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Autoassociative Memory 
and Pattern Recognition in 
Micromechanical Oscillator 
Network
Ankit Kumar1 & Pritiraj Mohanty2

Towards practical realization of brain-inspired computing in a scalable physical system, we investigate 
a network of coupled micromechanical oscillators. We numerically simulate this array of all-to-all 
coupled nonlinear oscillators in the presence of stochasticity and demonstrate its ability to synchronize 
and store information in the relative phase differences at synchronization. Sensitivity of behavior to 
coupling strength, frequency distribution, nonlinearity strength, and noise amplitude is investigated. 
Our results demonstrate that neurocomputing in a physically realistic network of micromechanical 
oscillators with silicon-based fabrication process can be robust against noise sources and fabrication 
process variations. This opens up tantalizing prospects for hardware realization of a low-power brain-
inspired computing architecture that captures complexity on a scalable manufacturing platform.

Inspired by studies that have indicated that subsystems of the brain involved in associative learning exhibit syn-
chronization dynamics by which pattern recognition emerges from the frequency entrainment of the constituent 
oscillating neurons1, significant recent interest has developed around the prospect of constructing analogous 
systems using artificial, physical oscillators. Such systems of coupled physical oscillators are capable of autoasso-
ciative memory operation and other forms of parallel, non-Boolean and neuromorphic computing, and suitably 
engineered, offer the advantages of far higher operating frequencies than their biological counterparts, and far 
lower power requirements than attempts to simulate neural networks on traditional hardware.

The dynamics of a system of coupled oscillators can exhibit attractive limit cycles that represent synchronized 
states. Information can be stored in either the phase or frequency differences between oscillators at synchroniza-
tion, and retrieved through dynamical flow to these attractors. Following the initial proposals by Hoppensteadt 
and Izhikevich2–4, recent work has focused on schemes to implement the basic principle across a variety of differ-
ent platforms. Spin-torque oscillators, in which the magnetization of a thin ferromagnetic layer is induced into 
sustained oscillation through the application of bias current or external magnetic field, have been shown to be 
capable of frequency locking via a number of methods, and show promise as a platform for neurocomputing5–9. 
Similarly, vanadium oxide relaxation oscillators, which rely on a precise switching between metallic and insu-
lating states10, have been successfully synchronized using capacitive coupling with aims towards application to 
associative memory operation11. Other studies have focused on RRAM12 and anchored disk resonators13.

Here, we consider MEMS (Micro-Electro-Mechanical Systems) resonators14 configured to self-oscillate as 
the oscillating elements our artificial neural network. MEMS resonators have found significant use as sensors, 
biomedical implants, and wireless communication devices due to their high operating frequencies and low power 
requirements. They have already been explored as a platform for reversible computation15 and probing the ther-
modynamic limits of computation16, and logic circuits17, 18. Self-oscillation of a MEMS resonator19 with unprec-
edented phase noise and thermal stability and phase synchronization between two such self-oscillators20, 21 have 
been successfully demonstrated. As the required fabrication methods are based on standard lithography and 
processing techniques currently in use at semiconductor foundries, any architecture based on an array of MEMS 
oscillators would easily lend itself to highly scalable manufacturing. Furthermore, MHz to GHz range operation 
frequency will enable computing or pattern recognition at very high speed. For these reasons, MEMS devices 
have always been considered a desirable architecture for analog computing22.
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In this article, we present detailed simulation results based on a realistic physical model that captures the 
dynamics of these resonators. In contrast to previous work23 on a network of physical oscillators, our work is the 
first to consider the ensemble effects of nonlinearity, frequency and coupling strength dispersion, and noise. Our 
study focuses on constraining the ranges of these effects over which synchronization and pattern retrieval remain 
robust. In particular, we find that stringent control over the frequency dispersion across the oscillator array will 
be crucial in practical realization.

Model
Each individual MEMS self-oscillator is modeled as a Van der Pol Duffing oscillator:

λ ω κ+ − + + =̈x x x x x( 1) (1 ) 0 (1)2
0
2 2

Here, ω0 is the natural oscillation frequency of the self-oscillation system. The damping function x2 − 1 enables 
self-sustained oscillation. The parameter λ controls the amplitude of self-oscillation, whereas κ controls the non-
linear, anisochronous behavior.

