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ABSTRACT: Consensus strategies have been widely applied in many
different scientific fields, based on the assumption that the fusion of
several sources of information increases the outcome reliability. Despite
the widespread application of consensus approaches, their advantages in
quantitative structure−activity relationship (QSAR) modeling have not
been thoroughly evaluated, mainly due to the lack of appropriate large-
scale data sets. In this study, we evaluated the advantages and drawbacks
of consensus approaches compared to single classification QSAR models.
To this end, we used a data set of three properties (androgen receptor
binding, agonism, and antagonism) for approximately 4000 molecules
with predictions performed by more than 20 QSAR models, made
available in a large-scale collaborative project. The individual QSAR
models were compared with two consensus approaches, majority voting and the Bayes consensus with discrete probability
distributions, in both protective and nonprotective forms. Consensus strategies proved to be more accurate and to better cover the
analyzed chemical space than individual QSARs on average, thus motivating their widespread application for property prediction.
Scripts and data to reproduce the results of this study are available for download.

1. INTRODUCTION
Consensus approaches aim to combine and integrate
information derived from different sources to increase the
outcome reliability and overcome limitations of single
approaches.1 In the framework of quantitative structure−
activity relationships (QSARs), they are generally recognized
as valuable tools to reduce the effects of underestimating
uncertainties in the prediction of biological activities.2,3

The main underlying assumption of consensus modeling in
QSAR is that individual models, due to their reductionist
nature, consider only partial structure−activity information, as
encoded by molecular descriptors and adopted algorithms.
Thus, the combination of multiple QSAR predictions may
provide a wider knowledge and increase the reliability
associated with the predictions compared to individual
models.1,4 Indeed, one of the advantages of the consensus
methods is the reduction of the effects of contradictory
information by averaging the predictions of models,1,5−8

although this is not always reflected in improvements of the
predictive ability compared to single models.1,5 Furthermore,
integrating individual QSARs can broaden the applicability
domain, that is, the chemical space where predictions can be
considered reliable.9,10 For these reasons, consensus methods,
also known as high-level data fusion or ensemble approaches,
have been extensively applied in QSAR studies.11−16 Recent
studies on the improvement achieved with large-scale
consensus approaches for quantitative (regression) models
can be found in the literature.17,18 However, to the best of our

knowledge, no thorough evaluation of the consensus versus
single qualitative (classification) model performance has been
carried out to date, since only a few QSAR models are usually
available for the same endpoint.6,10,19−23

The present study was based on the outcome of a large
collaborative project (Collaborative Modeling Project of
Androgen Receptor Activity, CoMPARA19), which produced
three data sets containing experimental values on androgen
receptor (AR) modulation and corresponding QSAR pre-
dictions, namely, (i) binding to AR (34 QSAR models), (ii)
AR antagonism (22 QSAR models), and (iii) AR agonism (21
QSAR models).19 CoMPARA was chosen as a test system due
to the large availability of diverse QSAR-based predictions.
Note that in the framework of CoMPARA, two ad hoc
consensus approaches were applied by combining predictions
with a weighting score based on the goodness-of-fit,
predictivity, and robustness of models.24 However, the aim
of the present study is not a comparison with these former
consensus approaches, which were specifically targeted to
screen and prioritize chemicals for endocrine activity, but the
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systematic investigation of the advantages of further consensus
strategies compared to single QSAR models. To this end,
approaches with varying levels of complexity (majority voting
and Bayesian methods, in both protective and nonprotective
versions) were considered. Moreover, we investigated whether
the exclusion of the worst-performing models may influence
the consensus outcome, in terms of chemical space coverage
and predictive performance.13,15 Finally, a structural similarity
analysis was carried out to identify specific chemical regions
where individual QSAR models, and the respective consensus
outcome, fail in their predictions.

