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Natural killer T (NKT) cells are innate-like T lymphocytes that recognize

glycolipid antigens rather than peptides. Due to their immunoregulatory

properties, extensive work has been done to elucidate the immune functions

of NKT cells in various immune contexts such as autoimmunity for more than

two decades. In addition, as research on barrier immunity such as the mucosa-

associated lymphoid tissue has flourished in recent years, the role of NKT cells

to immunity in the skin has attracted substantial attention. Here, we review the

contributions of NKT cells to regulating skin inflammation and discuss the

factors that can modulate the functions of NKT cells in inflammatory skin

diseases such as atopic dermatitis. This mini-review article will mainly focus on

CD1d-dependent NKT cells and their therapeutic potential in skin-related

immune diseases.
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Introduction

Inflammatory immune responses in the skin are attributed to exposure to allergic irritants

(e.g., metals, fragrance chemicals, preservatives, antibiotics, and drugs), pathogens (e.g.,

Staphylococcus aureus and fungi), and ultraviolet (UV) radiation (1, 2). While many immune

cell types contribute to the pathogenesis of inflammatory skin diseases, we focus here on the

role of natural killer T (NKT) cells, a subset of innate-like T cells that co-express T andNK cell

receptors. In general, NKT cells recognize glycolipid antigens presented by MHC I-like CD1d

molecules. NKT cells can be further classified into two subsets based on their distinct TCR

characteristics: type I (invariant TCRa chain, Va14Ja18 in mice and Va24Ja18 in humans)

and type II (diverse TCR, non-Va14Ja18/Va24Ja18) NKT cells (3–6). Type I NKT cells are

also called invariant NKT (iNKT) cells, owing to their unique expression of an invariant TCR

alpha chain, and these cells react with the prototypical glycolipid antigen a-
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galactosylceramide (a-GalCer). Both subsets of NKT cells make

crucial contributions to skin inflammatory responses, playing either

protective or pathogenic roles in animal models of inflammatory

skin disorders (7, 8). Consistent with these animal studies, patients

with inflammatory skin diseases (e.g., atopic dermatitis (AD),

allergic contact dermatitis (ACD), psoriasis, and UV-induced skin

inflammation) display functional alterations in CD1d-restricted

NKT cells (7, 8). Functional heterogeneity of CD1d-restricted

NKT cells may also contribute to the distinct outcome of various

skin diseases. In particular, depending on the expression profile of

CD4 and CD8 co-receptors, type I NKT cells can be subdivided into

CD4+ and CD4-CD8- (double negative, DN) subsets. Furthermore,

type I NKT cells are functionally subclassified by differential

expression of transcription factors: T-bet for NKT1, GATA3 and

PLZF for NKT2, and RORgt for NKT17 cells (3–6). This mini-

reviewwill discuss the immunomodulatory roles of CD1d-restricted

NKT cells in various inflammatory skin disorders.
Atopic dermatitis (AD)

AD is a pruritic and chronic inflammatory skin disorder

characterized by T helper type 2 (Th2)-dominant responses. It is

elicited by pro-Th2 cytokines (e.g., thymic stromal lymphopoietin

(TSLP), IL25, and IL33) released by keratinocytes and fibroblasts

(9). Interestingly, AD’s pathogenesis in humans closely correlates

with quantitative and qualitative changes in iNKT cells among

peripheral blood mononuclear cells (PBMCs) (10–17). Recently,

several studies have reported that AD patients display phenotypic

changes in CD1d-restricted NKT cells, suggesting their potential

role in AD pathogenesis.

The frequencies of surface immune cell markers [i.e., CD4/

CD8 (10, 12, 14, 15), CD161 (13), and CXCR4 (17)] among NKT

cells of AD patients are altered. In addition, one study reported

that AD patient-derived IgG antibodies induce selective

expansion of the CD4+ subpopulation in thymic but not

splenic iNKT cells from non-atopic infants and such IgG-

stimulated CD4+ iNKT cells produced high amounts of IL4,

IL17, and IL10 (18). Recently, Sun et al. reported that skin-

resident CXCR4+ iNKT cells recruited by fibroblast-derived

CXCL12 aggravate AD through excessive secretion of both

IFNg and IL4 (17). Conversely, our study demonstrated that

adoptive transfer of iNKT cells (mostly DN cells) from Va14
TCR transgenic (Tg) NC/Nga (NC) mice effectively prevented

