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Abstract

Introduction: Alzheimer’s disease (AD) is associated with altered metabolites. This

study aimed to determine the validity of using circulating metabolites to differentiate

AD from other dementias.

Methods: Blood metabolites were measured in three data sets. Data set 1 (controls,

27; AD, 28) was used for analyzing differential metabolites. Data set 2 (controls, 93;

AD, 92) was used to establish a diagnostic AD model with use of a metabolite panel.

The model was applied to Data set 3 (controls, 76; AD, 76; other dementias, 205) to

verify its capacity for differentiating AD from other dementias.

Results:Data set 1 revealed 7 upregulated and 77 downregulatedmetabolites. InData

set 2, a panel of 11metabolites was included in amodel that could distinguish AD from

controls. In Data set 3, this panel was used to successfully differentiate AD from other

dementias.

Discussion: This study revealed an AD-specific panel of 11 metabolites that may be

used for AD diagnosis.
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1 INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent neurodegenerative

dementia. AD is associated with a considerable social and economic

burden in countries with aging populations.1 Currently, biomarkers in

cerebrospinal fluid (CSF) andneuroimaging are themostwell-validated

AD biomarkers in routine clinical settings.2 However, these diagnostic

biomarkers are invasive, time-consuming, and expensive, and are thus

not ideal first-line approaches for screening large numbers of candi-

date AD patients. In addition, AD and other types of dementia, such

as vascular dementia (VaD), Parkinson disease dementia (PDD), behav-
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ioral variant frontotemporal dementia (bvFTD), and dementia with

Lewy body (DLB) share overlapping clinical manifestations, pathology,

and biomarkers, which often result in difficulties in clinical diagnosis.3

Therefore, thedevelopmentof blood-basedbiomarkers that enable the

identification and differentiation of AD fromother types of dementia is

required.

AD is increasingly recognized as a heterogeneous syndrome under-

pinned by genetic and environmental factors. Although the accu-

mulation of amyloid beta (Aβ) and tau in the brain is considered

the core pathologic hallmark of AD,4 other pathophysiological path-

ways, such as oxidative stress,5 inflammation,6 lipid metabolism,7 and
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mitochondrial dysfunction8 have been implicated in AD pathogene-

sis. With anti-amyloid antibody therapies failing to improve the cogni-

tive function of patients with AD,9 the identification of alternative and

modifiable biological pathways is an urgent priority. Crucially, identi-

fying novel biological pathways may reveal circulating biomarkers for

risk prediction and early diagnosis. Therefore, an extensive screening

of circulating biomarkers may further enhance our understanding of

AD pathogenesis and risk prediction.

Metabolites are small molecules involved in biochemical pathways

and include lipids, amino acids, peptides, nucleic acids, and organic

acids. These metabolites are the products of complex biological pro-

cesses in cells, tissues, or whole organisms, and are thus potential can-

didates that may reflect disease phenotypes.10 Metabolomics is a pro-

filingmethod for the collective quantification ofmetabolites, which has

emerged as a powerful tool for the discovery of novel biomarkers and

contributed to our understanding of the mechanistic pathways under-

pinning AD. Previous metabolomics studies have reported peripheral

changes inmetabolites linked to AD, highlighting the potential of blood

metabolomics to elucidate the pathogenic mechanisms and identify

novel biomarkers of AD.11–13 Furthermore, metabolite panels consist-

ing of multifactorial biochemical pathways are a promising tool for the

accurate diagnosis of AD.14–19 Although these studies highlight spe-

cific metabolic underpinnings of AD, somemetabolomics findings have

failed to be replicated.

To ensure the potential clinical application of our findings, we

recruited participants in strict accordance with CSF biomarkers (phos-

phorylated tau (P-tau)/Aβ42 and Aβ42), which enabled the maxi-

mization of diagnostic accuracy for AD and exclusion of preclinical

AD participants from controls. In addition, we employed ultra-high-

performance liquid chromatography-high resolution mass spectrome-

try (UPLC-HRMS) and recruited three separate data sets to validate

the results. This study aimed to evaluate whether (1) blood-based

metabolites differed inAD, and (2) if they could be used to differentiate

AD from cognitively normal controls and participants with other types

of dementia.

