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Abstract
Exposure to stress increases the risk of developing affective disorders such as depression and post-traumatic
stress disorder (PTSD). However, these disorders occur in only a subset of individuals, those that are more
vulnerable to the effects of stress, whereas others remain resilient. The coping style adopted to deal with the
stressor, either passive or active coping, is related to vulnerability or resilience, respectively. Important neural
substrates that mediate responses to a stressor are the orexins. These neuropeptides are altered in the
cerebrospinal fluid of patients with stress-related illnesses such as depression and PTSD. The present experi-
ments used a rodent social defeat model that generates actively coping rats and passively coping rats, which we
have previously shown exhibit resilient and vulnerable profiles, respectively, to examine if orexins play a role in
these stress-induced phenotypes. In situ radiolabeling and qPCR revealed that actively coping rats expressed
significantly lower prepro-orexin mRNA compared with passively coping rats. This led to the hypothesis that lower
levels of orexins contribute to resilience to repeated social stress. To test this hypothesis, rats first underwent 5
d of social defeat to establish active and passive coping phenotypes. Then, orexin neurons were inhibited before
each social defeat for three additional days using designer receptors exclusively activated by designer drugs
(DREADDs). Inhibition of orexins increased social interaction behavior and decreased depressive-like behavior in
the vulnerable population of rats. Indeed, these data suggest that lowering orexins promoted resilience to social
defeat and may be an important target for treatment of stress-related disorders.
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Introduction
Exposure to chronic stress is associated with the onset

and increased incidence of stress-related mental illness

such as depression, anxiety-related disorders, and post-
traumatic stress disorder (PTSD) (McEwen and Stellar,
1993; Yehuda et al., 1994; Ehlert et al., 2001). However,
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Significance Statement

Stress-related mental illnesses occur in only a subset of individuals, whereas others are resilient to the
effects of stress. Our work used an animal model of social stress to identify a substrate of resilience, the
neuropeptides orexins, which are known to be altered in patients with major depressive disorder and PTSD.
We found that orexins are decreased in rats resilient to social stress. To test whether low orexins contribute
to resilience, orexins were inhibited during 3 d of a social defeat stress paradigm, which increased
subsequent social interaction behavior and decreased depressive-like behaviors in a previously vulnerable
population of rats. This suggests that lowering orexins is important in promoting resilience to stress and that
orexins are an important target for treatments of stress-related illness.
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these disorders occur in only a subset of individuals that
are more vulnerable to the effects of stress, whereas
others remain resilient to the effects of stress. The neu-
robiological basis for these vulnerable and resilient phe-
notypes is not fully understood. Determining the neural
substrates underlying vulnerability or resilience could lead
to individualized treatment to either prevent vulnerability
or promote resilience to stress.

Many stress-related disorders are associated with al-
terations in arousal. For example, PTSD is characterized
by hypervigilance and hyperarousal to stimuli related to
the traumatic event (Yehuda, 2000). Important neural sub-
strates that mediate arousal, wakefulness, and vigilance
are the neuropeptides orexins (de Lecea et al., 1998;
Sakurai et al., 1998). Extending beyond their role in me-
diating general arousal and wakefulness, orexins are im-
portant in the response to stressful stimuli that require the
animal to shift from a basal to a reactive state (Berridge
and España, 2005). More specifically, orexins are known
to promote the stress response including activation of
both the sympathetic nervous system and the hypo-
thalamic-pituitary-adrenal axis (Jászberényi et al., 2000;
Kuru et al., 2000; Winsky-Sommerer et al., 2005; Spinazzi
et al., 2006; Heydendael et al., 2011; Kuwaki, 2011; John-
son et al., 2012; Messina et al., 2014). Conversely, orexin
neurons are activated by stressors such as forced swim
and can also be activated by direct administration of the
stress regulatory peptide corticotropin-releasing hormone
(Winsky-Sommerer et al., 2005; Chang et al., 2007; Fur-
long et al., 2009; Chen et al., 2013). Importantly, orexin
levels are altered in the CSF of patients with depression
and PTSD. Together, both preclinical and clinical data
suggest that orexins are involved in the processes by
which stress leads to some psychiatric disorders (Strawn
et al., 2010; Johnson et al., 2012). However, it is not
known whether orexins contribute to individual differences
that occur in response to stress, which are important in
determining an individual’s resilience or vulnerability to some
psychiatric disorders.

One factor relating to susceptibility and resiliency is the
coping style adopted to deal with the stressor (Veenema
et al., 2003). Both active coping, characterized by the fight
or flight response, and passive coping, characterized by
heightened immobility, could be engaged during expo-
sure to threatening stimuli (i.e., stressors; Engel and
Schmale, 1972; Koolhaas et al., 1999; Southwick et al.,
2005; Wood and Bhatnagar, 2015). Clinical studies have

indicated that humans demonstrating passive coping are
more likely to develop depression than those who display
active coping (Folkman and Lazarus, 1980; Billings and
Moos, 1984). The present experiments used an animal
model of social stress in which coping strategies vary and
are associated with resilience or vulnerability to stress, as
assessed by measures in the neuroendocrine system,
behavior (Wood et al., 2010, 2015; Chen et al., 2015b;
Finnell et al., 2017b), and inflammatory processes (Pearson-
Leary et al., 2017).

These experiments aimed to examine orexins as a po-
tential substrate underlying differences in vulnerability and
resilience in response to social defeat stress in rats. First,
orexin expression was measured by in situ radiolabeling
and by quantitative PCR (qPCR) in passive coping (vul-
nerable) and active coping (resilient) rats, revealing that
orexin expression was lower in resilient rats. This led to
the hypothesis that lower levels of orexin underlie resil-
ience to repeated social stress. To test this hypothesis,
after rats had established active or passive coping phe-
notypes over 5 d of social defeat, orexin neurons were
inhibited before each social defeat for three additional
days using designer receptors exclusively activated by
designer drugs (DREADDs). Dampening orexin action in
passively coping rats before each defeat increased social
interaction and decreased depressive-like behavior, pro-
moting resilience. These studies establish that low orexin
function contributes to the active/resilient behavioral phe-
notypes in response to repeated social defeat stress.