spontaneous AD development in recipient NC mice by

increasing IFNg-producing CD8+ T cells and regulatory T

(Treg) cells (19). Furthermore, consistent with our report,

previous studies have shown that DN iNKT cells can protect

against airway hypersensitivity in a mouse model of asthma via

expansion of Treg cells (20, 21). Moreover, based on studies that

influenza infection or injection of Th1 cytokine-biasing

glycolipids (e.g., a-C-GalCer and napthylurea-modified

a-GalCer) during the neonatal period can induce preferential
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expansion of DN NKT cells in mice, expansion of DN NKT cells

during early life might be effective in preventing AD

development (20, 21). However, repeated injection of a-
GalCer into Va14 TCR Tg NC mice exacerbated AD

pathogenesis, indicating that Th2-biased iNKT cells induced

by repeated a-GalCer injection exhibit adverse effects on AD

symptoms (22). This study therefore suggests that continuous

exposure to pathogen-derived glycolipid antigens can

dramatically influence AD development.

Pro-Th2 cytokines, including TSLP, IL33, and IL25, play a

critical role in initiating Th2 immune responses in AD (9). It has

been reported that enhanced expression of keratinocyte-derived

TSLP in AD patients activates iNKT cells to secrete IL4 and IL13,

which positively correlated with AD severity (23). Moreover,

murine keratin-14+ keratinocytes and HMGB1+ fibroblasts in

the skin express high levels of IL33 after intradermal injection of

S. aureus (24). Although IL33- and IL25-induced iNKT cell

activation has been shown to play an essential role in a mouse

model of asthma (25, 26), it remains unclear whether CD1d-

restricted NKT cells stimulated by IL33 and IL25 contribute to

AD progression. It has been reported that the skin lesions of

most AD patients are heavily colonized with S. aureus (27). In

particular, the prevalence of multi-drug resistant S.

aureus (MRSA) in children with AD has continued to increase

for over ten years (28). Unlike a-GalCer, heat-killed S. aureus

induces the secretion of substantial amounts of IFNg rather than
IL4 by iNKT cells via CD1d-dependent activation in the

presence of DCs (29). In addition, an S. aureus-derived lipid

fraction, containing a 60:40 ratio of PG (phosphatidylglycerol):

lysyl-PG, stimulated type II NKT cells through CD1d-TCR

engagement to produce IFNg, resulting in protection against

MRSA infection (30). However, treatment with sulfatide, a well-

known endogenous ligand for type II NKT cells, significantly

attenuated S. aureus sepsis via decreased secretion of TNFa and

IL6 cytokines in the blood (31), suggesting that type II NKT cells

might be involved in regulating S. aureus pathogenesis in

the skin.

Epicutaneous and intradermal infection of S. aureus induces

skin inflammation through MyD88-dependent signaling (32).

Additionally, TLR-activated DCs can present self-lipid antigens

(e.g., b-D-glucopyranosylceramide (b-GlcCer) and iGb3) to

activate iNKT cells in a MyD88-dependent fashion (33).

Furthermore, rapid up-regulation of Ugcg (ceramide

glucosyltransferase) in DCs accompanied by S. aureus

infection induces endogenous b-GlcCer accumulation in DCs,

resulting in the CD1d-dependent presentation of b-GlcCer to

iNKT cells. Notably, b-GlcCer C24:1 was the most potent b-
GlcCer variant to activate iNKT cells in TLR-stimulated DCs

(34). These findings support the notion that CD1d-restricted

NKT cells contribute to regulating S. aureus infection-elicited

immune responses via CD1d-dependent TCR engagement. It is

well established that staphylococcal superantigens (SsAgs), such

as staphylococcal enterotoxin B (SEB), contribute to the
frontiersin.org

https://doi.org/10.3389/fimmu.2022.979370
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lee et al. 10.3389/fimmu.2022.979370
pathogenesis of skin inflammation in AD (35). In addition,

SsAgs expand Vb8+CLA (cutaneous lymphocyte-associated

antigen)+ memory T cells in PBMCs and induce their

infiltration into skin lesions of AD patients (36). Since iNKT

cells predominantly express a Vb8 chain paired with a Va14-
Ja18 chain, S. aureus (strain COL)-derived superantigen SEB

directly stimulated iNKT cells to release IFNg rather than IL4 in

an MHC II- but not CD1d-dependent manner (37).
Allergic contact dermatitis (ACD)

ACD, also called “contact hypersensitivity (CHS)”, is

considered a Type IV or delayed-type hypersensitivity (DTH)

because it is mainly mediated by T cells. Many iNKT cells

infiltrating ACD skin lesions display an effector phenotype

with high levels of IFNg and IL4, indicating that iNKT cells

might play an essential role in ACD pathogenesis. Interestingly,

the ratio of two cytokines, IFNg and IL4, in the skin of these

patients appears to diverge in a manner dependent on the

allergen type (38).