A system of n oscillators is then connected by linear all-to-all coupling, as shown in the schematics in Fig. 1, 
where we allow for both dissipative (velocity) and reactive (displacement) coupling. This gives the equations of 
motion for the ith oscillator as:

∑λ ω κ+ − + + = +
=

 ̈x x x x x p x q x( 1) (1 ) ( )
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We take coupling to be symmetric: =p q p q, ,ij ij ji ji. The individual natural oscillation frequencies are allowed 
to vary. Displacements are rescaled according to λ=x x  and time according to ω=t̃ t. Given this change of 
variables, the equations of motion now read:

Figure 1.  Schematic of oscillator network with all-to-all coupling. Signals across the array are summed with 
weights determined by equation (8). Each individual self-oscillator is comprised of a MEMS resonator (optical 
micrograph of a plate-type resonator shown below) placed within a feedback loop with a transimpedence 
amplifier, phase shifter, and output buffer that satisfies Barkhausen’s criterion.
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where κ and the coupling constants have been rescaled accordingly. The frequencies Ωi have been normalized to 
unity. In what follows we consider both identical oscillator frequencies and frequency dispersion, where each Ωi 
is randomly chosen on the interval [1 − δ, 1 + δ]. We drop the tildes and persist with the dimensionless form from 
here on out.

In the absence of coupling terms, the dynamical system described by equation (3) exhibits stable limit cycle 
behavior via an Androponov-Hopf bifurcation for λ > 0. Accordingly, for small λ, the system can be transformed 
to a topologically equivalent normal form. The derivation is given in the Supplementary Information. This results 
in an equation for the complex amplitude a(t):
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By introducing the substitution = φa A ei i
i ti , equation (4) can be written in amplitude-phase form. 

Furthermore, by measuring each φi relative to φ1 (the choice is arbitrary), we can reduce the dimensionality of the 
resulting system by one. Thus, let Δφi = φi − φ1.
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These equations represent an amplitude-phase coupled model that goes beyond the phase-only Kuramoto 
model that is often considered in the literature24. Bifurcations in the two-oscillator case have been the subject of 
both analytic and numerical study25, 26. The two-oscillator case exhibits bistability in a subset of the synchroni-
zation tongue where the in-phase and 180° out-of-phase oscillatory modes are both accessible depending on the 
supplied initial conditions. This simple model therefore already exhibits the ability to store information in the 
phase differences at synchronization.

In earlier works, this system27, 28 was studied in the opposite limit of a very large number of oscillators. Here, 
distributions in oscillator frequencies even with relatively narrow width can inhibit synchronization. These sys-
tems then demonstrate transitions towards global synchronization as the coupling strength between oscillators is 
varied that are not unlike second order phase transitions commonly studied in statistical physics.

The global stability of limit cycles in equation (4) can be proven in the absence of natural oscillation frequency 
mismatches and nonlinearity.

For κ = 0, and all ωi = ω, equation (4) reads:
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The stability of the set of fixed points ai
o of the complex amplitudes implies stability of limit cycles for the orig-

inal displacement x. This existence of such a set can be proven without explicitly solving for the dynamical trajec-
tories through the construction of a Lyapunov function, which can be considered to be a generalized energy 
function for the system. Such a real valued function ⁎U a t a t({ ( ), ( )})i i  must be positive definite and satisfy 

≤⁎U a t a t({ ( ), ( )}) 0d
dt i i  for a neighborhood around the critical points ( ⁎ai  denotes complex conjugation). The 
following function satisfies these criteria3:
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We note that U is bounded by ai
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The quantity = 0dU
dt

 when all =a 0i . Thus, the fixed points ai
o of ref. 4 are stable.

The requirement of κ = 0 can be relaxed if we are able to add to the damping function a term proportional to 
xx2 that cancels the cubic displacement term in the normal form transformation, but the authors are not aware of 
any practical means of implementing such functional forms of damping. For a mesoscopic number of oscillators 
with realistic dynamics such as those considered here, analytical methods are therefore largely intractable and 
simulation presents itself as the most useful tool for analysis.
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We seek to store information in states of synchronized oscillation in which the relative phase differences across 
the  array  remain f ixed.  Let  the  patterns  to  be  stored be  g iven by  the  set  of  vec tors 
ξ µ ξ= … = … ∈µ µ Cm i n, 1, , ; 1, , ,i i  (see ref. 1). Then, assuming these patterns to be equilibrium solutions 
to equation (4), one can attain a formula for the coupling matrix29:

ρ= †S PP (10)

where ρ is an overall scaling on the coupling strength, ξ=Pij i
j and P† is the pseudo-inverse of P, 

−
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, 

with P , PT denoting the complex conjugate and transpose of P, respectively. Note that in terms of the original 
coupling terms present in equation (3), ω= =Re S p Im S q( ) /2, ( ) /2ij ij ij ij . In what follows, we will consider binary 
patterns, so that each ξ ξ= =µ π µ πe eori

i
i

i2 , but “grayscale” patterns can conceivably be assigned as complex 
valued phasors and stored through a mixture of both dissipative and reactive coupling in the physical system.