Materials and Methods
Animals

Adult, male Sprague-Dawley rats (275–300 g at time of
stress) were used as controls or intruders (Charles River),
and male Long-Evans retired breeders (650–850 g)
served as residents (Charles River). Rats were individually
housed with a 12-h light, 12-h dark cycle (lights on at
0700) in a climate-controlled room with ad libitum food
and water. Rats were given 5 d of acclimation before
experimentation. Studies were approved by Children’s
Hospital of Philadelphia Research Institute’s Institutional
Animal Care and Use Committee and conformed to the
National Institutes of Health Guide for the Use of Labora-
tory Animals.

Social defeat paradigm
The social defeat paradigm used in this study was

based on the resident-intruder model originally developed
by Miczek (1979) (see Fig. 1A). Sprague-Dawley rats were
randomly assigned to either a control or social defeat
group. During social defeat, each rat was placed into the
home cage of an unfamiliar Long-Evans retired breeder
(resident) for each of 5–8 consecutive days. Typically, the
resident and intruder investigate each other for a short
period of time (1–3 min), followed by attacks by the resi-
dent, which result in a defeat of the intruder. A defeat was
determined when the intruder assumed a supine posture
and froze for at least 2–3 s. On assuming the defeat
posture, the resident and intruder were separated by a
wire mesh barrier until 30 min had elapsed from time of
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initial placement into the cage of the resident. The barrier
allowed for visual, auditory, and olfactory contact but
prevented physical contact and further attacks on the
intruder. The latency to be defeated was then recorded. If
no defeat occurred within 15 min, the rats were separated
with a wire mesh barrier for the remaining 15 min. Control
rats were placed into a clean novel cage behind a wire
mesh barrier for 30 min. Once the 30-min social stress
was complete, each rat was placed back in its home
cage. The average latency of each rat over the course of
7 d was entered into an R script used to perform cluster
analyses on average defeat latencies (code available at
www.github.com/cookpa/socialdefeat). The bootstrap
classification starts from the assumption that the average
latencies are drawn from a bimodal distribution. An initial
classification of the average latencies is performed using
“partitioning around medoids” (PAM) implemented in R’s
cluster package (Reynolds et al., 1992). PAM is a robust
implementation of k-means clustering, which separates
data into a predefined number of clusters (in this case, 2,
one for passive coping and one for active coping). The
bootstrap algorithm resamples the data to assess the
uncertainty in the classification. For each bootstrap itera-

tion, we sample with replacement from the original laten-
cies and rerun the PAM clustering. After 10,000 iterations,
we define the probability of active coping classification for
each of the average latencies as the fraction of the 10,000
bootstrap iterations in which that latency is classified as
active coping. Latencies that are consistently classified as
active coping have probability 1.0, and those classified
consistently as passive coping have probability 0.0. Rats
with a value between 0.1 and 0.9 changed their classifi-
cation in �10% of the bootstrap samples, and these
animals were excluded from the experiment. Four animals
of 42 were excluded based on this criterion.

Experiment 1: Social defeat and prepro-orexin
expression

In one cohort of either control rats or those exposed to
7-d social defeat, in situ hybridization was used to
measure the level of prepro-orexin mRNA in the lateral
hypothalamus. Briefly, 20-�m sections of the lateral hy-
pothalamus from brains of control, passively coping, and
actively coping rats were collected on a cryostat (rostral-
caudal coordinates relative to bregma: –1.30 to –4.60
mm) and processed for in situ hybridization. Hybridization

Figure 1. Social defeat paradigm and prepro-orexin expression in control and defeated rats. A, Social defeat paradigm. B, Average
defeat latency over 7 d of social defeat. Passively coping rats have an average defeat latency �300 s, whereas actively coping rats
have an average defeat latency �300 s. C, Prepro-orexin expression in control, passive coping, and active coping rats. Top:
representative images of in situ radiolabeling for prepro-orexin in control, passive coping, and active coping rats. Bottom:
quantification of in situ radiolabeling in each treatment group reveals that actively coping rats have significantly less prepro-orexin
mRNA in the lateral hypothalamus compared with control or passively coping rats. There is a negative correlation between average
defeat latency and in situ radiolabeled orexin mRNA. D, Prepro-orexin mRNA expression in control, passive coping, and active coping
rats as measured by qPCR. Actively coping rats express significantly less prepro-orexin mRNA than control and passively coping rats.
There is a negative correlation between average defeat latency and qPCR-quantified orexin mRNA. �, p � 0.05; ��, p � 0.01;
���, p � 0.001.
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localization of mRNAs using 35S-labeled antisense mRNA
probes was performed. In short, coronal brain slices en-
compassing the lateral hypothalamus were hybridized, in
situ, with antisense to orexin (donated by Dr. Teresa
Reyes, University of Cincinnati). Hybridizations for all
slices were conducted in a single lot followed by analysis
of the signal on x-ray film. Routine controls consisted of
sense-strand probes labeled to similar specific activities as
the antisense probes. X-ray films were analyzed using Im-
ageJ. Background estimates were produced by optical den-
sity measurements over non–positively hybridized regions.

Another cohort of either control rats or those exposed
to 7 d of social defeat was used to assess orexin mRNA
by qPCR. Control, passively coping, and actively coping
rats were killed and fresh punches of lateral hypothalamus
were collected. RNA was extracted with Purelink mRNA
kit according to the manufacturer’s protocol (Thermo
Fisher Scientific). RNA was reverse transcribed to cDNA
using a high-capacity cDNA reverse transcription kit
(Thermo Fisher Scientific). qPCR was performed using
Taqman Gene Expression Assays (Thermo Fisher Scien-
tific) with primers for prepro-orexin (Hs01891339_s1) and
Actb (Hs01060665_g1) and the Applied Biosystems 7500
Real Time PCR System.