Nickel allergy is the most prevalent metal-induced ACD. In

the murine experimental setting of nickel allergy, iNKT cells are

predominant in inflamed skin. They secrete high amounts of

Th1-type cytokines (i.e., TNFa, IFNg, and IL2) as well as

cytolytic molecules (NKG2D, perforin, granzymes A and B,

and FasL), suggesting that iNKT cells influence nickel allergy

development (39). Notably, among iNKT cells in the ACD skin

lesions, the DN iNKT subpopulation is over three times more

abundant than the CD4+ iNKT cell subset (39). Furthermore,

since DN iNKT cells exhibit a Th1-like phenotype with high

IFNg and IL2 but low IL4 secretion in mice (19), and CD4- iNKT

cells express high levels of NKG2D on their surface in humans

(40), it is likely that DN but not CD4+ iNKT cells play a

pathogenic role in nickel allergy. Moreover, it has been

reported that keratinocytes do not activate resting iNKT cells

but could serve as targets for activated iNKT cells releasing

cytolytic granules such as perforin and granzymes in ACD

patients (41). Furthermore, the cytotoxicity of iNKT cells

against keratinocytes was CD1d-dependent, consistent with a

pathogenic role in ACD. However, the precise mechanism of

iNKT cell activation in nickel allergy remains to be elucidated.

Since TLR4 signaling (in humans) and MyD88/IL1 signaling (in

mice) have been implicated in nickel-induced ACD (42–44),

either immune cells (i.e., DCs and macrophages) or non-

immune cells such as keratinocytes may mediate iNKT

cell activation.

Different types of ACD can be induced by haptens (e.g., 2,4-

dinitrofluorobenzene (DNFB), dinitrochlorobenzene (DNCB),

and oxazolone). In murine DNFB-induced ACD, iNKT cells

attenuate ACD pathogenesis via modulation of CD8+ T cell

activation but not Treg cell induction, suggesting a protective

role of iNKT cells. These effects were attributed to IL4 and IL13
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through a CD1d-dependent pathway (45). A protective role of

iNKT cells has also been reported in the DNCB-induced ACD

mouse model, in a mechanism involving suppression of IFNg
production (46). These protective effects were strongly linked

with increased IL10-producing regulatory B (Breg) cells

constituting most of the CD1dhiCD5+ subset in the spleen and

peritoneal cavity (46). However, a previous study demonstrated

that iNKT cells play pathogenic roles in the oxazolone-induced

ACD murine model. Oxazolone sensitization triggers iNKT cells

to produce IL4 to co-activate innate-like B1 cells along with

specific antigens for IgM antibody production, ultimately

exacerbating ACD by recruiting effector T cells (47). Previous

studies provide support for a critical role of CD1d-dependent

cognate interactions between iNKT cells and B1 cells to induce

B1 cell-derived circulating IgM in oxazolone-induced ACD (48–

50). Moreover, the progression of oxazolone-induced ACD

could be attenuated effectively by intraperitoneal injection of

the iNKT cell antagonist a-ManCer (51), which provides

support for the pathogenic role of iNKT cells in this model.

Taken together, iNKT cells can play differential roles in ACD

depending on the type of hapten employed in disease induction.
Psoriasis

Psoriasis is a chronic immune-mediated skin disorder

characterized by red, scaly, thickened, inflamed, and itchy

skin. Pro-inflammatory cytokines (i.e., TNFa, IFNg, IL17, and
IL22) are central in initiating psoriatic skin inflammation (52).

Interestingly, Va24+Vb11+ NKT cells (53) or CD3+CD56+ NKT

cells (54) in PBMCs were statistically decreased in number in

psoriasis patients compared with healthy controls. In contrast,

the relative frequencies of iNKT2 and iNKT17 cells in PBMC of

psoriatic patients were increased compared with healthy

controls, whereas total and CD69+ iNKT cells were

significantly decreased in number (55). Moreover, infusion

therapy to psoriatic patients with CD3+CD56+ NKT cells

(which likely consist of CD1d-restricted NKT cells) restored

CD3+CD56+ NKT cell levels in patient PBMCs, leading to

improved skin lesions in severe psoriasis (56). These studies

indicate that CD56+ NKT cells contribute to regulating psoriatic

skin inflammation, possibly by producing Th2 cytokines such

as IL4.