2. MATERIALS AND METHODS

2.1. Collaborative Project. The QSAR models considered
in this work were previously developed in the framework of a
collaborative project (Collaborative Modeling Project of
Androgen Receptor Activity, CoMPARA24), coordinated by
the National Center of Computational Toxicology (U.S.
Environmental Protection Agency). CoMPARA aimed to
develop in silico approaches to identify potential androgen
receptor (AR) modulators. This project involved 25 research
groups worldwide, which were provided with a calibration set
consisting of 1689 chemicals and the corresponding exper-
imental annotations on binding, agonism, and antagonism
activities (in the form of qualitative labels, active/inactive), as
determined by a battery of 11 in vitro assays.20 The research
groups were then asked to predict another 55 450 chemicals
for one or more endpoints (binding, agonism, and antago-
nism) using their own developed QSAR models. Finally, these
predictions were merged through ad hoc consensus ap-
proaches, which are currently being used by the CoMPARA
coordinators to prioritize experimental tests for potential
endocrine-disrupting chemicals.24

The predictive ability of individual QSAR models was
assessed by the project coordinators on the basis of three
specific evaluation sets, which were embedded within the large
prediction set of 55 450 chemicals, to carry out a blinded
verification. These sets were created from literature data
extracted from different sources and curated for quality, by
considering target, modality, hit call, and concordance among
the annotated values. The three evaluation sets included 3540
chemicals annotated with binding activities, 4408 with
agonism, and 3667 with antagonism. We used the individual
QSAR predictions for these three evaluation sets, whose details
are summarized in Table 1, to calculate the consensus
approaches. All evaluation sets are characterized by unbalanced
sample distribution toward inactivity with 88.4, 91.4, and
96.3% of inactive chemicals for binding, antagonism, and
agonism, respectively. The three evaluation sets, including
chemical identifiers, SMILES, and predictions, are available as

the Supporting Information describing the CoMPARA
project.24

Note that although the project coordinators also provided
quantitative binding, agonism, and antagonism activities, the
participants developed only a few regression models (five, five,
and three for binding, agonist, and antagonist, respectively).
We considered, thus, only classification models for consensus
approaches to allow for a comprehensive and systematic
analysis.

2.2. Individual QSAR Models. CoMPARA consortium
members trained QSAR models to classify chemicals for their
potential of AR binding (34 models), agonism (21 models),
and antagonism (22 models). Models were mainly developed
on the same calibration set of 1689 chemicals, using different
modeling strategies (e.g., artificial neural networks, k-nearest
neighbors, support-vector machines, partial least squares
discriminant analysis, classification trees8,22,23) and molecular
descriptors (e.g., binary fingerprints and nonbinary descrip-
tors).24 Each submitted prediction was associated with the
applicability domain (AD) assessment, that is, an indication on
whether predictions can be considered as reliable.9,25

The predictive ability of QSAR models was assessed on the
evaluation set through the following classification measures: (i)
sensitivity (Sn) and specificity (Sp), which are the percentages
of correctly classified active and inactive chemicals, respec-
tively, and (ii) the non-error rate (NER), also known as
balanced accuracy, that is the average of Sn and Sp.26

Moreover, the percentage of reliably predicted chemicals
(coverage, Cvg) was used as an additional criterion to assess
the model performances. The distribution of the classification
estimators of the individual CoMPARA models for the three
modeled endpoints is summarized in Figure 1.
All models have a good predictive performance, with the

median NER ranging from 71.0% (antagonism) to 83.8%
(agonism). Specificity values (Sp) are always higher than
sensitivities (Sn), thus indicating a better performance of the
models in the identification of inactive compounds. Except for
the agonism endpoint, sensitivity is associated with a higher
variability than specificity, with values ranging from ∼20 to
∼80% on both binding (relative standard deviation equal to
∼28%) and antagonism (relative standard deviation equal to
∼29%) endpoints. This general behavior can be due to both
unbalanced classes, which are strongly skewed toward
inactivity (88.4 and 91.4% of inactive molecules for binding
and antagonism data sets, respectively; Table 1), and
differences in the ranges of testing between training and
evaluation sources, as reported in the literature.24