We define the current state of the system to be = …X i n, 1, ,i  such that if the phase of the ith oscillator is 
given as φ φ π= ∈x xarctan( / ), [0, 2 ]i i , then Xi = cos φi. The overlap, M, with the stored pattern μ, is the projec-
tion of the current state onto ξμ:
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In storing information in the stable fixed points of an energy function, our system exhibits the essential fea-
tures of a Hopfield network30. The upper bound storage capacity of Hopfield networks is known to scale linearly 
with n, the number of constituent network elements31. This upper bound is saturated by a completely orthogonal 
pattern set ξ ξ µ η∑ = ∀µ η

=( 0, , )i
n

i i1 . In the case of n orthogonal patterns, the expression for the coupling coeffi-
cients given by equation (10) reduces to an uncoupled network Sij = δij. In practice, attempting to store even fewer 
patterns than this may yield a coupling matrix that gives rise to subnetworks (i.e. the network fractures into sub-
networks that are decoupled from each other). Such network segmentation in the presence of incommensurate 
frequencies can greatly hinder phase synchronization, since phase locking requires frequency entrainment, yet 
such entrainment in general is impossible without at least indirect coupling between every oscillator. This some-
what limited storage capacity is a fundamental limitation of our reliance on dynamical fixed points.

Absence of Noise
Identical Oscillator Frequencies.  We consider a system of 96 oscillators, arranged into an 8 × 12 grid for 
the purpose of visualization. The 26 patterns spanning the English alphabet shown in Figure S1 are stored, with 
black elements corresponding to ξ = −µ 1i , and white elements to ξ =µ 1i . The overlap between the stored pat-
terns, ξ ξ= ∑ µ η

=M ,
N i

n
i i

1
1  ranges between 0 (orthogonal) to 0.854.

The degree of overlap with the set of stored patterns is tracked during the simulation. While evolution towards 
a phase-locked, synchronized state is desired due to the long timescale stability it provides, pattern recognition is 
achieved if, after a finite simulation time, the degree of overlap is greater than that of any other pattern. In what 
follow, phase differences are measured relative to φ1. Except where noted, the initial conditions of the array are 
set as the “a” pattern subject to random pixel flips. Simulation and analysis is conducted using MATLAB software.

In the absence of nonlinearity, noise, and distributed frequencies, the array evolves from initial conditions in a 
predictable manner; i.e. the array always progresses to a store synchronized state that corresponds to the highest 
degree of match with the initial pattern, shown in Fig. 2. Once dynamical flow has converged to one of the stable 
limit cycles, stability is guaranteed by the existence of a Lyapunov function (equation (8)). Synchronization is 
rapid, occurring within a few hundred cycles. As shown in Fig. 2e, the recognition time can be quickened further 
by increasing the overall coupling strength scale between oscillators.

We next increment the nonlinearity parameter κ. The effects are twofold: the degree of match parameter 
exhibits oscillations of a characteristic shape, and the response of the oscillator system stiffens in the sense that 
flow towards the synchronization state occurs even more rapidly. The amplitude of oscillations in the degree of 
match parameter generally grows with increasing κ and the effect is noticeably dependent on the overall coupling 
strength scaling. Simulations run for 80,000 oscillator cycles indicate long-term stability of synchronization, in 
the sense that the amplitudes of degree of match oscillations do not grow substantially (Figure S2).

Frequency and Coupling Strength Dispersion.  We next introduce distributed frequencies, randomly 
selecting from a uniform distribution over the interval [1 − δ, 1 + δ]. In the two-oscillator case, 1:1 frequency 
entrainment between two oscillators in the presence of detuning between their natural oscillation frequencies 
occurs within a region of parameter space known as the Arnold’s tongue26, 32.