Experiment 2: Inhibiting orexins during social defeat
using DREADDs

DREADDs are viruses that contain synthetic GPCRs
and can be activated by the otherwise pharmacologically
inert ligand clozapine-N-oxide (CNO). We obtained the
CMV-hM4Di-mCitrine plasmid from Dr. Bryan Roth
(University of North Carolina, Chapel Hill). Slice electro-
physiology has demonstrated that CNO application to
hippocampal cells expressing this Gi-coupled designer
receptor causes hyperpolarization and decreased firing
rate (Armbruster et al., 2007). Recent studies have found
that CNO silencing of particular brain areas can produce
striking behavioral effects, such as a reduction in anxiety-
like behavior (McCall et al., 2015). We next obtained a
1295-bp promoter for human prepro-orexin gene (Ple112)
from Addgene plasmid no. 29004 (gift of Dr. Elizabeth
Simpson, University of British Columbia). This promoter
was subcloned upstream of the hM4Di-mCitrine region to
replace the construct’s CMV promoter to drive transgene
expression specifically in orexin neurons. The fragment
Ple112-hm4Di-mCitrine was then subcloned between the
inverted terminal repeats (ITRs) of the AAV2 genome. In a
separate study, we found that AAV1 serotype displayed
optimal tropism for Sprague-Dawley rat hypothalamic
neurons when delivered in vivo and compared to AAV5, 8,
and 9 expression of GFP reporters driven by common
constitutively active promoters Synapsin and CB7.
Based on this finding, the University of Pennsylvania
Viral Vector Core produced a recombinant adenovirus
rAAV2/1-Ple112-hM4Di-mCitrine (using AAV1 serotype
capsid for optimal transduction in orexin neurons) for
our use. Previous studies using this virus demonstrate
that activation of this construct in vivo decreases cFos
expression in orexin neurons, supporting the efficacy of
this construct (Grafe et al., 2017a).

Five cohorts of male rats (20 rats per cohort) were
anesthetized using a cocktail of ketamine, xylazine, and
acepromazine. Using stereotaxic technique, virus con-
taining the DREADDs construct (109 titer, 1 �l bilaterally)
was injected into the lateral hypothalamus (2.5 mm caudal
to bregma, 1.8 mm from midline and 8 mm ventral). We
verified the expression of the DREADDs constructs by
immunofluorescence and determined that optimal ex-
pression occurs at 4 wk postinjection. Thus, virus was
expressed for 4 wk before social defeat procedures, and
subsequent behavior was assessed (see experimental
paradigm in Fig. 2A).

Male rats expressing DREADDs-containing virus were
either assigned to a control condition or exposed to the
social defeat paradigm. Defeated rats were exposed to 5
d of social defeat without orexin manipulation, allowing
the emergence of passively and actively coping pheno-
types based on average defeat latency over those 5 d. In
the original study describing these naturally occurring
differences in response to social defeat (Wood et al.,
2010), the 5-d latencies are predictive of the 7-d defeat
latencies. In addition, previous publications have demon-
strated that 5 d of social defeat is sufficient to induce
depressive-like behavior in passively coping rats (but not
actively coping rats; Wood et al., 2015; Finnell et al.,
2017a). Thus, 5 d of defeat is comparable to the 7 d of
defeat as performed in experiment 1. Body weights were
collected both before and after the 5 d of defeat. Then
control, actively coping, and passively coping rats were
randomly assigned to a vehicle or CNO group. In these
rats, on days 6–8, either vehicle (saline and 8% dimethyl
sulfoxide) or CNO (2 mg/kg; Sigma-Aldrich) was injected
60 min before each defeat (or at the same time of day in
control rats). This dose is in accordance with doses used
in previous DREADDs studies in rats (Farrell and Roth,
2013) and those we have previously used to inhibit orexin
neurons using hM4Di DREADDs. This timing was chosen
because CNO promotes behavioral effects in the rat
within 30 min of administration, and effects last up to 4 h
after administration (Alexander et al., 2009; Farrell and
Roth, 2013; Hasegawa et al., 2014). Thus, the final groups
were vehicle-treated control rats, CNO-treated control
rats, vehicle-treated passively coping rats, CNO-treated
passively coping rats, vehicle-treated actively coping rats,
and CNO-treated actively coping rats.

On day 9, two cohorts were sacrificed, and in situ
hybridization was used to measure the level of prepro-
orexin mRNA in the lateral hypothalamus, as described in
experiment 1. Three other cohorts were exposed to a
social interaction test in a 70 � 70-cm arena. In brief, rats
were placed in the arena with another male Sprague-
Dawley rat of similar size and weight. Rats were allowed
to interact in this arena for 15 min and were videotaped
and analyzed by Ethovision XT video tracking software
(Noldus Information Technology). Latency to interact (time
in seconds until experimental rat explores stimulus rat),
total time interacting (number of seconds that the exper-
imental rat explores stimulus rat), and distance moved
were calculated. Total time interacting and latency to
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interact were verified by hand coding from an observer
blind to experimental conditions.

On days 11 and 12, rats were tested in the Porsolt
forced swim test (FST). Based on the work of Lucki (1997),
FST was performed on two consecutive days. Rats were
exposed to 15 min of forced swim (day 1), followed 24 h
later by a 5-min forced swim (day 2). The 5-min swim test
was videotaped from directly above the clear glass cylin-
der (46 cm height, 20 cm diameter), filled to 35 cm with
water at a temperature of 25°C (�1°C). Two trained ob-
servers categorized the rat’s videotaped behavior (day 2)
every 5 s for immobility, swimming, or climbing. Percent-
age time swimming and climbing were also combined to
analyze percentage time active.