The models for agonism show the best trade-off between
sensitivity (Sn) and specificity (Sp), with most models
characterized by sensitivity values in the range of ∼70 to
∼84% and specificity in the range of ∼76 to ∼100%.
Additionally, agonism models have the highest median
sensitivity (76.2%), specificity (96.3%), and NER (83.8%),
although the agonism data set includes only 3.7% of actives
and is thus the most unbalanced among the three evaluation
sets (see Table 1). Models for binding and antagonism have
similar median NERs (74.8 and 71%, respectively), moderately
low median sensitivities (64.1 and 55.9%), and high median
specificities (88.3 and 85.5%).
The majority of individual models are characterized by a

high percentage of reliably predicted chemicals (coverage
values equal to 88.1, 88.1, and 89.5% on average for binding,
antagonism, and agonism, respectively). The models that are

Table 1. Number of Chemicals (Total, Actives, and
Inactives) Included in the CoMPARA Binding, Antagonism,
and Agonism Evaluation Sets and Number of Models
Developed within the CoMPARA Project for Each Endpoint

binding antagonism agonism

number of chemicals 3540 3667 4408
active 411 (11.6%) 314 (8.6%) 164 (3.7%)
inactive 3129 (88.4%) 3353 (91.4%) 4244 (96.3%)

individual QSAR models 34 22 21
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able to reliably predict only a few molecules are associated with
the highest classification performance, thus confirming that
high classification performance is more likely on a narrow
applicability domain. In fact, the four best models to predict
the binding activity (NER higher than 80%) were characterized
by a limited percentage of chemicals in their applicability
domain (coverage values equal to 13, 43.7, 60.7, and 69%;
Table S1), suggesting that these single models have limited
applications for prioritization purposes.
2.3. Consensus Methods. In this study, two consensus

strategies were applied to integrate the predictions provided by
individual models: majority voting and the Bayes consensus
with discrete probability distributions. These methods are
briefly described below.
2.3.1. Majority Voting. Voting methods combine the

predictions provided by independent models with different
frequency-based strategies, such as averaging and scor-
ing.14,16,23,27 The most simple and intuitive voting approach
is the majority voting (MV) rule, which assigns a chemical to
the most frequently predicted class among the pool of
considered models.28,29 Cautionary (protective) voting ap-
proaches can be obtained by considering only predictions
integrated with a sufficiently high concordance (based on a
user-defined threshold) among the pool of models.
In this work, we considered three different majority voting

strategies as follows: (i) majority voting loose (MVL), (ii)
majority voting intermediate (MVI), and (iii) majority voting
strict (MVS). The “loose” approach classifies molecules using
the most recurrent class assignment. In the two-class case, this
corresponds to the class predicted with a frequency higher than
50%. The “intermediate” and “strict” criteria (MVI and MVS,
respectively) are protective approaches. MVS assigns the
compound only if the prediction agreement is higher than or
equal to 75%. The MVS approach provides a prediction for a
given molecule only if all of the individual models predict the
same class (100% agreement). To ensure the reliability of the
consensus outcome, only the predictions within the applic-
ability domain of individual models were considered for the
calculation of the agreement.

2.3.2. Bayesian Consensus. An alternative to the majority
voting approach is a probabilistic method, such as Bayesian
consensus. The Bayes rule,12,30,31 in particular, estimates the
prior probability for a molecule to belong to a specific class for
each information source and then combines this information to
provide a joint probability.32

In particular, the Bayes consensus with discrete probability
distributions31,33 initially takes into account the first evidence,
e, which is in this case the class (active or inactive) predicted
by the first model. Then, the posterior probabilities p(hg|e) that
hypothesis hg is true given evidence e are calculated for any
class g, as follows

| =
| ·

∑ | ·
p h e

p e h p h

p e h p h
( )

( ) ( )

( ) ( )g
g g

g g g (1)

where p(e|hg) is the likelihood probability that evidence e is
observed given that hypothesis hg is true and p(hg) is the prior
probability that hypothesis hg is true in the absence of any
specific evidence.
With two hypotheses (i.e., class equal to “active” or