In our 96-oscillator system, dynamical flow in the presence of distributed frequencies approaches the stable 
phase-locked states, but over time it loses its coherence. The effect worsens as the distribution is widened (Fig. 3a), 
with a significant dropoff in the degree of match for δ = 1.0 ∗ 10−3. Our simulations indicate that increasing the 
coupling strength does not ameliorate recognition, in contrast to result in the two oscillator case at fixed detuning, 
where the synchronization tongue widens with increasing coupling strength26. Note the thicknesses in the degree 
of match curves are fast timescale oscillations in the parameter.

Introducing nonzero κ again stiffens the response of the system, effectively quickening the rate of its dynam-
ics. This is demonstrated in Figure S2, but it should be noted that the presence or absence of nonlinearity does not 
significantly affect the magnitude or stability of the degree of match parameter over time.

This loss of stability over long time periods poses a serious challenge to accurate pattern retrieval in the case 
when two or more patterns feature high overlap. Without distributed frequencies, initial conditions will evolve 
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towards the configuration with the higher degree of match, but in its presence, the loss of stability over time can 
lead to selection of the other pattern (Fig. 4). If the distribution of frequencies is broad enough, then the stored 
patterns need not even be highly overlapping; the system will be unable to distinguish between a wide number 
of patterns; pattern recognition in the absence of phase synchronization with widely distributed frequencies is 
therefore unreliable.

Physically, frequency dispersion arises from variability in the resonator fabrication process. Coupling strength 
dispersion is motivated by similar considerations; through whatever means coupling is achieved (mechanical, 
capacitive, radiation), perfect precision is elusive in an experimental setting. Given this, as the encoding of pat-
terns as stable fixed points in the dynamics is accomplished by a particular coupling matrix (equation (10)), 

Figure 2.  In the absence of distributed frequencies and nonlinearity, the system evolves predictably from 
the initial conditions, always selecting the stored pattern with the highest degree of match with the initial 
conditions. In figures (b) and (c), recognition of the “a” pattern is achieved even with significant distortion. 
Figure (a) shows the entire time series of the three highlighted pixels in (b). Pixels 1 and 97 start in phase 
but end out of phase. Pixels 1 and 3 start out of phase but end in phase. Figures (d) and (e) demonstrate the 
borderline case where recognition transitions from the stored “a” pattern to the stored “u” pattern. For similar 
patterns, significant distortion is not required before this transition occurs. Figure (f) demonstrates the effect of 
increasing the coupling strength ρ by an order of magnitude. The time needed to achieve a high degree of match 
is dramatically reduced.

Figure 3.  (a) Degree of match with the “a” pattern as the width of the uniform distribution from which 
oscillator frequencies are selected is widened. Stable phase locked synchronization does not occur, and the effect 
worsens with widening width (denoted in figure legend). (b) Plot of degree of match with the “a” pattern for 
uniform oscillator frequencies, but iterated σ (shown in the legend). Stability of the degree of match parameter 
is reasonable until σ = 3.3 × 10−3. This is an order of magnitude larger than the typical value of δ that destroys 
effective synchronization, suggesting that the system is more robust under coupling strength dispersion than 
frequency dispersion. In both (a) and (b), the shown curves have been averaged across 100 independent 
simulations, and then subsequently over 100 time steps; larger oscillations in degree of match parameter for 
wider dispersion widths are still visible.
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determining whether pattern retrieval is reasonably robust in the presence of deviations from the learning rule is 
a relevant question for implementation that can only reasonably be answered with simulation.

To this end, we introduce defects into the coupling matrix by modifying each pij in equation (3) by uniform 
random variables chosen from a distribution centered at 0 with width σ. Sample results in Fig. 3 demonstrate that 
the effect is similar to, but less severe with regards to the magnitude of δ vs. σ, in the sense that large σ clearly pre-
vents phase locking from occurring, and the degree of match parameter diminishes over time. A marked decline 
is present at σ = 1.0 ∗ 10−2. It should be pointed out, however, that regardless of the long-term performance, the 
degree of match invariably peaks for the correct pattern early on, suggesting that a scheme where recognition is 
defined on the basis of this earliest peak may be reliable.

Addition of Noise
We are further able to demonstrate robustness in the presence of small degrees of noise independently perturbing 
each oscillator. The term η t( )i  is added to the right hand side of equation (3), where   is a small parameter giving 
an overall scaling on the noise amplitude, and each ηi(t) is a Gaussian white noise source with ηi(τ1)η−
j(τ2) = δijδ(τ1 − τ2). Simulation of the system with reasonable memory requirements is achieved through the 
implementation of a stochastic Runge-Kutta method33.