After all behavioral experiments were complete, animals
were killed, brains were collected, and 20-�m lateral hy-
pothalamic slices were analyzed for both prepro-orexin
mRNA expression (as previously described) and viral ex-

pression. Specifically, immunofluorescence for visualizing
the virus tag was conducted as follows. Tissue was incu-
bated with primary antibodies for both Orexin A (1:250,
sc-8070; Santa Cruz Biotechnology) and GFP (1:500,
ab290; Abcam). As the mCitrine tag on the DREADDS
virus originates from Aequorea victoria jellyfish, GFP an-
tibodies are known to react with these proteins (Le et al.,
2006). Sections were then incubated with Alexa Fluor 488
donkey anti-goat and Alexa Fluor 647 donkey anti-rabbit
secondary antibodies (1:200, A-11055 and A-31573; Life
Technologies). Images were acquired with a Leitz DMR
microscope with a digital camera (Leica; Fig. 2B). The NIH
ImageJ colocalization plugin was used to determine per-
centage orexin cells transduced by the virus. Approxi-
mately 70% of the orexin cells are transfected at this
time, consistent with previous studies. The numbers of
DREADDs-expressing cells and Orexin A–labeled cells
were also methodically counted from anterior to posterior

Figure 2. Expression of DREADDs-containing virus and inhibiting orexins during social defeat. A, A timeline of the experimental
paradigm. 4 wk after DREADDs injection, rats are exposed to 8 d of social defeat (the latter 3 d Veh or CNO is injected before defeat),
followed by social interaction and forced swim test. B, Representative images displaying viral expression of DREADDs in the lateral
hypothalamus (LH) at 4 wk. C, Composite image displaying the spread of viral expression along the LH is depicted using rat brain atlas
images (Paxinos and Watson, 1998). Each red dot represents a cell expressing the viral tag. D, Prepro-orexin expression in vehicle-
and CNO-treated control, passive coping, and active coping rats on day 9 (before further behavioral testing). Top: representative
images of in situ radiolabeling for vehicle- and CNO-treated prepro-orexin in control, passive coping, and active coping rats. Bottom:
quantification of in situ radiolabeling in each treatment group reveals that actively coping rats have significantly less prepro-orexin
mRNA in the lateral hypothalamus compared with passively coping rats. CNO treatment reduces prepro-orexin expression in
passively coping rats to levels similar to that of actively coping rats. E, Prepro-orexin expression in vehicle- and CNO-treated control,
passive coping, and active coping rats on day 12 (after social interaction and forced swim test behaviors). Top: Representative images
of in situ radiolabeling for vehicle- and CNO-treated prepro-orexin in control, passive coping, and active coping rats. Bottom:
quantification of in situ radiolabeling in each treatment group reveals that actively coping rats have less prepro-orexin mRNA in the
lateral hypothalamus compared with passively coping rats. CNO treatment reduces prepro-orexin expression in both control and
passively coping rats to levels similar to that of actively coping rats. �, p � 0.05; #, p � 0.10.
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extent of the lateral hypothalamus (–2.12 to –3.60 mm;
Fig. 2C).

Statistical analysis
Data are presented as the mean � SEM. For orexin

expression by in situ and qPCR, and body weight gain,
one-way ANOVA was performed, followed by Tukey’s
post hoc t test. For orexin expression (before and after
behavior), social interaction, and forced swim test data,
two-way ANOVA [stress (control, passive coping, or ac-
tive coping) by drug (vehicle or CNO) treatments] was
used, followed by Tukey’s post hoc t tests. All analyses
used � � 0.05 as the criterion level of significance. Sta-
tistical analysis was conducted with GraphPad Prism
(GraphPad Software) to identify statistical differences. Su-
perscript letters listed with p-values correspond to the
statistical tests shown in Table 1.

Results
Prepro-orexin expression in rats vulnerable or
resilient to defeat

After 7 d of social defeat (Fig. 1A), rats were split into
passive coping and active coping clusters based on av-
erage latency to defeat. Rats that displayed passive cop-
ing had an average defeat latency of 182 s, whereas rats
that displayed active coping had an average defeat la-
tency of 419 s (Fig. 1B; p � 0.001a, t test, n � 16/group).
Prepro-orexin expression was then examined in two sep-
arate cohorts of control, passively coping, and actively
coping rats; one cohort was used for in situ radiolabeling
and the other was used for qPCR. Quantification of in situ
radiolabeling in each treatment group revealed that ac-
tively coping rats had significantly less prepro-orexin
mRNA in the lateral hypothalamus compared with pas-
sively coping rats (Fig. 1C, F(2,23) � 8.4, p � 0.002b;

Table 1. Statistical analysis

Location Data structure Type of test Confidence interval (95%)

a Normal distribution t test Passive vs. active latency: 189.8 to 284.3
b Normal distribution One-way ANOVA, Tukey’s

t test
Control vs. active coping orexin mRNA: 1.3 to 2093; passive vs.

active coping orexin mRNA: 749.8 to 3180
c Normal distribution Correlation Latency vs. orexin mRNA: –0.8 to 0.0
d Normal distribution One-way ANOVA, Tukey’s

t test
Control vs. active coping orexin mRNA: 0.2 to 1.2; passive vs.

active coping orexin mRNA: 0.1 to 1.2
e Normal distribution Correlation Latency vs. orexin mRNA: –0.8 to –0.0
f Normal distribution One-way ANOVA, Tukey’s

t test
Control vs. passive coping body weight: 5.6 to 19.5; control vs.