2 METHODS

2.1 Subjects

Three data setswere acquired in this study. Data set 1was used to ana-

lyze the differential metabolites in a Beijing center (n = 55; controls,

27; AD, 28). Data to confirm the differential metabolites and develop

the diagnostic model (Data set 2) were collected from centers in the

provinces of Shandong, Henan, and Guangxi (n= 185, controls, 92; AD,

93). Data for the application of the model (Data set 3) were acquired

from a Beijing center (n = 357; control, 76; AD, 76; VaD, 50; PDD, 52;

bvFTD, 52; DLB, 51). Diagnoses of AD were based on the criteria pub-

lished by the National Institute on Aging and Alzheimer’s Association

(NIA-AA).2 A cutoff value of 0.14 for CSF P-tau/Aβ42 was used to dif-

ferentiate between subjects with AD and normal controls. This value

was calculated based on our previously published data20 and is con-

RESEARCH INCONTEXT

1. Systematic Review: We searched PubMed using the

terms “Alzheimer’s disease,” “dementia,” “metabolites,”

and “biomarkers” since January 1, 1990. However,

whether metabolites can differentiate Alzheimer’s dis-

ease (AD) from other types of dementias has not been

addressed.

2. Interpretation: AD and other dementias may have over-

lapping clinical manifestations, pathology, and biomark-

ers, often resulting in difficulties in clinical diagnosis.

We aimed to determine metabolites as an AD-specific

biomarker. A panel of 11 metabolites successfully dif-

ferentiated AD from controls and other dementias, such

as vascular dementia (VaD), Parkinson disease demen-

tia (PDD), behavioral variant frontotemporal dementia

(bvFTD), and dementia with Lew body (DLB). Our find-

ing may provide a minimally invasive and widely available

AD-specific biomarker.

3. Future Directions: The clinical application of the 11-

metabolite panel for screening AD will be strengthened

by the prospective longitudinal studies. In addition, more

samples in international multiple centers will provide

powerful evidence before extensive clinic use.

sistent with that reported in other studies.21 Based on the amyloid,

tau, and neurodegeneration (ATN) framework, lowCSFAβ42 is the key
“Alzheimer’s pathological change.”22 Therefore, we used a reported

CSF Aβ42 cutoff of 500 pg/mL as another inclusion criterion.23 Diag-

noses of VaD,24 PDD,25 bvFTD,26 and DLB27 were based on previ-

ously published criteria. To avoid the influence of metabolic diseases,

weexcluded individualswithobesity, diabetes, andothermetabolic dis-

eases, such as hyperlipidemia, hyperhomocysteinemia, and abnormal-

ity of liver and renal function. Written informed consent was obtained

from all participants or their legal guardians. This study was approved

by the institutional ethics board of Xuanwu Hospital, Capital Medical

University.

2.2 CSF collection and measurements

Aβ42, total tau (T-tau), and P-tau were measured in CSF to help

diagnose AD. CSF samples were collected according to international

guidelines.28 Briefly, subjects were placed in the left lateral position

in the morning following a 12-h fast when the lumbar puncture was

performed. The L3-L5 intervertebral disc spaces were chosen as the

site of puncture. Ten-milliliter samples of CSF were collected with 20-

gauge atraumatic needles and centrifugated at 2000 × g for 10 min at

room temperature. Aβ42, T-tau, andP-tauweremeasured according to

a published protocol.29
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2.3 Blood sample collection and preparation

Blood samples of 10 mL volume were collected from all enrolled indi-

viduals in the morning after a 12-hour fast. Each serum sample was

divided into two parts to extract polar metabolites for untargeted

metabolomic profiling analysis and non-polar lipidmolecules for untar-

geted lipidomic analysis. Briefly, 100 μL aliquots of polar metabo-

lite extraction were deproteinized using 400 μL methanol-acetonitrile

solutions containingmultiple isotope-labeled compounds as extraction

internal standards. The resultant supernatants were transferred into

a polypropylene 96-well plate and dried in a CentriVap Concentrator

(LabconcoCorporation, KansasCity,MO,USA). The extractswere then

dissolved in a methanol-water mixture for metabolomic analyses. The

solution was divided into three fractions for different analytical profil-

ing methods, as described below. For non-polar lipid extraction, serum

lipidomes were extracted using liquid-liquid partition with methanol

and methyl tert-butyl ether from 50 μL aliquots of serum samples.30

The upper layer extracts were transferred into a polypropylene tube

and dried under a vacuum in a CentriVap Concentrator. The lipidome

extractswere then redissolved in a solution containing acetonitrile and

isopropanol for lipidomic analyses.