Conversely, psoriatic patients have significantly higher

numbers of skin CD161+ NKT cells in the pre-psoriatic skin

than in normal skin (57). Importantly, CD1d-restricted CD161+

NKT cells from psoriatic patients were capable of rapidly

producing IFNg upon recognition of glycolipid antigen

presented by CD1d on keratinocytes (58). In addition,

intradermal injection of these cells into pre-psoriatic human

skin grafted on severe combined immunodeficiency (SCID) mice

caused the development of psoriatic plaques (59). Furthermore,
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injection of allogeneic blood-derived psoriatic lymphocytes

induced psoriatic plaques in the skin of SCID mice receiving

human skin xenografts, and increased CD161+ NKT cell

infiltration closely correlated with psoriasis pathogenesis (60).

Another study also showed that CD1d-expressing keratinocytes

could stimulate CD161+ NKT cells to produce a more significant

amount of IFNg, resulting in exaggerated psoriasis (58). In

addition, increased activity of PKCz in TNFa-stimulated

keratinocytes has been implicated in enhanced Va24 and

CD1d expression in psoriatic skin (61). Collectively, these

studies suggest that CD161+ NKT cells play a central role in

the pathogenesis of psoriasis by inducing Th1-type cytokine

production in a CD1d-dependent manner.

It is well known that patients with psoriasis show increased

transepidermal water loss (TEWL), which reflects skin barrier

abnormalities (i.e., increased permeability), accompanied by a

reduction of epidermal ceramides (Cer) (62). In the upper

epidermis, b-glucocerebrosidase (GlcCer’ase) was decreased in

psoriatic skin compared with normal skin, suggesting that the

decreased activity of GlcCer’ase may be responsible for GlcCer

accumulation and a reduction of Cer in the lesional skin of

psoriatic patients (63). In particular, the accumulation of 5-25%

GlcCer in the stratum corneum (together with the concomitant

loss of 5-25% Cer) has been implicated in increased TEWL in

human skin (64). Since TNFa increases CD1d expression on

keratinocytes and GlcCer-rich fractions activate NKT cells in a

CD1d-dependent manner (61, 65), it will be worthwhile to

investigate whether treatment with both a GlcCer’ase activator

and a TNFa inhibitor (i.e., infliximab, adalimumab, or etanercept)

can improve clinical symptoms by controlling pathogenic CD1d-

restricted NKT cell activation in psoriatic patients.
UV-induced skin inflammation

CD1d-dependent iNKT cells play protective roles in UV-

induced skin inflammation. For example, iNKT cell-deficient

CD1d KO mice are more resistant to UV-induced apoptosis of

keratinocytes and fibroblasts (66). Furthermore, Fukunaga et al.

demonstrated that UV irradiation suppresses DNFB-

induced CHS in mice. Such immunoregulatory effects of UV

exposure are associated with enhanced IL4 production by iNKT

cells induced via CD1d-expressing Langerhans cells (LCs) in

skin-draining lymph nodes (67). These studies identify CD1d-

dependent NKT cells as therapeutic targets to modulate UV

exposure-elicited Th1-type skin immune diseases such as CHS.

Interestingly, two different NKT cell-deficient mouse models

displayed distinct outcomes in response to UV-induced skin

inflammation: Ja18 KO and CD1d KO mice generated

pathogenic and protective responses, respectively. Although

these results might reflect differential functions between type I

and type II NKT cells (68), the effect of altered TCR repertoire

diversity in Ja18 KO mice should be reassessed (69–71).
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UVB irradiation induces the accumulation of sphingolipids

such as GlcCer in the mouse epidermis (particularly the stratum

corneum), resulting from markedly reduced GlcCer’ase activity,

with a concomitant increase in TEWL (72). One previous study

showed that in vivo glucosylceramide synthase (GCS)-dependent

glycosphingolipid (GSL), in particular GlcCer, influences iNKT

cell development in the mouse thymus (73). Because endogenous

GlcCer is widely found in most mammalian tissues, the GlcCer-

enriched lipid fraction could activate iNKT cells in a CD1d-

dependent manner (34, 65). Therefore, these findings suggest that

the CD1d-dependent immune suppressive effects of UV exposure

might be attributed to iNKT cell recognition of CD1d loaded with

endogenous glycolipids such as GlcCer. In addition, UV

irradiation has beneficial effects on bacterial infection-induced

pathology. For instance, in UV-irradiated mice, CD4+DX5+ NKT

cells produce IL4 to inhibit Candida albicans infection-induced

DTH immune responses in a CD1d-dependent manner (74).
Other skin-related diseases