active coping body weight: 0.2 to 13.8
g Normal distribution Two-way ANOVA, Tukey’s

t test
Vehicle-treated control vs. vehicle-treated passive coping orexin

mRNA: –1157 to –73.81; vehicle-treated passive coping vs.
vehicle-treated active coping orexin mRNA: 80.6 to 1002;
vehicle-treated passive coping vs. CNO-treated passive
coping orexin mRNA: –26.99 to 1057

h Normal distribution Two-way ANOVA, Tukey’s
t test

Vehicle-treated passive coping vs. vehicle-treated active coping
interaction time: –101.5 to –0.6; vehicle-treated passive
coping vs. CNO-treated passive coping interaction time:
–116.6 to –8.6

i Normal distribution Two-way ANOVA, Tukey’s
t test

Vehicle-treated control vs. vehicle-treated passive coping %
immobility: –26.4 to –3.9; vehicle-treated control vs. CNO-
treated control % immobility: –25.7 to –5.6; vehicle-treated
passive coping vs. CNO-treated passive coping % immobility:
0.6 to 23.7

j Normal distribution Two-way ANOVA, Tukey’s
t test

Vehicle-treated control vs. vehicle-treated passive coping %
activity: 3.9 to 26.4; vehicle-treated control vs. CNO-treated
control % activity: 5.6 to 25.6; vehicle-treated passive coping
vs. CNO-treated passive coping % activity: –23.7 to –0.6

k Normal distribution Two-way ANOVA, Tukey’s
t test

Vehicle-treated control vs. vehicle-treated passive coping %
swimming: 4.3 to 26.3; vehicle-treated control vs. CNO-
treated control % swimming: 3.5 to 24.0

l Normal distribution t test Vehicle vs. CNO-treated social interaction time: –32.5 to 50.8
m Normal distribution t test Vehicle vs. CNO-treated social interaction latency: –24.8 to 38.8
n Normal distribution t test Vehicle vs. CNO-treated social interaction distance traveled:

–38,305 to 63,114
o Normal distribution t test Vehicle vs. CNO-treated % immobility: –5.7 to 21.8
p Normal distribution t test Vehicle vs. CNO-treated % activity: –21.8 to 5.7
q Normal distribution Two-way ANOVA, Tukey’s

t test
Vehicle-treated control vs. vehicle-treated active coping orexin

mRNA: –35.82 to 889.3; vehicle-treated passive coping vs.
vehicle-treated active coping orexin mRNA: –121.5 to 846.1;
vehicle-treated control vs. CNO-treated control orexin mRNA:
92.88 to 975.8; vehicle-treated passive coping vs. CNO-
treated passive coping orexin mRNA: 123.8 to 1091
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one-way ANOVA followed by Tukey’s t test; n � 8/group,
4 slices per animal). Moreover, there was a trend for a
negative correlation between average defeat latency and
prepro-orexin mRNA as measured by in situ radiolabeling
(Fig. 1C, R2 � 0.260, p � 0.062c). qPCR analysis of
prepro-orexin levels in another cohort of rats demon-
strated a consistent result: rats that displayed active cop-
ing expressed significantly less prepro-orexin mRNA than
passively coping rats (Fig. 1D, F(2,22 � 4.4, p � 0.025d,

one-way ANOVA followed by Tukey’s t test; n � 8/group).
Average defeat latency was negatively correlated with
orexin mRNA as quantified by qPCR (R2 � 0.276, p �
0.044e). Together, these results demonstrate that lower
orexin expression is associated with an active coping
strategy, and thus, based on previous findings (Wood
et al., 2010), a resilient phenotype.

Inhibition of orexins during the last 3 d of social
defeat using DREADDs

To determine the effects of orexin inhibition on behav-
ioral outcomes produced by social defeat, rats were first
injected with an inhibitory DREADDs viral construct which
was allowed to express for 4 wk (for experimental para-
digm and confirmation of DREADDs expression, see Fig.
2A–C). Next, rats underwent social defeat for 5 d and were
split into passive and active coping groups based on
average defeat latency (see Methods for more detail on
how this analysis was performed). As expected, body
weight gain was significantly different between control
and defeated groups (data not shown; F(2,38) � 6.766,
p � 0.003f, one-way ANOVA followed by Tukey’s t test;
n � 16/group). Specifically, control rats that did not un-
dergo social defeat stress showed significantly more
weight gain than those that did. In addition, rats that
displayed passive coping had less weight gain compared
with actively coping rats.

Two cohorts of rats were sacrificed before social inter-
action behavior to examine the effect of social defeat and
vehicle or CNO treatment on prepro-orexin mRNA ex-
pression (Fig. 2D). Prepro-orexin mRNA levels appeared
to differ between treatment groups (defeat effect, F(2,27) �
3.2, p � 0.055g; CNO effect, F(1,27) � 3.6, p � 0.067,
two-way ANOVA, followed by t tests, n � 6/group). Par-

ticularly, vehicle-treated actively coping rats had lower
levels of prepro-orexin mRNA than vehicle-treated pas-
sively coping rats. Thus, this phenotype of lower orexin
expression in rats that demonstrate an active coping
strategy is stable. Additionally, CNO treatment during the
last 3 d of defeat reduced prepro-orexin mRNA levels in
passive coping rats to that of control and active coping
rats. To examine whether reducing orexins promotes be-
havioral correlates of resilience, 3 additional cohorts of
rats were exposed to 5 d of social defeat followed by
vehicle or CNO treatment before each defeat on days
6–8. These cohorts were then assayed for anxiety-like
behavior in the social interaction test and depressive-like
behavior in the forced swim test.

On day 9 of the experimental paradigm, rats were
tested for social interaction with a stimulus rat (Fig. 3). The
amount of time spent interacting was significantly differ-
ent between treatment groups (Fig. 3A; defeat effect,
F(2,48) � 3.3, p � 0.043h; interaction effect, F(2,48) � 3.4,
p � 0.045, two-way ANOVA followed by Tukey’s t test,
n � 12/group). Importantly, in vehicle-injected groups,
actively coping rats spent significantly more time interact-
ing than passively coping rats, replicating previous find-
ings (Chen et al., 2015b; Pearson-Leary et al., 2017). CNO
treatment (inhibition of orexin neurons during the last 3 d
of social defeat) increased time spent interacting in pas-
sively coping rats but had no effect in actively coping rats
or control rats. There were no significant differences in
latency to interact between the treatment groups (Fig. 3B).
Additionally, there were no significant differences in the
distance moved between the treatment group, indicating
that the manipulation of orexin action did not simply
change general arousal or locomotor activity (Fig. 3C).
Thus, dampening of orexin action during the last 3 d of
social defeat specifically increased social interaction in
the vulnerable population of rats to the level of resilient
rats.