2.4 Metabolomic analysis

Samples were analyzed using the meta-Phenotype high-definition

metabolomic platform, in which five complementary analytical meth-

ods based on UPLC-HRMS were employed. Untargeted metabolomic

analyses were conducted on an Ultimate 3000 UHPLC system cou-

pled to a Q Exactive quadrupole Orbitrap mass spectrometer (Thermo

Scientific, San Jose, CA, USA).31 Briefly, the first fraction of the polar

metabolite extract was analyzed on an Acquity HSS C18 column

(Waters Corporation, Milford, MA, USA) with 0.1% formic acid-water

and 0.1% formic acid-acetonitrile as the binary mobile phase, and then

detected under positive electrospray mode (Figure S1A). The second

fraction was analyzed on an Acquity BEH C18 column (Waters Cor-

poration) column and eluted with a mixture of water and acetoni-

trile/methanol containing 5 mM ammonium bicarbonate and detected

under negative electrospray mode (Figure S1B). The third polar frac-

tion was measured by hydrophilic interaction chromatography on an

Acuity BEHAmide column (Waters Corporation) and detected in nega-

tive electrospray ionization mode (Figure S1C), in which binary mobile

phases consisting of 10% water in acetonitrile and 50% acetonitrile in

water with 10 mM ammonium acetate as buffer salt were employed.

Untargeted lipidomic analyses were performed on the same analyti-

cal instrument, which was operated under positive/negative polarity

switching mode for lipid molecule detection. Chromatographic sepa-

ration of the lipidome was achieved on an Accucore C30 core–shell

column (Thermo Scientific). A binary mobile phase consisting of 60%

acetonitrile in water and 10% acetonitrile in isopropanol containing

10mMammonium formate and 0.1% formatewas utilized to elute lipid

molecules (Figure S1D and S1E). In all the employed profiling meth-

ods, full scan mass spectra data under 70,000 full width half maximum

(FWHM) resolution and the top seven or 10 full-scan data-dependent

MS/MS spectra data were acquired with XCalibur software (Thermo

Scientific).

2.5 Metabolomic data processing

For polar metabolites, metabolic peak extraction was analyzed using

Compound Discoverer 2.1 software (Thermo Scientific) for metabo-

lite peak extraction, and further structural annotation through search-

ing against a local Human Metabolome Database (HMDB)32 and a local

proprietary MS/MS spectrum library created using authentic stan-

dards as well as online mzCloud library (www.mzcloud.org). Multiple

chemical details, such as the exact mass of precursors, isotopic pat-

tern fit scores, MS/MS spectra similarity, and retention time were

included in the structural annotation of metabolites. An untargeted

lipidomic data process including peak picking and lipid identification

was executed by LipidSearch software (Thermo Scientific), where the

acquired MS/MS spectra were searched against in silico predicted

spectra of diverse endogenous lipid classes. The proposed identifica-

tion results were further manually checked individually to eliminate

false positives. The peak areas under the curve were extracted as rel-

ative quantitative information for annotated metabolites and lipids

using TraceFinder software (Thermo Scientific), and peak integration

results were checked manually by well-trained technicians to guaran-

tee accuracy. Finally, the resultant data set from each measurement

was normalized to total peak area sum, respectively, and then merged,

and trimmed before statistical analysis. Multivariate analysis includ-

ing principal component analysis and orthogonal partial least square-

discriminant analysis were conducted with SIMCA-P software (Sar-

torius Umetrics, Germany). Other univariate analyses including inde-

pendent sample t-test, P-value false discovery rate (FDR) adjustments,

metabolic enrichment analysis, and pathway analysis were conducted

on theMetaboAnalyst website.33

2.6 Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics for Win-

dows, version 22.0 (IBMCorp., Armonk, NY, USA) and GraphPad Prism

8 (GraphPad Software, San Diego, CA, USA). The data from each data

set were analyzed independently. Group differences in categorical

data, such as sex, clinical subgroups, and apolipoprotein E (APOE) ε4
carrier distributions, were analyzed using the χ2 test. Group differ-

ences in numerical data, such as biomarker levels, were analyzed using

Welch t-test. In Data sets 2 and 3, the predicted valueswere calculated

using a binary logistic regression model with age, sex, education years,

or APOE ε4 status as covariates, which were subsequently used for

the receiver-operating characteristic (ROC) curve analysis. The multi-

collinearity between each metabolite was estimated by analyzing tol-

erances, variance inflation factors (VIFs), eigenvalues, and condition

indices. All testswere two tailed, and the level of statistical significance

was set at P< .05.

http://www.mzcloud.org
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TABLE 1 Characteristics of participants in data sets 1, 2, and 3

A. Characteristics of participants in Data set 1

Characteristic

Total Sample

(n= 55)

Controls

(n= 27)

AD

(n= 28)

Age, mean (SD) 67.7 (5.8) 67.3 (5.3) 68.2 (6.3)

Education year, mean (SD), 8.4 (2.6) 8.6 (2.7) 8.3 (2.5)

Women, no. (%) 28 (59.1) 14 (51.9) 14 (50.0)