We first simulate the effects of white noise on a single self-sustaining oscillator. In the absence of such noise, 
such an oscillator will clearly exhibit a single peak in its frequency response. The addition of noise introduces 
additional power at the sidebands, and will suppress power at the main oscillation frequency (See Supplementary 
Information). The addition of sideband noise becomes salient at  = .0 01 and significant suppression of the pri-
mary frequency is evident at noise amplitudes another order of magnitude larger. Analyzing the response in phase 
space defined by x x( , ), where x is the displacement of the oscillator, a noiseless self-sustaining oscillator will 
converge rapidly to a limit cycle. Introducing increasingly large amplitudes of noise will perturb the oscillator 
from this limit cycle until periodicity is almost entirely lost (see Supplementary Information).

In a coupled array, the effects of noise are manifest in the dynamics of each oscillator and propagate across the 
array through the coupling. Still, we find synchronization to be fairly robust in the presence of white noise. For 
perturbation amplitudes on the order of 10−2, the degree of match parameter remains stable over time (Fig. 5). 
Noise amplitudes higher than this comprise several percent of the self-sustaining amplitude of the oscillator, 

Figure 4.  (a) Degree of match with the “g” pattern (blue) and “p” pattern (red). The initial conditions favor the 
“g” pattern, so the expected behavior is for the system to evolve towards a stable high degree of match, but the 
presence of frequency dispersion leads to a loss of stability, and eventually recognition of the “p” pattern occurs 
instead. Simulation used δ = 10−3 (b) Visualization of the same simulation. Second panel corresponds to the 
maximum of the blue curve in (a), last panel to the maximum of the red curve.

Figure 5.  Plot of degree of match with the “a” pattern for varying levels of noise, averaged over ten realizations. 
Simulations contain κ = 0.1, δ = 10−4, σ = 10−4, ρ = 0.025. At noise levels up to = −10 2 , the degree of match 
parameter remains stable over time. At higher noise levels, the system is unstable. These noise amplitudes 
correspond to the highly aperiodic regime (as shown in Supplementary Information), so the failure to 
synchronize is expected.
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which has been normalized to unity in this simulations by setting λ = 0.1. This regime, in which synchronization 
is rapidly lost, occurs where each oscillator itself deviates significantly from its limit cycle (Figure S3).

Taken together, the constraints on permissible δ, σ and   before synchronization becomes unstable over long 
timescales yield order of magnitude estimates of the parameter ranges within which the basins of attraction of the 
fixed phase configurations remain attractive. A physical realization of such an oscillator array must be engineered 
to perform within these ranges.

Micromechanical Self Oscillators
We now provide brief details regarding the physical realization of an array of MEMS self-oscillators, the guiding 
implications of the results of our numerical simulations.

At the core of each self-oscillator is the MEMS resonator itself. One specific example could be a piezoelectric 
resonator, fabricated by standard SOI silicon process, where a layer of a piezoelectric material such as aluminum 
nitride is grown on top of a suspended silicon layer. These types of devices exhibit low motional resistance at high 
frequencies. In particular, the primary longitudinal (length extension) mode has relatively low frequency, aiding 
electronic design, higher piezoelectric coupling, and higher vibrational amplitude, which would facilitate direct 
mechanical (reactive) coupling between resonators.

The resonance frequency of this mode is determined by the length of the resonator. When piezoelectrically 
actuated, this resonance frequency also corresponds to L C1/ m m , where Lm and Cm are the motional inductances 
and capacitances of the resonator, respectively.

The beam dynamics are described by the following Lagrangian34:

 κ ω κ= + − +mL x x m L x x1
2

(1 ) 1
2

(1 ) (12)T V
2 2 2 2 2 2 2

where m is the mass of the beam, L is its length, ω is the resonance frequency of the excited mode, and κT and 
κV are mode-specific constants. The resulting equation of motion is:

κ κ ω κ+ + + + =̈x xx a x(1 ) 2 (1 2 ) 0 (13)T T V
2 2 2 2

If we drive the resonator at a frequency close to its resonance frequency, then ω ω ̈~ ~xx x x x xand2 2 3 2 2 2  
and we retrieve equation (1) without the self-oscillation term in the damping function, with κ = κT + κV.

Self-oscillation of the resonator is accomplished by placing it in a feedback loop that satisfies Barkhausen’s cri-
terion: the loop gain has a magnitude equal to unity, and the phase shift around the loop is zero or an integer mul-
tiple of 2π. There are different ways of fulfilling this criterion, each with different merits regarding the resulting 
quality of signal (i.e. phase noise) and design complexity. A typical scheme consists of a transimpedance amplifier 
with gain RA, a phase shifter that introduces a variable phase lag from 0° to 240°, and a buffer that isolates the 
oscillator circuit from the measuring device.