On days 11 and 12 of the experimental paradigm, rats
were tested in the Porsolt forced swim paradigm to
assess depressive-like behavior (Fig. 4). Analysis of per-
centage time immobile revealed significant differences
between treatment groups (Fig. 4A; interaction effect,
F(2,47) � 6.6, p � 0.003i, two-way ANOVA followed by

Figure 3. Social interaction behavior after the social defeat paradigm. A, Time spent interacting with the stimulus rat. Actively coping
rats spend significantly more time interacting than passively coping rats. CNO treatment (inhibition of orexin neurons) increases time
spent interacting in passively coping rats. B, Latency to interact with the stimulus rat. There were no significant differences in latency
to interact between the treatment groups. C, Distance moved in the social interaction arena. There were no significant differences in
the distance moved between the treatment groups. �, p � 0.05.
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Tukey’s t test, n � 12/group). Specifically, vehicle-treated
passively coping rats spent significantly more time immo-
bile than control rats, replicating previous findings (Wood
et al., 2010). CNO treatment (inhibition of orexin neurons
during the last 3 d of social defeat) decreased time spent
immobile in passively coping rats but had no effect in
actively coping rats. CNO treatment in control animals
increased time spent immobile. Percentage time spent
active was next analyzed, revealing that vehicle-injected
passively coping rats spent less time active than control
rats, and inhibition of orexin neurons during social defeat
reversed this effect (Fig. 4B; interaction effect, F(2,46) �
6.7, p � 0.003j, two-way ANOVA followed by Tukey’s t
test, n � 12/group). Activity was then subdivided into
swimming and climbing behaviors. Analysis of swimming
behavior revealed that vehicle-injected passively coping
rats spent significantly less time swimming than vehicle-
injected control rats (Fig. 4C; interaction effect, F(2,46)�
4.1, p � 0.022k, two-way ANOVA followed by Tukey’s t
test, n � 12/group). Moreover, CNO treatment decreased
time spent swimming in control rats but had no effect on
passively or actively coping rats. Lastly, there were no
significant differences between the treatment groups in

climbing behavior (Fig. 4D). Thus, it appears that the
differences in activity between treatment groups can
mostly be attributed to swimming behavior. However,
CNO treatment in passively coping rats appeared to in-
crease a combination of both swimming and climbing;
these measures were only significantly increased when
summed together as total activity.

A control experiment was performed to determine if
CNO alone had any impact on behavior in non–
DREADDs-expressing rats. Specifically, a separate naive
cohort of rats was injected with either vehicle or CNO for
three consecutive days, followed by testing in the social
interaction test and forced swim test. This was the same
treatment regimen as in the original experiment above.
The data indicate that total social interaction time did not
differ between vehicle- and CNO-treated groups (395.6 �
10.5 vs. 404.8 � 16.5 s, p � 0.600l, t test, n � 6/group).
Latency to interact was also not different between treat-
ment groups (13.0 � 2.9 vs. 19.4 � 6.0 s, p � 0.534m, t
test, n � 6/group). Moreover, distance traveled in the
social interaction arena did not differ between treatment
groups (21,458.2 � 3872.1 vs. 28,746.6 � 9193.6 cm, p �
0.403n, t test, n � 6/group). Lastly, neither percentage

Figure 4. Forced swim test behavior after the social defeat paradigm. A, Percentage of time spent immobile in the forced swim test.
Passively coping rats spend significantly more time immobile than control rats. CNO treatment (inhibition of orexin neurons) decreases
time spent immobile in passively coping rats. CNO treatment (inhibition of orexin neurons) increases time spent immobile in control
rats. B, Percentage of time spent active in the forced swim test. Vehicle-treated passively coping rats spend significantly less time
active than control rats. While CNO treatment decreases time spent active in control rats, it increases time spent active in passively
coping rats. C, Percentage of time spent swimming in the forced swim test. Passively coping rats spend significantly less time
swimming than control rats. CNO treatment decreases time spent swimming in control rats. D, Percentage of time spent climbing in
the forced swim test. There were no significant differences in time spent climbing between the treatment groups. �, p � 0.05;
��, p � 0.01.
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immobility nor total activity differed between vehicle- and
CNO-treated groups in the forced swim test (immobility:
20.8 � 2.5 vs. 28.9 � 4.2, p � 0.19o, t test, n � 6/group;
activity: 79.2 � 4.2 vs. 71.1 � 2.5, p � 0.19p, t test, n �
6/group). In summary, CNO treatment alone in non–
DREADDs-expressing rats did not cause significant
changes in the social interaction or forced swim test
compared with vehicle-treated animals. These results in-
dicate that the effects of DREADDs inhibition in the ex-
periment above were not due to the effects of CNO alone.

Prepro-orexin mRNA levels differed between treatment
groups after the forced swim test on day 12 (Fig. 2E, CNO
effect, F(1,38) � 8.0, p � 0.007q, two-way ANOVA fol-
lowed by Tukey’s t test, n � 12/group). Namely, vehicle-
treated actively coping rats had lower prepro-orexin
expression compared with vehicle-treated passively cop-
ing rats. Once again, this phenotype of lower orexin ex-
pression in actively coping rats is stable. CNO treatment
reduced prepro-orexin expression in both control and
passively coping rats. Overall, these results indicate that
reducing orexin action in the last 3 d of social defeat
increased social interaction time and reversed the
depressive-like behavior observed in the vulnerable pop-
ulation of rats.