APOE ε4 positive (%) 16 (29.1) 5 (18.5) 11 (39.3)*

MMSE score (SD) 25.1 (4.6) 29.2 (0.6) 22.2 (3.2)*

Aβ42 (pg/ mL) 545.8 (220.9) 734.6 (144.5) 363.7 (86.3)*

T-tau (pg/ mL) 501.5 (221.7) 331.7 (95.9) 665.3 (181.0)*

P-tau (pg/ mL) 88.8 (50.9) 55.4 (23.3) 121.1 (49.6)*

B. Characteristics of participants in Data set 2

Characteristic

Total sample

(n= 185)

Controls

(n= 92)

AD

(n= 93)

Age, mean (SD) 68.2 (7.1) 67.5 (7.5) 68.9 (6.8)

Education year, mean (SD) 8.9 (2.3) 9.3 (2.3) 8.7 (2.3)

Women, no. (%) 91 (49.2) 45 (48.9) 46 (49.5)

APOE ε4 positive (%) 55 (29.7) 17 (18.5) 38 (40.9)*

MMSE score (SD) 24.9 (4.5) 29.0 (0.6) 20.1 (2.7)*

Aβ42 (pg/ mL) 540.1 (198.4) 703.2 (140.2) 387.8 (80.1)*

T-tau (pg/mL) 471.3 (208.8) 326.5 (93.4) 614.6 (191.9)*

P-tau (pg/ mL) 89.7 (53.7) 53.4 (24.7) 125.5 (50.4)*

C. Characteristics of participants in Data set 3

Characteristic

Total Sample

(n= 357)

Controls

(n= 76)

AD

(n= 76)

VaD

(n= 50)

PDD

(n= 52)

bvFTD

(n= 52)

DLB

(n= 51)

Age, mean (SD) 67.5 (5.9) 68.0 (5.9) 68.6 (5.1) 67.2 (6.4) 68.4 (6.8) 66.5 (5.1) 65.9 (5.9)

Education year, mean (SD) 9.3 (2.2) 9.5 (2.2) 8.3 (2.4) 9.9 (2.2) 9.1 (1.8) 10.2 (2.1) 9.3 (1.9)

Women, no. (%) 179 (50.1) 39 (51.3) 39 (51.3) 23 (46.0) 25 (48.1) 27 (51.9) 26 (51.0)

APOE ε4 positive (%) 89 (24.9) 13 (18.4) 31 (40.8) * 13 (26.0) * 10 (19.2) 11 (21.2) 10 (19.6)

MMSE score (SD) 22.3 (4.1) 29.0 (0.6) 21.1 (3.1) * 19.8 (2.4) * 19.9 (2.3) * 20.4 (1.7) * 20.8 (2.0) *

Aβ42 (pg/ mL) 573.4 (192.7) 712.3 (163.5) 375.4 (80.1) * 602.8 (158.9) * 638.8 (185.3) * 550.5 (158.2) * 554.7 (156.7) *

T-tau (pg/ mL) 443.2 (166.6) 330.7 (96.9) 620.9 (205.7) * 395.0 (89.9) * 375.6 (88.6) * 467.4 (112.4) * 437.1 (127.7) *

P-tau (pg/ mL) 65.4 (39.4) 47.0 (12.3) 118.0 (54.5) * 49.6 (10.1) 47.5 (13.3) 49.9 (12.3) 48.3 (11.9)

Note: The values of age, estimated year prior to onset andMMSE are shown asmean (SD).

Abbreviations: AD, Alzheimer’s disease; VaD, vascular dementia; PDD, Parkinson disease dementia; bvFTD, behavioral variant frontotemporal dementia;

DLB, dementia with Lewy body; APOE ε4, apolipoprotein ε4;MMSE,Mini-Mental State Examination. PSEN, presenilin; SD, standard deviation

*P< .05 comparedwith controls.

3 RESULTS

3.1 Participant characteristics

Three independent data sets were included. Table 1 lists the char-

acteristics of the study subjects. In all three data sets, no signifi-

cant differences were observed in age and male/female ratio between

the AD and control groups. Significant differences were observed

in the percentage of APOE ε4, and Mini-Mental State Examination

(MMSE) scores, CSF Aβ42, T-tau, and P-tau between subjects with

AD and the control groups in Data sets 1, 2, and 3 (P < .05). The

percentage of APOE ε4 was also increased in patients with VaD in

Dataset 3 (P < .05). Levels of Aβ42 and T-tau in VaD, PDD, FTD,

and DLB were slightly decreased or increased compared to controls

(P < .05). The body mass index (BMI), fasting blood glucose, HbA1c,

lipids, homocysteine (HCY), folic acid, and vitamin B12 levels; and

liver and renal function were not significantly different among groups

(Table S1, P> .05).
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F IGURE 1 Heatmap after hierarchical clustering of the 7 upregulated and 77 downregulatedmetabolites in Data set 1. Abbreviations: AD,
Alzheimer’s disease; NC, normal control. All P’s< .05 for eachmetabolite compared between AD and control