“inactive”), the prior equal (noninformative) probability is
estimated as p(hACTIVE) = p(hINACTIVE) = 0.50. The prior
proportional (informative) probability for each hypothesis hg
would be p(hg) = ng/n, where ng is the number of molecules
belonging to the gth experimental class within the n total
molecules.
Likelihood probabilities for each model can be estimated

from its confusion matrix, where the numbers of correct and
incorrect classifications are collected.31 Once posterior
probabilities for the first model have been calculated, the
Bayes consensus proceeds with the following iterative
procedure. Posterior probabilities of the first model are used
as new prior probabilities for the second step, where the class
predicted by the second model is the new evidence e on the
basis of which the posterior probabilities are calculated. These
posterior probabilities become the new prior probabilities in
the third iteration and so on, until predictions of all models
have been used in the consensus process. At the end of the
iterations, the posterior probabilities corresponding to the

Figure 1. Violin plots of sensitivity (Sn), specificity (Sp), non-error rate (NER), and coverage (Cvg) for the individual CoMPARA models on the
binding (A), antagonism (B), and agonism (C) evaluation sets. Empty dots indicate median values, thick gray lines indicate the second and third
quartiles, and thin gray lines indicate the first and fourth quartiles. Shapes indicate the underlying data distribution. Numerical values of the
classification parameters for all of the models are provided in the Supporting Information (Tables S1−S3).
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combination of all of the information sources are obtained.
Therefore, the Bayes consensus assigns a probability value to
each class, which is then used for prediction, by choosing the
class with the maximum posterior probability. As for the
majority voting strategies, the Bayes consensus can be used in a
protective manner by setting a posterior probability threshold
(in this study, 95%) that has to be fulfilled to predict the
class.31

When proportional prior probabilities are used with models
calibrated on data with unbalanced class distributions, Bayes
results may change depending on which model sequence
enters the iteration process. In fact, if models are associated
with different prior proportional probabilities, the model
entering the first position of the iterative process can produce a
different outcome with respect to others. This is the case of the
collaborative project under analysis, whose models were
calibrated and validated on the same set of chemicals, but
with different ratios of molecules included in the applicability
domain, leading to different prior probabilities. To overcome
this potential issue, in this study, we used equal prior
probabilities.11

As for the majority voting approaches, predictions associated
with molecules outside the applicability domain of individual
models were not considered.
2.4. Analysis of Molecular Similarities. A molecular

similarity analysis was carried out to investigate potential
relationships between the molecular structure and misclassifi-
cations provided by QSAR and consensus models. To this end,
extended connectivity fingerprints (ECFPs),34 which encode
for the presence of branched substructures in a binary array,
were used as molecular descriptors, with the setting specified in
Section 2.5. Pairwise molecular similarities, as quantified using
the Jaccard−Tanimoto similarity coefficient,35 were used to
produce a two-dimensional representation of the molecular
space by means of multidimensional scaling (MDS).36

2.5. Software. ECFP04 (1024 bits and 0−2 bond radius)
were calculated by means of DRAGON 737 with default
settings (“Bits per pattern” = 2; “Count fragments”: True;
“Atom Options”: [Atom type, Aromaticity, Connectivity total,
Charge, Bond order]). MDS was carried out in MATLAB
2018b38 by a publicly available toolbox.39 Consensus strategies
were performed using the MATLAB code written by the
authors, which is available for download at http://www.
michem.unimib.it/download/data/bayes-and-majority-voting-
consensus-for-matlab/. Violin plots were created with the code
available at the URL https://github.com/bastibe/Violinplot-
Matlab.

3. RESULTS

3.1. Analysis of Consensus Strategies. 3.1.1. Classifica-
tion Performance. The selected consensus strategies (i.e.,
Bayes [B], protective Bayes [Bp], majority voting loose
[MVL], majority voting intermediate [MVI], and majority
voting strict [MVS]) were used to integrate the predictions of
the individual QSAR models for binding, antagonism, and
agonism. When applying protective consensus strategies, the
outcome predictions were rejected if related to potential
uncertainty, that is, (i) prediction agreement lower than 75 and
100% for MVI and MVL, respectively, and (ii) posterior
probability lower than 95% for protective Bayes. For majority
voting loose (MVL), no prediction was provided in the case of
equal frequency for the two classes (50%).
In analogy with the individual models, the consensus

approaches were evaluated for their classification performance,
in terms of sensitivity (Sn), specificity (Sp), non-error rate
(NER), and coverage (Cvg) (Table 2). A graphical
comparison with individual models is represented in Figure 2
with plots of sensitivity versus specificity values. Moreover,
since sensitivity, specificity, and coverage have the same unit
scale and optimality direction (i.e., ranging from 0 to 100%;
the closer to 100%, the better), a comprehensive performance
index was calculated as their arithmetic average, denoted as
“Utility” in the framework of ranking analysis and multicriteria
decision making.40−43 Both consensus and individual QSARs
were ranked for decreasing values of Utility (Table 2).
Consensus strategies have better NERs than individual