Discussion
These experiments used a social defeat paradigm that

generates two different populations of rats that demon-
strate either passive or active coping strategies, based on
their average latency to be defeated. Previous studies
have indicated that rats displaying a passive coping strat-
egy demonstrate subsequent anxiety- and depressive-
like behaviors (Wood et al., 2010; Chen et al., 2015b;
Pearson-Leary et al., 2017). This is consistent with human
studies, which have demonstrated that passive coping is
more often associated with the development of major
depressive disorder (MDD). Our results suggest a sub-
strate of resilience, namely, the neuropeptides orexins,
which are known to mediate the stress response and are
altered in patients with MDD and PTSD (Kuru et al., 2000;
Yehuda, 2000; Winsky-Sommerer et al., 2004; Spinazzi
et al., 2006; Furlong et al., 2009; Strawn et al., 2010; Chen
et al., 2015a). In short, we first discovered that lower
orexin expression was associated with active coping
strategies. We next inhibited orexin action during the last
3 d of social defeat, and this produced an increase in
social interaction and a decrease in depressive-like be-
haviors in passively coping rats. Thus, we established that
low orexin function contributes to the active/resilient be-
havioral phenotypes in response to repeated social defeat
stress.

Both in situ radiolabeling and qPCR approaches re-
vealed that rats displaying active coping (resilient rats)
expressed significantly lower levels of prepro-orexin
mRNA compared with rats that displaying passive coping
(vulnerable rats) as well as control rats. This led to the
hypothesis that it is the lower levels of orexins that under-
lie resilience to repeated social stress. To test this, rats
first underwent 5 d of social defeat stress to establish
active and passive coping phenotypes. Next, to deter-

mine whether reducing orexins promotes resilience, we
inhibited orexin neurons before each social defeat for
three additional days using DREADDs. Importantly, we
found that CNO treatment during the last 3 d of defeat
reduced prepro-orexin mRNA levels in passive coping
rats to that of active coping rats. Additionally, inhibition of
orexin neurons before each defeat resulted in increased
social interaction behavior and decreased immobility dur-
ing forced swim test in passively coping (vulnerable rats)
to the level of actively coping (resilient rats). As expected,
inhibition of orexin neurons before each defeat had no
effect on subsequent behavior in resilient rats, as our
experiments indicate they already express very low levels
of orexins. Thus, inhibiting orexin action during the last 3
d of social defeat increased social interaction and de-
creased depressive-like behaviors specifically in the vul-
nerable population of rats, thereby promoting resilience.
This indicates that dampened orexin function under con-
ditions of stress contributes to resilience to social defeat.

Prepro-orexin expression was lower in resilient rats
compared with vulnerable rats by both in situ radiolabel-
ing and qPCR methods. This phenotype was stable in
multiple cohorts of rats, immediately after repeated social
defeat, as well as after several additional behavioral tests.
We cannot determine if prepro-orexin expression was
lower in resilient rats before social stress or as a conse-
quence of social stress; thus, it is possible it is a pre-
existing difference. A previous study demonstrated that
control female rats had higher orexin expression than
male rats, and as a result, females had persistent HPA
activation in response to repeated restraint stress and
were not able to habituate as fully as males (Grafe et al.,
2017a). Just as females had higher levels of orexins be-
fore the stressor, and thus were inherently different from
males, perhaps actively coping (resilient) rats are inher-
ently different from passively coping (vulnerable) rats be-
fore social defeat occurs. In this respect, pre-existing
differences in orexin expression impact future responses
to stress. On the other hand, perhaps orexin function is
also decreased with repeated exposure to social defeat in
rats that become resilient to defeat; this is known to occur
after repeated restraint stress (Grafe et al., 2017b). Cur-
rently, we are only able to measure cerebrospinal fluid
levels of orexins terminally, and plasma levels of orexins
are not a reliable indication of central orexin activity; thus,
we cannot directly determine whether this difference in
orexin expression predates exposure to stress.

Based on these data, we hypothesized that lower levels
of orexin contribute to resilience to repeated social stress.
After rats established active and passive coping pheno-
types, orexins were inhibited by DREADDs in subsequent
days of social defeat. Behavior was examined in both the
social interaction and forced swim tests to determine how
orexin action during defeat affects subsequent anxiety-
like and depressive-like behaviors. Our results first dem-
onstrated that vehicle-treated actively coping rats spent
more time socially interacting than passively coping rats,
replicating a previous finding (Wood et al., 2010). Orexin
inhibition during the last 3 d of defeat increased the
amount of time passively coping rats spent interacting
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with a stimulus rat, with total interaction time at a level
comparable to that of actively coping rats. This result is
consistent with earlier studies in which central injections
of orexins produced anxiety-like behaviors in the light-
dark test and elevated plus maze (Suzuki et al., 2005; Li
et al., 2010; Avolio et al., 2011). As expected, inhibition of
orexins in resilient rats during social defeat did not further
increase their social interaction time, likely because resil-
ient rats already express low levels of orexins. In sum,
orexins promote anxiety behaviors, and dampening
orexin action throughout repeated stress allows rats that
are initially vulnerable to exhibit the resilient phenotype.

The increase in social interaction observed in CNO-
treated passively coping rats was independent of the total
amount of movement in the social interaction chamber. As
orexins have been shown to modulate spontaneous physical
activity (Kotz et al., 2002), it is important to note that the
increase in social interaction was not accompanied by an
increase in activity; thus, it is a socially specific behavioral
result and not an effect on global arousal. Moreover, the
orexin manipulation took place only during the last 3 d of
social defeat, and not during this social interaction test; thus,
short-term action of CNO treatment did not confound our
results. However, our data indicate that CNO treatment on
days 6–8 of social defeat can cause long-lasting changes in
prepro-orexin mRNA expression, which then leads to
changes in social interaction behavior.

In the FST, vehicle-treated passively coping rats spent
significantly more time immobile than control rats, repli-
cating a previous finding that passive coping during social
defeat leads to depressive-like behavior (Wood et al.,
2010). DREADDs-mediated inhibition of orexin neurons
before three social defeat exposures reduced percentage
time spent immobile in the vulnerable rats. Hence, in-
creased orexin action may contribute to depressive-like
behavior. However, we found that repeated CNO treat-
ment increased immobility in control, nonstressed ani-
mals. Thus, inhibiting orexins in nonstress conditions
increases depressive-like behavior. Our data show that
prepro-orexin expression does not differ between vehicle-
and CNO-treated control (nonstressed) animals, so this
cannot explain the differences in percentage immobility in
the FST. It is possible that other measures of orexin
function, such as neuronal activation, may differ between
vehicle- and CNO-treated control animals, explaining
these differences in behavior. Ultimately, the effect of
inhibiting orexins on immobility is dependent on whether
the animal is stressed; different brain circuits involving
orexins may be activated in these different conditions,
explaining the opposing behaviors.