In patients with scleroderma, also known as systemic

sclerosis (SSc), numerical and functional defects of iNKT cells

have been identified (75). B cells have been suggested as one of

the key players in SSc pathogenesis. Scleroderma patients display

significantly higher IL6 production by B cells, and suppression of

B cell-derived IL6 was attributed to cell contact between iNKT

and CD1d-expressing B cells via the CD1d-TCR axis (76).

Furthermore, iNKT cells have been reported to play important

roles in wound healing (77). For example, after skin wound

induction, the healing process was delayed in iNKT cell-deficient

Ja18 KO mice, which was associated with reduced IFNg
production. iNKT cells promote skin wound healing by

preventing prolonged neutrophilic inflammatory responses

(78). In addition, iNKT cells promote the clearance of

Pseudomonas aeruginosa at the wound site during skin wound

healing by inducing IL22, IL23, and antimicrobial peptide

S100A9 after bacterial infection (79). Alopecia areata (AA) is a

skin disorder that causes hair loss. A previous study showed that,

in the human skin xenograft model, IL10-secreting iNKT cells

prevent AA development, suggesting that their activities are

related to suppression of NKG2D+CD8+ T cells, which are

potential mediators of AA (80). In addition, vitiligo patients

display defective frequencies and functions of iNKT cells in

PBMCs (81).
Concluding remarks

CD1d-restricted NKT cells are critical immune mediators

in regulating skin inflammatory responses (Figure 1 and

Table 1). Thus, modulating the effector functions of NKT

cells may be explored to develop therapeutics for skin
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immune diseases. For example, the effects of NKT cell

activation could be altered by the protocol employed to

administer glycolipids [i.e., dosage (82), frequency (83), route

(84, 85)]. Further, distinct types of NKT cell-stimulating

glycolipids can contribute to the immune balance between

Th1 and Th2 responses (86–88). Interestingly, it has been

reported that the long-chain fatty acid palmitate (C16:0)

directly activates iNKT cells to induce a decrease in IFNg and
IL4 (89), but an increase in IL10 production (90) via inositol-

requiring enzyme 1a. Such iNKT cell-produced IL10

ultimately suppresses inflammatory responses, suggesting

palmitate as a promising candidate to treat inflammatory

skin diseases.

From the perspective of developing topical therapeutics for

skin diseases, the skin barrier remains a significant challenge.

Thus, there is growing interest in designing safe and effective

drug delivery systems. One example is nanocarriers such as

liposomes and micelles to help increase the penetration of

drugs through the skin barrier (91). In particular, palmitate-

containing liposomes may provide significant therapeutic
Frontiers in Immunology 05
benefits to iNKT cell-mediated skin inflammation (92). In

addition, as increased b-GlcCer accumulation by the

reduction of GlcCer’ase activity affects NKT cell activation

(63, 93), extracellular vesicle-based delivery of GlcCer’ase

represents a promising therapeutic approach (94).

Furthermore, the smaller the nanoparticles, the higher their

drug delivery efficiency to the skin (95). Recently, we have

demonstrated that nano-sized graphene oxide (nGO) mediates

anti-inflammatory responses via conversion of iNKT cells

toward a regulatory phenotype (96). Thus, nGO could be a

promising strategy to modulate iNKT cells for suppressing

inflammatory skin diseases.