3.2 Differential analysis of metabolites

A differential analysis of metabolites was performed in Data set

1. The quality control experiments revealed that the metabolite

data obtained in the project were of excellent quality and satis-

fied the technical requirements for further statistical analysis (Fig-

ure S2). The results revealed 847 metabolites in the blood of sub-

jects with AD and controls, which could be classified into 23 cate-

gories (Figure S3A). Student t-test with FDR-controlling procedures

revealed 77 downregulated and 7 upregulated metabolites in the

AD group (Figure 1 and Figure S3B). The top 10 downregulated and

7 upregulated metabolites (downregulated: hexanoylcarnitine AcCa

(6:0), 4-decenoylcarnitine AcCa (10:1), propionylcarnitine AcCa (3:0),

tetradecadiencarnitine AcCa (14:2), piperine, decanoylcarnitine AcCa

(10:0), octanoylcarnitine AcCa (8:0), paraxanthine, L-acetylcarnitine,

and serotonin; 7 upregulated: glycerophosphocholine, aspartic acid,

X236, LysoPI (18:0/0:0), LysoPI (0:0/18:0), hydroxypalmitic acid,

and choline) were further analyzed in Data set 2 to establish a
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diagnostic panel of AD. The chemical classes of differentialmetabolites

included 21 categories, such as acylcarnitine, lysophospholipid (LPC),

triglycerides, amino acids, lysophosphatidylethanolamine (LPE), fatty

acid, ceramide, phosphatidylethanolamine (PE), choline, lysophos-

phatidylinositol (LPI), vitamin, cholesterol ester, lysophosphatidylser-

ine (LPS), peptide, phosphatidylglycerol (PG), phosphatidylinositol (PI),

polyamine, phosphatidylserine (PS), and sphingosine (Figure S3C, Table

S2). Using themethod of gene set enrichment analysis (GSEA),metabo-

lite set enrichment analysis was performed through quantitative

enrichment analysis in different databases. Metabolic pathway anal-

ysis was also conducted using the over-representation method. Our

data revealed that differential metabolites were enriched in phospho-

lipid biosynthesis, folate metabolism, fatty acid degradation, and tau-

rine and hypotaurine metabolism (Figure S4A and S4B, Table S3 and

S4). Location-based metabolite set enrichment analysis revealed that

the differential metabolites were enriched in the brain, neurons, and

nerve cells (Figure S4C, Table S5). Pathway analysis revealed that dif-

ferential metabolites were enriched in the pathways of nicotinate,

nicotinamide, glycerophospholipid, alanine, aspartate, and glutamate

metabolism (Figure S4D, Table S6).

3.3 Diagnostic panel of metabolites

A relatively large sample (Data set 2) was recruited to further con-

firm the differential metabolites. All of the top 10 downregulated and

7 upregulated metabolites in Data set 1 were confirmed in Data set 2,

which supported the significance of the differential metabolites. Logis-

tic analysis was performed to estimate their ability to distinguish sub-

jects with AD from controls. The top 10 downregulated and 7 upreg-

ulated metabolites were included as covariates with the diagnosis (AD

or controls) as thedependent variable. After adjusting for age, sex, edu-

cation years, and APOE ε4 status, a panel of 11 metabolites (downreg-

ulated: hexanoylcarnitine AcCa (6:0), 4-decenoylcarnitine AcCa (10:1),

tetradecadiencarnitine AcCa (14:2), piperine, decanoylcarnitine AcCa

(10:0), L-acetylcarnitine, and serotonin; upregulated: glycerophospho-

choline, aspartic acid, hydroxypalmitic acid, and choline)wereobserved

to be associated with AD (Figure 2A-K). Age, sex, education years, and

APOE ε4 status demonstrated a P-value > .05 in the logistic model

and were therefore excluded from further analysis. Analyses were

performed to estimate the multicollinearity between the 11 metabo-

lites in subjects with AD and controls. All tolerances were > 0.1, VIFs

were < 10, eigenvalues were > 0, and condition indices were < 30,

indicating that there was no significant multicollinearity among the

11 metabolites. Using the predictive values from the logistic analysis,

the diagnostic capacity of the 11-metabolite panel was assessed using

ROCcurve analysis.Our data revealed significantly high area under the

curve (AUC) values (AUC = 0.97, P < .001, Figure 3A), indicating that

the metabolite panel could successfully differentiate subjects with AD

from controls. The diagnostic capacity of single metabolite was also

assessed, revealing poor AUCs (0.63–0.73, Figure 3B) and indicating

that a combination of the 11 metabolites was necessary to obtain an

effective diagnosis.