The link between the orexinergic system and depres-
sion remains equivocal, as clinical models report conflict-
ing results. Specifically, different studies indicate that
either hypoactivity (Brundin et al., 2007; Ito et al., 2008) or
hyperactivity (Salomon et al., 2003; von der Goltz et al.,
2011) of the orexinergic system is associated with MDD
(Brundin et al., 2007; Lutter et al., 2008). Some inconsis-
tencies may result from limitation of methods, as orexin
levels in plasma are close to the resolving limit of radio-
immunoassay (Chen et al., 2015a). Moreover, whether

measures of orexin A in plasma or cerebrospinal fluid are
physiologically meaningful and can act as proxy for orexin
system activity remains to be established. However, a
recent preclinical study provided a causal link between
orexins and depressive-like behavior: pharmacological
blockade of the orexin system during unpredictable
chronic mild stress reduced subsequent immobility in the
tail suspension test (Nollet et al., 2012). This result is
consistent with our findings in that inhibition of orexins
during stress decreases subsequent depressive-like be-
havior. As expected, inhibition of orexins in actively cop-
ing rats during the last 3 d of social defeat did not further
decrease immobility, as our results indicate that actively
coping (resilient) rats already express very low levels of
orexins. Together, these data suggest that low levels of
orexins may be a biomarker to predict resilience to stress
and thus, a lower likelihood of developing depression.

Rats that displayed passive coping spent less time active
(mostly due to a decrease in swimming) in the FST than
control rats. However, blocking orexin action before three
social defeat exposures appeared to increase both swim-
ming and climbing in passively coping rats. Independently,
these two measures were not significantly increased with
CNO treatment. Specifically, CNO treatment increased the
sum of these two behaviors together, measured as total
activity. Swimming and climbing are known to be mediated
by serotonin and norepinephrine, respectively, as antide-
pressants targeting these neurotransmitters can selectively
increase these behaviors (Bogdanova et al., 2013). Indeed, it
is known that orexins have direct connections with both
serotoninergic and noradrenergic neurons to regulate sleep/
wakefulness, thus, it makes sense that manipulating orexins
may affect swimming and climbing behavior (Tabuchi et al.,
2013; Zitnik, 2016). However, the effect of manipulating
orexins on these behaviors appears to be dependent on
whether the animal is stressed: inhibiting orexins in a control
animal decreases activity (and increases immobility),
whereas inhibiting orexins in a socially defeated rat in-
creases activity (and decreases immobility). Thus, repeated
stress must change the way these neurotransmitters interact
with orexins.

Recent findings have indicated that a high dose (10 mg/
kg) of CNO may allow for nonspecific effects of the metab-
olite clozapine on behavior (Gomez et al., 2017). Particularly,
converted clozapine could have effects on the DREADDs or,
if the levels are high enough, on endogenous clozapine
binding sites as well. Moreover, another study found that
5-mg/kg doses of CNO have behavioral effects in Long-
Evans rats not expressing DREADDs (MacLaren et al.,
2016). We tested whether the lower dose of CNO (2 mg/kg)
used in the present studies had nonspecific behavioral ef-
fects. We found that CNO treatment in non–DREADDs-
expressing rats did not cause significant effects in the social
interaction test or Porsolt forced swim test. Thus, we can
conclude that the effects of DREADDs we observed in our
studies were not due to actions of CNO or its metabolites
but to DREADDs-induced inhibition of orexins.

The brain regions in which orexins act during stress to
regulate subsequent anxiety-like and depressive-like be-
haviors are not fully elucidated. However, there are many
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key brain areas that likely play a role. For example, orexins
have dense projections to brain areas relevant to anxiety-
and depressive-like behaviors such as the paraventricular
nucleus of the thalamus (PVT), locus coeruleus, prefrontal
cortex, dorsal raphe, hippocampus, and amygdala (Pey-
ron et al., 1998). Previous studies have demonstrated that
orexins act in the PVT to induce anxiety-like behavior (Li
et al., 2010; Heydendael et al., 2011, 2013). Another study
found that orexin 1 receptors in the amygdala regulate
stress-induced depressive-like behavior (Arendt et al.,
2013). Other experiments indicate that orexin interaction
with the dorsal raphe may be important for regulation of
stress-induced depressive-like behavior (Brown et al.,
2001; Muraki et al., 2004). Future studies should further
examine the role of specific brain regions where orexins
may be acting to promote resilience and identify genes
mediating these orexin effects.

Because orexins are known to underlie arousal and
appetite, it is possible that inhibition of these neuropep-
tides with DREADDs affected these physiologic parame-
ters and, thus, may have influenced our results (Sakurai,
2014). For example, if inhibiting orexin action allowed
animals to sleep more, perhaps this could have subse-
quently decreased anxiety-like or depressive-like behav-
ior. While our results show that there were no changes in
general arousal between treatment groups in terms of
total movement during behavioral tests, measuring sleep
parameters after orexin manipulation may provide more
insight. Additionally, though we did not measure food
intake throughout the study, there were no differences in
body weight gain between vehicle- and CNO-treated rats,
indicating that changes in appetite and food intake did not
have a significant effect on the present results.

The results from this study demonstrate that orexin
expression is lower in rats resilient to social defeat stress.
To provide a causal link between decreased orexins and
resilience, we inhibited orexins during the last 3 d of social
defeat stress and reversed the negative behavioral effects
of social defeat in previously vulnerable rats. These find-
ings highlight orexins as previously uncharacterized sub-
strates of resilience.
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