QSARs on average, without substantial losses in terms of
coverage compared to individual models; additionally,
consensus models are always ranked among the top 10
positions (Table 2). The exception is MVS, which provides a
remarkably lower coverage (lower than 52% for all of the
endpoints), due to the required 100% agreement among
multiple predictions (up to 34 predictions). The narrow
coverage of MVS, however, was not counterbalanced by a
better performance compared to the other consensus
approaches. MVS, in fact, showed the lowest NER and Cvg
values among all of the tested consensus strategies. For these
reasons, MVS was not analyzed further in this framework.
Unlike MVS, the other consensus strategies generally

showed a better trade-off between the classification perform-
ance and the chemical space coverage than individual QSARs.
For instance, the two single-binding models in the upper-right
region of the sensitivity versus specificity space (Figure 2A)
have the best predictive performance for binding, with NERs
equal to 85.5 and 83.8%, respectively (Table S1), but they
cover only a small portion of the chemical space, as it results
from the small coverage values (43.7 and 60.7%, respectively).

Table 2. Classification Performance of the Consensus Approaches for Binding, Agonism, and Antagonism Endpointsaa

binding (34 models) antagonism (22 models) agonism (21 models)

consensus
approach

Sn
(%)

Sp
(%)

NER
(%)

Cvg
(%) rank

Sn
(%)

Sp
(%)

NER
(%)

Cvg
(%) rank

Sn
(%)

Sp
(%)

NER
(%)

Cvg
(%) rank

MVL 61.8 91.8 76.8 99.3 4 61.5 87.3 74.4 98.9 3 73.8 97.5 85.7 99.7 2
MVI 60.6 98.3 79.5 80.6 8 60.0 93.8 76.9 80.1 4 76.1 99.0 87.5 91.5 6
MVS 26.9 100 63.5 37.5 39 39.0 99.2 69.1 42.4 25 64.8 99.9 82.3 51.4 17
B 72.3 84.9 78.6 100 1 71.0 81.2 76.1 100 1 74.4 95.1 84.7 100 3
Bp 73.3 85.9 79.6 96.1 7 73.5 82.9 78.2 92.9 2 75.8 95.9 85.9 97.7 4

aFor each consensus approach, sensitivity (Sn), specificity (Sp), non-error rate (NER), coverage (Cvg), and total ranking are reported. B, Bayes;
Bp, protective Bayes; MVL, majority voting loose; MVI, majority voting intermediate; MVS, majority voting strict.
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On the other hand, the protective Bayes (Bp) reached a
slightly lower NER (79.6%) but higher coverage (96.1%).
The models on binding and antagonism (Figure 2A,B)

endpoints are characterized by the unbalanced specificity and
sensitivity values, with several models showing high specificity
(Sp > 90%) and low sensitivity (Sn < 50%). For these
endpoints, consensus methods achieved more balanced values
of sensitivity and specificity, due to the compensation in the
integration of diverse sources of information. This is
particularly evident in the case of the Bayes approaches
(Table 2), ranked as the best overall approach for both binding

and antagonism, and confirms that the uncertainty can be
reduced by the integration of conflicting sources.
The difference in the performance between consensus and

individual QSARs is less pronounced when considering
agonism (Figure 2C), since the individual models have more
homogeneous NERs and balanced Sn and Sp values compared
to the other case studies. Therefore, consensus methods
converged to similar performances.
Majority voting approaches inherit the high specificity values

