable period, particularly for 
precocial species. By integrating both chick survival and adult sur-
vival simultaneously into our analyses, we attempted to eliminate 
any unobserved components of such a risk‐to‐reproduction trade‐
off associated with these species. Such unobserved components 
have been posited as a potential source of ambiguity associated with 
studies assessing how adaptive habitat selection influences repro-
ductive success and overall fitness (Bloom et al., 2013; Uboni et al., 
2017). Though we attempted to eliminate these unobserved com-
ponents (by assessing chick and adult survival simultaneously), our 
study suggests the potential for continued ambiguity in this relation-
ship across sympatric species. This is because we observed a direct 
influence of parental habitat selection on bobwhite chick survival at 
the cost of decreased survival for the attendant parents, whereas no 
relationships were detected for scaled quail. Though a smaller sam-
ple size associated with scaled quail chicks and adults may have pre-
cluded the detection of such a relationship, other possibilities exist 
that could explain this null relationship. A lack of significant effects 
of brooding on parental fitness may occur if higher‐quality individ-
uals (i.e., those with more experience or genetic benefits) are inher-
ently more likely to engage in reproductive activities (Arnold, Roche, 
Devries, & Howerter, 2012; Cam, Link, Cooch, Monnat, & Danchin, 
2002) or if a species is more likely to allocate resources for self‐
maintenance. For instance, it has been suggested that scaled quail 
have adapted to arid and semi‐arid regions (such as our study area) 
by allocating more resources toward self‐maintenance rather than 
toward reproductive output whereas the opposite is true for bob-
white because they evolved under more mesic conditions (Giuliano, 
Patiño, & Lutz, 1998). Likewise, the null relationship between HSI 
and scaled quail chick survival could be driven by relationships in 
which environmental conditions influencing both species' occur-
rence and species' survival are disparate from the conditions only in-
fluencing a species' occurrence (Bacon et al., 2016; Ficetola, Miaud, 
Pompanon, & Taberlet, 2008). Furthermore, this null relationship 
could be related to the spatial scales that were used in our analy-
ses (Bloom et al., 2013), though we attempted to account for this 
by using two grain sizes representing fine (2 m) and coarse (30 m) 
habitat configurations.

The scale at which organisms respond to environmental condi-
tions and/or resources should vary across space and time if habitat 
selection is an adaptive process (Bloom et al., 2013; Wiens, 1989). 
Furthermore, variation in the scale at which organisms select hab-
itat will also change during different life‐history stages (Addicott 
et  al., 1987; Chalfoun & Martin, 2007; McGarigal et al., 2016) 
which could potentially decouple the link between space use and 
demographic parameters (Chalfoun & Martin, 2007; Robertson 

F I G U R E  3  The 20‐day survival probability of northern 
bobwhite (Colinus virginianus) chicks as a function of the proportion 
of a brood's home range containing first‐order derived areas of 
high habitat suitabilitya at the 30 m grain during the breeding 
seasons from 2013 to 2014 at Beaver River WMA, Oklahoma, 
USA. The solid line indicates survival probabilities, while the gray 
area indicates 95% confidence intervalsb. aHabitat suitability was 
estimated through the Maxent algorithm. bThe delta method was 
used to calculate 20‐day survival probabilities and confidence 
intervals from daily survival rates estimated from Program MARK
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& Hutto, 2006). For instance, if the second‐order selection (i.e., 
selection of home ranges [Johnson, 1980]) for an individual is 
constrained during a specific life‐history stage such as brood rear-
ing (Carroll et al., 2015) due to decreased movement abilities or 
physiological constraints, a brood‐rearing adult may not be able to 

select certain areas on a landscape that increases brood survival. 
We found that the brooding habitat selection–fitness relation-
ship is dynamic across spatial grains, as the relationship between 
bobwhite chick survival and HSI was only significant at the 30 m 
grain. In this study, we used an index of habitat suitability derived 

Model QAICc ΔQAICc wb Model likelihood Kc Qdeviance

Null 171.59 0.00 0.20 1.00 1 169.58

30 m low 
probability

172.62 1.03 0.12 0.60 2 168.61

Ordinal date 
of hatch

173.27 1.70 0.08 0.43 2 169.26

Home range 
size (ha)

173.36 1.77 0.08 0.41 2 169.35

2 m low 
probability

173.36 1.77 0.08 0.41 2 169.35

2 m high 
probability

173.46 1.90 0.08 0.39 2 169.47

Quadratic 
time

173.50 1.91 0.08 0.38 2 169.49

PC2e 173.56 1.97 0.07 0.37 2 169.55

Linear time 173.58 1.99 0.07 0.37 2 169.57

PC1e 173.59 2.00 0.07 0.37 2 169.58

30 m high 
probability

173.59 2.01 0.07 0.37 2 169.58

aModel performance was determined based on the lowest quasi‐Akaike's information criterion 
value corrected for small sample sizes (QAICc). The model‐building strategy was based on guide-
lines created by Hosmer et al. (2013). 
bModel weight. 
cNumber of parameters. 
dHigh and low probability refer to metrics representing the percent of a brood's home range that is 
made up of high and low probability of habitat suitability values as described in Table 1. 
ePC1 represented hot dry days, while PC2 represented cooler and more humid days with precipita-
tion events (Appendix S2). 