At resonance, the resonator is characterized by the motional resistance RM. This implies that the gain of the 
amplifier has to satisfy RA > RM. In practice, due to additional loss in the phase shifter and parasitic capacitances 
in the circuit board, RA should ideally be ~2 RM. Another important factor is the presence of parasitic capacitance 
in parallel to motional resistance. While nonlinearity is a non-ignorable feature of contour mode resonators, if 
driving amplitudes are kept small, then its presence can be mitigated. In our simulations, we fixed the value of 
parameter λ in equation (1) at 0.1, yielding a near-unity dimensionless amplitude of self-oscillation. In practice, λ 
may be tuned by adjusting the gain RA. As our simulations demonstrate the robustness of synchronization in the 
weakly nonlinear regime, we believe that the nonlinear features of MEMS resonators do not present a significant 
obstacle towards implementation of the scheme proposed here.

Our noise simulations build in Johnson-Nyquist noise that arises from the self-oscillator electronics at finite 
temperature T; noise sources of a 1/f profile will negligible at the high MHz-range resonance frequencies of 
MEMS resonators. As our simulations show, the effect of white noise is not detrimental to synchronization for 
typical perturbing amplitudes that are less than one percent of the self-sustained amplitude of oscillation. This 
implies a Signal-to-Noise Ratio (SNR) of 100:1 in the output of the feedback electronics will be necessary for 
proper implementation.

Micromechanical and nanomechanical resonators inherently require low energy for operation. For instance, a 
four-resonator electrostatically-actuated Fredkin gate was recently demonstrated with an operational energy cost 
of 104 kBT. This is at least an order of magnitude smaller than the energy required by the standard generation of 
22-nm CMOS logic cells35. The network of micromechanical oscillators, as discussed here, can be energy efficient 
by as much as two orders of magnitude by designing both individual resonators and coupling elements for low 
energy dissipation14 and using piezoelectric actuation.

The neurocomputing scheme presented here requires all-to-all coupling between oscillators. While the num-
ber of couplings in principle scales as n2, there exist schemes to reduce this number to just n connections2. Still, 
this requirement essentially rules out both direct mechanical and electrostatic coupling via proximity capacitance 
between resonators. Recent experimental work has achieved synchronization between seven resonator elements 
via electromagnetic radiation36, though external fields cannot easily provide the sort of nonuniform coupling 
required for pattern storage. Recently, micromechanical oscillators have been wirelessly excited by patch antenna 
on top of the resonator37, 38. This approach enables individual control of each oscillator in the network by suitably 
designing the corresponding patch antenna. Furthermore, as the storage of information in the oscillator array is 
accomplished by setting the coupling constants between oscillators such that stored patterns become dynamical 
fixed points, our simulations have shown that variation of these constants greater than on the order of one part in 
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a thousand can lead to unreliable results. Identifying a scalable, precise, controllable coupling scheme remains as 
a significant engineering challenge.

Finally, the viability of neurocomputing with MEMS oscillators will be crucially dependent on keeping the 
spread of natural oscillation frequencies as narrow as possible. Defects in the manufacturing process entail var-
iations in the dimensions of MEMS resonators; current state of the art manufacturing techniques can often only 
ensure repeatability to within one part in a thousand. Achieving further precision in oscillator frequency will 
require frequency trimming either by laser or focused-ion-beam after fabrication.

Conclusion
We have numerically simulated the dynamics of an all-to-all dissipatively coupled system of self-oscillators, stor-
ing information in stable synchronized states such that the array is capable of auto-associative memory operation. 
Feeding in distorted initial conditions, our simulations probe robustness of pattern retrieval in the presence of 
nonlinearity, frequency and coupling strength dispersion, and white noise perturbations. Our results indicate the 
need to devise means of ensuring more repeatable resonator frequencies before implementation of the scheme 
presented here becomes feasible. This can be realized by frequency trimming either by laser or focused ion beam 
to make the frequency distribution narrow. Tight constraints on the repeatability of coupling strengths will also 
be required, though we find that synchronization is fairly robust in the presence of stochastic forcing. Overall, 
our comprehensive numerical studies point to enticing prospects for the hardware realization of MEMS-based 
neurocomputing elements for memory storage and pattern recognition.
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