As already noted, iNKT cells are functionally divided into

several groups depending on the expression of transcription

factors. Despite emerging evidence on distinct roles of iNKT cell

subsets in various immune responses, little is known about their

involvement in inflammatory skin diseases. Thus, it will be

important to explore the precise immunoregulatory

mechanisms of the skin resident iNKT cell subsets to develop

better therapeutic agents for skin inflammation.
FIGURE 1

Cellular networks of CD1d-restricted NKT cells and their soluble factors in regulating skin inflammatory responses. Since the skin is constantly
exposed to external stimuli such as pathogens and allergens, inflammatory immune responses occur when the skin barrier is broken. For
example, during infection, endogenous glycolipids (i.e., b-GlcCer) induced by TLR signaling can stimulate CD1d-restricted NKT cells to produce
large amounts of soluble factors such as cytokines that promote or regulate immune responses, contributing to maintaining skin homeostasis.
Thus, CD1d-restricted NKT cells can link innate and adaptive immunity, despite the small number of these cells in the skin. In addition, CD1d-
restricted NKT cells can regulate immune responses by interacting with non-immune cells (i.e., fibroblasts and keratinocytes) and immune cells
(i.e., Langerhans cells, dermal DCs, Breg cells, and B1 cells) during skin inflammation. Furthermore, staphylococcal superantigens (SsAgs), such
as staphylococcal enterotoxin B (SEB), bind to both MHC II expressed on APC and TCR Vb8 chain of CD1d-restricted NKT cells, consequently
bridging interaction between APC and NKT cells via antigen-independent manner. Thus, TCR Vb8-expressing NKT cells might be involved in
regulating S. aureus pathogenesis in the skin even without glycolipid antigens. Moreover, upon cross-talk with various cell types, CD1d-restricted NKT cells
produce soluble factors (e.g., IFNg, IL2, IL4, IL13, TNFa, perforin, and granzymes), which are either protective or pathogenic in inflammatory skin diseases.
AD, atopic dermatitis; ACD, allergic contact dermatitis; APC, antigen-presenting cells; b-GlcCer, b-D-glucopyranosylceramide; Breg cells, regulatory B
cells; DCs, dendritic cells; LCs, Langerhans cells; SsAgs, staphylococcal superantigens.
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TABLE 1 Roles of CD1d-restricted NKT cells in various inflammatory skin diseases.

Diseases NKT
type

Subtype Relative
proportion

Species Cellular
source

Cytokines/Signaling
molecules

Functions References

Increase Decrease

AD I CD4- ↓ H PBMC ‐ ‐ ‐ (10)

I DN ↓ H PBMC ‐ ‐ ‐ (12)

I CD161+ ↓ H PBMC ‐ ‐ ‐ (13)

I CD4+ ↑ H PBMC ‐ ‐ ‐ (14)

I DN ↓ H PBMC IL4 IFNg ‐ (15)

I ‐ ↑ H PBMC,
Skin

‐ ‐ ‐ (23)

I CXCR4+ ↑ H Skin ‐ ‐ ‐ (17)

I CXCR4+ ↑ M Skin IFNg, IL4, IL17 ‐ Pathogenic (17)

I DN ↑ M Skin IFNg, IL2 ‐ Protective (19)

I DN = M Spleen IL4, IL10 IFNg Pathogenic (22)

ACD I ‐ ↑ H Skin IFNg, IL4 ‐ ‐ (38)

I CD4+,
DN

↑ M Spleen IFNg ‐ ‐ (39)

I ‐ ↑ H Skin Perforin, Granzyme
B, K

‐ ‐ (41)

I ‐ ‐ M ‐ IL4, IL13 ‐ Protective (45)

I, II ‐ ‐ M ‐ ‐ ‐ Protective (46)

I ‐ ‐ M ‐ ‐ ‐ Pathogenic (51)

Psoriasis I ‐ ↓ H ‐ ‐ ‐ ‐ (53)

I CD69+ ↓ H PBMC IL4, IL17, GATA3,
RORgt

‐ ‐ (55)

I CD161+ ↑ H Skin ‐ ‐ ‐ (59)

I ‐ ↑ H Skin PKCz ‐ ‐ (61)

I CD161+ ↑ H Skin IFNg ‐ Pathogenic (58)

UV-induced skin
inflammation

I, II ‐ ‐ M ‐ ‐ ‐ Pathogenic (66)

I ‐ ‐ M Lymph
nodes

IL4 ‐ Protective (67)

I ‐ ‐ M ‐ ‐ ‐ Protective (68)

I, II ‐ ‐ M ‐ ‐ ‐ Pathogenic (68)

Scleroderma I ‐ ↓ H PBMC IL17 ‐ ‐ (75)

Alopecia
areata

I ‐ ↑ H Skin IL10 ‐ Protective (80)

Vitiligo I CD4+ ↓ H PBMC ‐ ‐ ‐ (81)

Skin wound healing I ‐ ‐ M ‐ ‐ ‐ Protective (77–79)
fr
I, type I; II, type II;‐, not evaluated; DN, double negative; ↑, increase; ↓, decrease; =, no change; H, human; M, mouse; PBMC, peripheral blood mononuclear cells.
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