In addition, to further examine the relationships between metabo-

lite levels and cognitive decline in AD, we performed a linear correla-

tion analysis between MMSE scores and each metabolite. Our results

showed significant correlations betweenMMSE scores and the combi-

nation of the 11 metabolites (R2
= 0.62, P < .0001, Table S7), whereas

single metabolites exhibited low correlations with MMSE (R2
= 0.05–

0.14, P< .0001, Table S7).

3.4 Application of the predictive model

To assess the diagnostic capacity of the model when applied to sub-

jects in clinical practice that may include controls, AD, and other types

of dementia, such as VaD, PDD, bvFTD, and DLB, a third data set was

used. Similar results to those of Data sets 1 and 2 were obtained. Lev-

els of hexanoylcarnitine AcCa (6:0), 4-decenoylcarnitine AcCa (10:1),

tetradecadiencarnitine AcCa (14:2), piperine, decanoylcarnitine AcCa

(10:0), L-acetylcarnitine, and serotonin were decreased; whereas lev-

els of glycerophosphocholine, aspartic acid, hydroxypalmitic acid, and

choline were increased in patients with AD (P < .001; Figure 4A–K).

Most of the 11metaboliteswere not altered in patients diagnosedwith

VaD, PDD, bvFTD, and DLB (all P > .05), except for glycerophospho-

choline in PDD (Figure 4A), aspartic acid in DLB (Figure 4B), choline

in VaD (Figure 4D), and serotonin in bvFTD (Figure 4K). Further ROC

analysis revealed very high AUCs (0.96–0.97, P < .001, Figure 5), indi-

cating that the diagnostic panel was highly effective for distinguish-

ing AD from controls (Figure 5A), non-AD (combination of controls and

other dementias) (Figure5B), andother types of dementias (Figure5C).

The relationships between the combined metabolite levels and

MMSE scores in participants with AD were statistically significant

(R2
= 0.59, P < .0001, Table S8), whereas single metabolites exhibited

low correlations with MMSE scores (R2
= 0.05–0.13, P < .0001, Table

S8). There were no significant associations between single or com-

bined metabolites in participants with VaD, PDD, bvFTD, and DLB (all

P> .05).

4 DISCUSSION

In the current study, we identified a panel ofmetabolites that could dif-

ferentiate AD from controls and other types of dementias, including

VaD, PDD, bvFTD, and DLB. To the best of our knowledge, this is the

first effort to screen differential metabolite signatures among these

diseases. This approach is less invasive, antibody-independent, and rel-

atively low cost, which may facilitate its use in the screening of AD in

the general elderly population.

Metabolomics is a powerful tool for detecting metabolites, which

are downstream of genomic, transcriptomic, and proteomic pro-

cesses. Aberrant upstream changes associated with certain dis-

eases may eventually give rise to disease-specific metabolic pro-

files. Metabolomics technology provides the opportunity to identify

therapeutic targets and diagnostic biomarkers. Recent studies have

reported metabolic differences in Parkinson disease, depression, and
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F IGURE 2 Themeasurements of metabolites in Data set 2. Glycerophosphocholine (A), aspartic acid (B), hydroxypalmitic acid (C), and choline
(D), were increased; and hexanoylcarnitine AcCa (6:0) (E), 4-decenoylcarnitine AcCa (10:1) (F), tetradecadiencarnitine AcCa (14:2) (G), piperine
(H), decanoylcarnitine AcCa (10:0) (I), L-acetylcarnitine (J), and serotonin (K) levels were decreased in AD patients. Abbreviations: AD, Alzheimer’s
disease; FC, fold-change. All P’s< .001 for eachmetabolite compared between AD and control

schizophrenia,34 highlighting the promise of this approach to iden-

tify biomarkers and reveal disease pathogenesis. Notably, given the

association of metabolic diseases such as diabetes and dyslipidemia

with AD, and the impairments in metabolic enzymes in the glycolytic,

tricarboxylic acid cycle, and oxidative phosphorylation pathways in

AD,35 identifyingmetabolic dysfunction is necessary to understandAD

pathogenesis and identify relevant biomarkers.