of individual models for both binding and antagonism
endpoints, while the Bayes consensus led to a higher
sensitivity. This trend could be caused by the low false-
positive rates of individual models (Figure 1) and the way this
information is weighted and integrated into the Bayes
calculation (eq 1). Thus, in this framework, if a compound is
predicted with an equal frequency as active and inactive by the
individual models, it will be more likely assigned to the active
class by the Bayes consensus.
Protective approaches (MVI and Bp) yielded slightly better

results in terms of the classification performance (NER)
compared to their nonprotective counterparts, but with a
relatively larger loss in coverage (up to 18.7% loss), especially
when dealing with majority voting schemes. This explains the
worse position within the ranking of protective approaches
with respect to nonprotective ones (Table 2). As an example,
the MVL approach on the binding endpoint led to an NER of
76.8% and a coverage of 99.3% (rank 4), while the protective
MVI led to a slightly higher NER (79.5%) but considerably
lower coverage (80.6%) and a worse rank (8).

3.1.2. Chemical Space Analysis. To evaluate potential
associations between misclassifications and structural chemical
features, compounds were described by extended connectivity
fingerprints (ECFPs). A multidimensional scaling (MDS) was
then performed to visualize the similarity relationships (as
encoded by the Jaccard−Tanimoto similarity coefficients
calculated on ECFPs) in a bidimensional plot. This allowed
us to analyze the relationship between such a structural
representation and the number of models (individual or
consensus), providing reliable predictions.
In the obtained MDS representation (Figure 3 for the

binding endpoint), chemicals are arranged in two clusters. The
cluster characterized by negative scores on the first dimension
is mainly composed of aliphatic molecules with long alkyl
chains, as well as cyclic aliphatic compounds, mostly with sp3-
hybridized carbon atoms. The most frequent functional groups
are carbonyls, hydroxyls, ethers, and esters, while conjugated
structures or p-systems are almost absent in this cluster. The
second cluster, located in the positive score region on the first
dimension, is mainly composed of conjugated structures,
primarily aromatic rings with many electron acceptor
substituents (e.g., −NO2, −PO3, −SO3, −F, −Cl, and −CO)
and a few donating groups (e.g., −NH2 and −OH).
Most of the misclassified molecules cluster in specific regions

of the chemical space. Similar distributions were obtained for
agonism and antagonism data sets (see Figures S1 and S2).
Aliphatic chemicals (characterized by negative scores on the
first dimension) are in general well-predicted; on the other
hand, misclassifications seem to be mainly grouped in the
aromatic cluster (positive scores on the first dimension).
Besides incorrect predictions, this region is also associated with
lower coverage of the individual models (Figure 3A). Similarly,
the intermediate region between the two clusters is
characterized by low coverage, reflecting regions of model

Figure 2. Plot of sensitivities (Sn) versus specificities (Sp) for the
individual models (black empty circles) and for the consensus
approaches (filled, colored circles) for each endpoint: (A) binding,
(B) antagonism, and (C) agonism. Green, blue, red, yellow, and black
circles indicate Bayes (B), Bayes protective (Bp), majority voting
intermediate (MVI), loose (MVL), and strict (MVS) consensus,
respectively. The size of the circles is proportional to the coverage
(Cvg); the smaller a circle, the lower the coverage. Isolines represent
NER variations (5% steps).
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uncertainty. These observations point toward the presence of
relationships between chemical features (as encoded within
ECFPs) and model performances, since misclassifications are
mainly located in limited portions of the chemical space, where
molecules are often out of the models’ applicability domains.
Some chemicals were incorrectly classified by all of the

individual QSAR models despite being in their applicability
domain, as follows: 19 molecules for binding (all false
negatives), 28 for agonism (25 false negatives and 3 false
positives), and 37 for antagonism (25 false negatives and 12
false positives). We identified some recurring issues that might
explain the observed misclassifications:

1. Borderline Compounds. Several active molecules that
were consistently predicted as inactive are labeled as
having experimental weak or very weak potency (Table
S4), as quantified by the half-maximal activity (AC50, the
molar concentration that produces 50% of the maximum
possible activity). The molecules were thus labeled as
active, but they actually are borderline between activity
and inactivity. Additionally, different activity values due
to differences among experimental protocols have been
already reported on this set of chemicals.24 In such cases,
models and experimental data can be regarded as
belonging to the same level of assessment44 and QSAR
models might provide an indication of the potential
inactivity of these consistently misclassified compounds.