TA B L E  4  Best performing modelsa  
from the nest survival model in Program 
MARK estimating scaled quail (Callipepla 
squamata) chick survival from 2013 to 
2014 at Beaver River WMA, Oklahoma, 
USA

Model AICc ΔAICc wb Model likelihood Kc Deviance

Northern bobwhite (Colinus virginianus)

Brooding statusd 454.44 0.00 0.99 1.00 2 450.44

Null 469.86 15.42 <0.01 <0.01 1 467.86

Time 470.58 16.14 <0.01 <0.01 2 466.58

Time2 470.94 16.50 0.00 0.00 2 466.94

Scaled quail (Callipepla squamata)

Null 160.45 0.00 0.37 1.00 1 158.45

Brooding statusd 161.28 0.83 0.25 0.66 2 157.28

Time2 161.79 1.34 0.19 0.51 2 157.79

Time 161.79 1.35 0.19 0.51 2 157.79

aModel performance was determined based on the lowest Akaike's information criterion value cor-
rected for small sample sizes (AICc). 
bModel weight. 
cNumber of parameters. 
dBrooding status indicates whether an adult individual was actively brooding during this period. 

TA B L E  5  Best performing modelsa  
from nest survival models in Program 
MARK estimating survival of brooding and 
nonbrooding northern bobwhite (Colinus 
virginianus) and scaled quail adults from 
June 23–October 20 and June 9–October 
12, respectively, during the 2013–2014 
breeding seasons at Beaver River WMA, 
Oklahoma, USA
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from occurrence locations (through radiotelemetry) and a Maxent 
algorithm to determine how intraspecific space‐use decisions of 
brooding adults influenced chick survival relative to what was 
available at the landscape level. Though this may not be a direct 
measure of habitat quality per se (such as a quantified measure 
of food resources), this metric does predict the probability of a 
target species occurring in an area based on the environmental 
conditions considered in a model and is commonly used as a tool 
for conservation purposes (Guisan & Thuiller, 2005). However, 
the relationship between habitat suitability and demographic pa-
rameters related to population persistence is often complicated 
and disparate across species, space, and time (Bacon et al., 2016). 
Specifically, our results suggest that the relationship between 
habitat suitability and chick survival can vary across species and 
spatial scale. Therefore, if such indices are to be used as a tool 
for conservation efforts, single‐scale suitability indices may be too 
simple and miss such complex relationships (Bacon et al., 2016).

Our research illustrates the importance in understanding the 
complex relationships between parental space use, habitat suitabil-
ity, and how these interact to influence chick and attending paren-
tal survival. It is evident that these relationships exist in a complex 
state that can be species‐specific, spatially variable, and potentially 
influenced by life‐history strategies. Indeed, for bobwhite in our 
study, there was a clear cost of parental attendance in exchange 
for offspring survival, which can help explain other aspects of their 
life‐history strategies. For example, brood amalgamation on our 
study site was more common in bobwhite broods than scaled quail 

broods at the chick life stage (Orange, 2015). Such breeding behav-
ioral strategies have been postulated to offer survival benefits for 
the offspring (Dahlgren, Messmer, & Koons, 2010; Eadie, Kehoe, & 
Nudds, 1988; Lott & Mastrup, 1999), yet could have implications 
into understanding a link between demographics and differential 
habitat selection. Furthermore, when assessing demographic pa-
rameters such as precocial chick survival, these relationships are 
hierarchical in that it is ultimately tied to the brooding adult's be-
havioral adaptations. Evidence emphasizes the importance of chick 
survival for population persistence of r‐selected species (Burger, 
Dailey, Kurzejeski, & Ryan, 1995; Colwell et al., 2007; Ludwig, 
Aebischer, Bubb, Roos, & Baines, 2018; Sandercock et al., 2008; 
Terhune, Sission, Grand, & Stribling, 2007), and if concepts such 
as habitat selection and habitat suitability are to be used for con-
servation purposes (Morrison et al., 2012), efforts to understand 
simultaneous trade‐offs between offspring survival, adaptive habi-
tat selection, and parental risk must be considered.
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