Studies on sample sources from the central nervous system, such

as brain tissues and CSF, demonstrated that metabolite changes are

present in patients with AD.36 In addition, metabolites in periph-

eral blood were reported to be altered in AD.36–42 However, previ-

ous data are inconsistent. For example, several plasma phospholipids

were reported to be associated with AD in some studies36–38 but not

others.39 Data on sphingomyelin and docosahexaenoic acid are also

inconsistent among studies.36,38,40–42 Some of the relevant metabo-

lites identified in this study were consistent with those reported pre-

viously. However, some positive metabolites in other studies were

not identified in our study. For example, our data indicated that two

lysophospholipids (lysoPC a C17:0 and lysoPC a C18:0) were altered

in AD, which is consistent with other studies.36 However, we did

not observe any changes in phospholipids, which is consistent with

some previous reports39 but not others.36,37 In addition, some posi-

tive metabolites in our study were also reported by others, such as

glycerophosphocholine,43 aspartic acid,44 choline,18 acetylcarnitine,45

serotonin, and decanoylcarnitine AcCa (10:0).45 Several of these

metabolites were reported previously to be decreased in some stud-

ies but increased in others. For instance, choline was reported to be

reduced in AD in some studies46 but was reported to be increased in

other studies.12,18 This inconsistencymay be due to the different inclu-

sion criteria and testing methods used in the studies, which need to

be further confirmed. In this study, we recruited participants in strict

accordancewith CSF biomarkers (P-tau/Aβ42 and Aβ42) and screened
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F IGURE 3 Establishment of diagnostic panel for Alzheimer’s
disease in Data set 2. Receiver-operating characteristic (ROC) curve
analyses were performed by combining the 11metabolites (A). ROC
analyses of eachmetabolite were performed (B). Abbreviations: AUC,
area under the curve. P< .001 (A) or .01 (B)

the metabolites using UPLC-HRMS. This method provides simultane-

ous global metabolic analysis and quantitative analysis of multiple ana-

lytes in full scanmode.47 In addition, the topupregulated anddownreg-

ulated metabolites were validated in three separate data sets, which

supports the validity of our findings.

Biomarkers play an important role in AD diagnosis2 and research.22

Due to its minimal invasiveness and relatively low cost, the use of

peripheral blood to diagnose AD has garnered increasing attention.

The surge in researchhas revealed a series of promisingbloodbiomark-

ers, including Aβ42,48 neurofilament light protein,49 P-tau181,50 P-

tau217,50 exosomal Aβ42, T-tau, P-tau, and synaptic proteins.20,29 In

this study, we created a diagnostic panel of AD by detecting metabo-

lites in the blood. Using three independent data sets, we confirmed

that a combination of 11metabolites was strongly associated with AD.

We further comparedmetabolites between AD and VaD, PDD, bvFTD,

and DLB, and confirmed that the diagnostic panel was AD specific.

Although these degenerative diseases share certain clinical manifes-

tations, such as cognitive impairment, AD is underpinned by unique

pathological processes,whichmayunderscore theAD-specific changes

in positivemetabolites and enable the differentiation of AD fromother

dementia types.

The potential mechanisms by which the panel of 11 metabolites

distinguishes AD from other dementias require further investiga-

tion. Among the 11 metabolites, hexanoylcarnitine AcCa (6:0), 4-

decenoylcarnitine AcCa (10:1), tetradecadiencarnitine AcCa (14:2),

decanoylcarnitine AcCa (10:0), and L-acetylcarnitine can be classi-

fied as acylcarnitines. Previous studies have shown that acylcarnitines

are involved in mitochondrial energy metabolism, and serum levels

of multiple acylcarnitines can identify the patients before the phe-

notype conversion to AD.45 Serotonin and aspartic acid are amino

acids. As amino acid neurotransmitters in the brain, increased aspar-

tic acid impairs hippocampal neurons and induces synaptic plastic-

ity and spatial memory decay,51,52 whereas low serotonin levels are

associated with high amounts of amyloid plaques.53 Glycerophospho-

choline and choline comprise membrane phospholipids, which break-

down during neurodegeneration. In the course of neurodegeneration,

glycerophosphocholine and choline can be generated by hydrolysis

of phospholipids.43 Levels of glycerophosphocholine in the CSF of

patients with AD were reportedly higher before.43 In line with these

data, our study showed that increased levels of glycerophosphocholine

and choline in the blood are associated with AD. Hydroxypalmitic

acid is a type of fatty acid. Multiple fatty acids are associated with

AD neuropathology and cognitive function.54 Fatty acids have roles

in alpha-secretase-dependent amyloid precursor protein processing55

and aging neuronal membranes.56 However, the effects of elevated

hydroxypalmitic acid levels in patients with AD need further study.

Piperine is a kind of alkaloid. Studies showed that low levels of piper-

ine in blood are associated with AD. Mechanically, piperine has been

shown to perform as a β-secretase inhibitor and acetylcholinesterase

inhibitor,57,58 which have potential therapeutical effects on AD. The

above pathways are jointly involved in the pathogenesis of AD, sowhen

these 11metabolites change, the status of AD can be reflected. There-

fore, the panel of 11metabolites can be used to diagnoseAD.However,

the specific roles of these metabolites, their sequence in the progres-

sion of AD, and their upstream and downstream relationships are still

unclear and need to be further studied.