2. Dif ferences between Charged and Neutralized Forms.
Another reason could be related to the different
activities of charged compounds toward their neutralized
counterparts. In fact, traditional QSAR pipelines do not
consider annotated counterions and rely on the
neutralized form for descriptor calculations. Nine false
negatives (two, one, and six for binding, antagonism, and
agonism sets, respectively) showed a different activity in
their neutralized form and with an annotated counterion
(Table S4). For example, 1-butyl-4-methylpyridinium
hexafluorophosphate (DTXSID4049296, CASRN
401788-99-6) is a moderate antagonist (AC50 = 1.94

Figure 3. Plot of the first and second dimensions of the MDS for the
binding endpoint (ECFPs, Jaccard−Tanimoto similarity). Each point
represents a chemical, colored based on the number of misclassifi-
cations of (A) individual QSAR models and (B) consensus strategies;
the darker the point, the higher the number of misclassifications. The
size of each point is proportional to the percentage of models or
consensus strategies (A and B, respectively) that provided a
prediction for the chemical.

Figure 4. Plot of NER and coverage as a function of the number of models included in the consensus calculation. B, Bayes; Bp, protective Bayes;
MVL, majority voting loose; MVI, majority voting intermediate; MVS, majority voting strict.
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μM), but its neutralized form (with removed counter-
ion) is identical to the neutralized forms of 1-butyl-4-
methylpyridinium bromide (DTXSID2049345, CASRN
65350-59-6) and 1-butyl-4-methylpyridinium trifluoro-
methanesulfonate (DTXSID5049368, CASRN 882172-
79-4), which are inactive. This highlights the need for
considering the effect of charge and counterions on the
final biological activity.

Although consensus methods reduced the uncertainty
(Figure 3B), misclassifications and unclassified chemicals are
still mainly located in the critical region characterized by
positive scores of the MDS space (aromatic cluster), thus
following the same pattern as individual models. This confirms
that consensus approaches can reduce uncertainty but cannot
remove it since the integration of erroneous information leads
anyway to poor predictions. The performance of consensus
models could improve by considering the structural features of
chemicals and the individual models’ performance in the
chemical space.
3.2. Consensus Based on Subsets of Models. When

integrating several sources of information, one could decide to
select only the most reliable ones aiming to neglect misleading
information and potentially improve the prediction perform-
ance. To this end, we investigated the performance of
consensus strategies as a function of the number of merged
individual QSARs, ordered by decreasing predictive perform-
ance. For each endpoint, subsets of models were selected as
inputs for the consensus approaches with the following
strategy: (i) the individual QSAR models were ranked
according to their NER; (ii) consensus approaches were
then calculated iteratively adding one model at a time, starting
from an initial subset including the best top five (Figure 4).
The NERs of B, MVI, and MVL are slightly influenced by

the number of included models. This indicates that these
methods are not sensitive to the integration of poor sources of
information in the consensus process. On the contrary, the
protective Bayes approach (Bp) is characterized by better
performances when a few good models are included, at the
expense of the coverage, which shows a considerable decrease.
Therefore, when the maximization of the prediction reliability
is the only priority, only the most reliable sources of
information shall be used in the consensus. When the final
goal is to screen a large set of chemicals for testing
prioritization, as in the case of the CoMPARA project, the
inclusion of all of the available sources of information can
considerably enhance the coverage without a significant loss of
performance. MVS is the consensus approach showing the
highest dependence on the number of included models; in

particular, as soon as spurious information sources enter in the
consensus process, the coverage significantly decreases.
Table 3 collects the classification performance of consensus

approaches calculated on the top five models (chosen based on
NER), which is on average better than that of individual
models, with consensus strategies occupying the first seven
ranking positions for all of the three considered case studies.
The protective consensus (Bp, MVI, and MVS) obtained on

this reduced pool of models provided higher sensitivities than
those based on the integration of all available models (Table
2), especially for binding and antagonism. However, protective
approaches are always ranked worse than the nonprotective
counterparts. Finally, the performance of MVS improves, since
it is easier to reach a 100% prediction agreement with a few
input models compared to using the whole set. For example,
for binding endpoints, the NER increased from 63.5 to 81.6%
and the coverage increased from 37.5 to 87.4%, respectively.

4. CONCLUSIONS

In this study, we evaluated the extent to which consensus
modeling can outperform individual QSARs, by leveraging a
large set of QSAR model predictions on androgen receptor
binding, agonism, and antagonism. The protective and
nonprotective majority voting and Bayes consensus methods
were evaluated for their capability to reduce the prediction
uncertainty, increase the classification performance, and
overcome limitations of individual QSAR models.
The applied consensus strategies provided a better trade-off

between the classification performance and the number of
reliably predicted chemicals compared to single QSARs. In
fact, consensus methods could correctly weigh in and integrate
diverse sources of information, leading to balanced values of
sensitivity and specificity, as well as to increased coverage
compared to the average of individual QSARs. In fact, only a
few models could perform better than consensus in terms of
classification indices, but they included a limited percentage of
chemicals in their applicability domain.
Protective consensus approaches were found to be suitable

to incorporate information of less reliable predictions into the
final assessment, thereby providing a slightly better classi-
fication performance, at the expense of the coverage.
However, consensus strategies were not able to perform well

in those critical regions of the chemical space where most of
the individual models failed, since the integration of erroneous
information leads, by definition, to poor predictions.
Implementation of a structure-driven model selection could
help overcome these limitations of consensus approaches.
The performance of consensus strategies was finally

evaluated as a function of the number of models included in

Table 3. Classification Performance of the Consensus Approaches Estimated on the Binding, Antagonism, and Agonism Sets
Considering the Best Five Models Only (Selected Based on NER)a

binding (5 models) antagonism (5 models) agonism (5 models)

consensus
approach

Sn
(%)

Sp
(%)

NER
(%)

Cvg
(%) rank

Sn
(%)

Sp
(%)

NER
(%)

Cvg
(%) rank

Sn
(%)

Sp
(%)

NER
(%)

Cvg
(%) rank

MVL 63.9 97.7 80.8 92.8 3 71.6 82.8 77.2 96.5 2 73.8 98.8 86.3 98.6 2
MVI 65.7 99.3 82.5 88.4 4 71.9 84.4 78.1 90.9 3 74.1 99.0 86.5 97.0 4
MVS 63.8 99.5 81.6 87.4 6 78.3 87.6 83.0 74.4 5 73.1 99.2 86.1 95.8 6
B 72.0 91.0 81.5 100 1 73.2 79.7 76.5 100 1 74.4 96.1 85.2 99.9 3
Bp 88.3 96.2 92.2 58.6 7 79.4 85.5 82.4 76.3 4 76.1 98.2 87.1 90.0 7

aFor each consensus approach, sensitivity (Sn), specificity (Sp), non-error rate (NER), coverage (Cvg), and total ranking are reported. B, Bayes;
Bp, protective Bayes; MVL, majority voting loose; MVI, majority voting intermediate; MVS, majority voting strict.
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the integration approach. The difference in terms of the
classification performance between nonprotective consensus
strategies applied to all of the available models and to the
subset of the five most reliable ones is on average around 1% of
the non-error rate (balanced accuracy). Therefore, the
performance of nonprotective strategies was not significantly
influenced by the presence of poorly predictive individual
models, thus again demonstrating the ability of these methods
to weigh in and integrate conflicting information. On the
contrary, protective approaches benefit from the selection of
the most predictive models.
Our final recommendation is to choose the consensus

approaches based on the envisaged model application. For
prioritization purposes, where one might want to predict the
largest number of compounds possible, we recommend using
nonprotective approaches. In this case, since MV and the
Bayes consensus lead to comparable performances, MV could
be the method of choice, due to the easier implementation and
interpretation of the results. When the objective is, instead, to
obtain the most accurate estimate possible, at the expense of
the covered chemical space, protective methods should be
applied on a subset of selected, best-performing models.
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