Our study has several strengths. We used CSF Aβ42 and P-tau

/Aβ42 as diagnostic biomarkers, which ensured the accuracy of AD

diagnosis. In addition, cognitively normal controls may include preclin-

ical AD individuals with normal cognition, but their CSF Aβ42 and/or

P-tau/Aβ42 may have been abnormal. The use of biomarkers enabled

the exclusion of preclinical AD from controls. Therefore, the diagnos-

tic accuracy for participants enrolled in the current study was high. In

addition, we validated differential metabolites in three separate data

sets, which included patients with AD, VaD, PDD, bvFTD, and DLB,

confirming that the diagnostic panel was clinically promising and AD

specific.

This study was limited by its cross-sectional design. Although we

demonstrated that a panel of 11 metabolites could be used as a diag-

nostic biomarker for AD, a longitudinal design ismore suitable for eval-

uating the performance of these biomarkers. Longitudinal studies on

the relationship between biomarkers and cognitive decline in patients

are necessary. A further limitation of this study was that it did not

include patients with mild cognitive impairment that progressed to

AD or stable amnestic mild cognitive impairment. Therefore, the appli-

cability of our method to predict the progression from prodromal to

probable AD is unclear. Finally, the detection of metabolites is a rela-

tively quantitative method that cannot indicate the absolute levels of
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F IGURE 4 Themeasurements of metabolites in AD, VaD, PDD, bvFTD, andDLB in Data set 3. Glycerophosphocholine (A), aspartic acid (B),
hydroxypalmitic acid (C), choline (D), hexanoylcarnitine AcCa (6:0) (E), 4-decenoylcarnitine AcCa (10:1) (F), tetradecadiencarnitine AcCa (14:2) (G),
piperine (H), decanoylcarnitine AcCa (10:0) (I), L-acetylcarnitine (J), and serotonin (K) levels weremeasured. Abbreviations: AD, Alzheimer’s
disease; VaD, vascular dementia; PDD, Parkinson disease dementia; bvFTD, behavioral variant frontotemporal dementia; DLB, dementia with
Lewy body; FC, fold-change. **P< .01, ***P< .001

metabolites in the blood, which limits the comparison of absolute lev-

els of metabolites between the current and future studies.

Here, to avoid the effects of other metabolic diseases, we used

strict enrollment criteria for their exclusion. Therefore, all partici-

pants had normal BMI, HCY, triglyceride (TG), total cholesterol (TC),

low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein

cholesterol (HDL-C), and glycosylated hemoglobin (HbA1c), and there

was no difference in these values between the AD cases and cases

of VD, FTD, or DLB. In the current data set, these metabolic param-

eters have no influence on the diagnostic model. Therefore, the 11-

metabolite panel did not consider metabolic disease effects. How-

ever, these conditions are often present in real clinical practice, which

potentially limits the clinical application of our metabolite panel. In

the future we plan to recruit patients with AD and other demen-

tias with co-morbid metabolic diseases and apply the model to these

patients.
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F IGURE 5 Receiver-operating characteristic (ROC) curve analyses in Data set 3. The ROCs of AD versus controls (A), AD versus non-AD (B),
and AD versus other types of dementia (C). Non-AD indicates a combination of controls and other types of dementia. Other types of dementia
indicate a combination of VaD, Parkinson’s disease dementia, behavioral variant frontotemporal dementia, and DLB. Abbreviations: AD,
Alzheimer’s disease; AUC, area under the curve; DLB, dementia with Lewy body; VaD, vascular dementia. All P’s< 0.001

In addition, it has been demonstrated that many DLB mix with AD

pathology. In the current study, we diagnosed DLB with clinical diag-

nostic criteria. In this context, DLB patients with AD pathology cannot

beexcluded.Wemayhave includedmixedDLB.Therefore, ourdiagnos-

tic model may apply to mixed DLB, not pure DLB. However, we believe

that such a sample has greater practical relevance because patients

with DLB are seen in real clinical practice. The CSF biomarkers Aβ42,
T-tau, and P-tau were not used here to diagnose DLB, but to identify

controls and AD cases; DLB diagnoses were based on previously pub-

lished criteria, which do not depend on CSF biomarkers. However, for

consistency, in Data set 4 we present the CSF data for the AD cases

and the controls, as well as for other dementias ie, VaD, PDD, bvFTD,

and DLB).

In summary, the results of the present study indicate that a panel of

11 metabolites are potential blood biomarkers for AD. Specifically, the

diagnostic panel can differentiate AD from other types of dementias,

highlighting its potential clinical value. However, our findings require

further validation in longitudinal studies.
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