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Abstract

Recent methodological advances permit the estimation of species richness and

occurrences for rare species by linking species-level occurrence models at the

community level. The value of such methods is underscored by the ability to

examine the influence of landscape heterogeneity on species assemblages at

large spatial scales. A salient advantage of community-level approaches is that

parameter estimates for data-poor species are more precise as the estimation

process “borrows” from data-rich species. However, this analytical benefit raises

a question about the degree to which inferences are dependent on the implicit

assumption of relatedness among species. Here, we assess the sensitivity of com-

munity/group-level metrics, and individual-level species inferences given various

classification schemes for grouping species assemblages using multispecies

occurrence models. We explore the implications of these groupings on parame-

ter estimates for avian communities in two ecosystems: tropical forests in

Puerto Rico and temperate forests in northeastern United States. We report on

the classification performance and extent of variability in occurrence probabili-

ties and species richness estimates that can be observed depending on the classi-

fication scheme used. We found estimates of species richness to be most precise

and to have the best predictive performance when all of the data were grouped

at a single community level. Community/group-level parameters appear to be

heavily influenced by the grouping criteria, but were not driven strictly by total

number of detections for species. We found different grouping schemes can

provide an opportunity to identify unique assemblage responses that would not

have been found if all of the species were analyzed together. We suggest three

guidelines: (1) classification schemes should be determined based on study

objectives; (2) model selection should be used to quantitatively compare differ-

ent classification approaches; and (3) sensitivity of results to different classifica-

tion approaches should be assessed. These guidelines should help researchers

apply hierarchical community models in the most effective manner.

Introduction

Ecological communities are complex and many contain

high levels of species diversity (Hubbell 2001), making it

difficult to understand an individual species’ role and/or

contribution. Ecologists often classify communities to bet-

ter understand the structure and function of individual

species as well as the whole community. These classifica-

tions are determined by individual species’ roles in a

community, such as their functional similarity (ecosystem

function, Picard et al. 2012), phylogenetic similarity (Ives

and Helmus 2011), similarity in species’ “ecological

responses” to covariates (Ruiz-Guti�errez et al. 2010) and

environmental gradients (Dunstan et al. 2011, 2013;

Ovaskainen and Soininen 2011; Jackson et al. 2012), or

by similarities in specific species characteristics (e.g.,
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sound intensity or sound pitch for aurally detected spe-

cies; Alldredge et al. 2007).

Previous studies have relied on expert knowledge to

classify species (Gitay et al. 1999), statistical clustering

methods (Xu and Wunsch 2005), model-based clustering

methods (Dunstan et al. 2011, 2013), and multilevel or

hierarchical models to group species (Dorazio and Royle

2005; Ives and Helmus 2011; Ovaskainen and Soininen

2011; Jackson et al. 2012). A unique feature of hierarchi-

cal community models is the ability to incorporate sam-

pling errors as well as explicitly account for individual

species traits (Dorazio and Royle 2005; Dorazio et al.

2006). These approaches are developed using species

occurrence models (MacKenzie et al. 2006), which are

then linked together within a hierarchical framework

(Royle and Dorazio 2008). Hierarchical community mod-

els are generally used to: (1) estimate species richness; (2)

test hypotheses about community-level responses to per-

turbations (e.g., environmental covariates, or manage-

ment/conservation actions); and (3) estimate habitat or

covariate parameters for individual species.

Hierarchical multispecies models “borrow” information

across all species in a community, which leads to more pre-

cise species-level inferences (Dorazio and Royle 2005). In

such models, each species influences the parameter esti-

mates of all other species in the community (or group

within the community, depending on the exact hierarchical

structure of a model). As a result, individual species-level

estimates are a combination of the single species and the

average estimate of those parameters for the entire commu-

nity (or group of species). The degree to which estimates

are pooled together rather than estimated separately (i.e.,

pooling or “shrinkage”) is dependent upon the quality and

quantity of available data (e.g., number and locations of

species detections; Gelman and Hill 2007). A major benefit

of shrinkage is the ability to estimate parameters for species

that are rarely detected and would otherwise not be estima-

ble or would be too imprecise for meaningful inference

(K�ery and Royle 2008). Multispecies hierarchical models

have subsequently been used to address community-level

responses to environmental factors (Zipkin et al. 2009;

Burton et al. 2012; Jones et al. 2012) and management

activities (Russell et al. 2009; Zipkin et al. 2010; Giovanini

et al. 2013; Hunt et al. 2013) as well as understanding indi-

vidual species-level responses to landscape/habitat features

(Tingley and Beissinger 2013) and management or conser-

vation actions (Grant et al. 2013; Sauer et al. 2013). The

approach is also particularly useful for rare or infrequently

detected species (White et al. 2013).

The question of how to best group species and the

implications of such groupings has not been thoroughly

explored and represents an important step in ensuring

the most appropriate use of hierarchical multispecies

models. Our objectives were to evaluate the influence of

different a priori classification approaches on two data

sets. Specifically, we are interested in assessing the sensi-

tivity of community- and species-level inferences to vari-

ous classification schemes for grouping species

assemblages. We explore the implications of these group-

ings on parameter estimates for avian communities in

two different ecosystems: (1) urbanized, agricultural, and

forested landscapes within two forest reserves of south-

western Puerto Rico and (2) temperate forests within the

northeastern United States. We report on classification

performance and the variability in species- and commu-

nity-level inferences that is observed depending on the

classification scheme. We also provide guidelines about

how to carefully apply these models and the potential

trade-offs of different grouping schemes.

Materials and Methods

Study Area – Puerto Rico

The Puerto Rico study area is in southwestern Puerto Rico

and consists of a matrix of habitat located between the

Gu�anica and Susu�a Forest Reserves. The study area was

divided into three identifiable and dominant (at least 70%

coverage) habitat types: forest (5536 ha), urban (6116 ha),

and agriculture (7066 ha). A total of 128 point count sites

were randomly established across the three habitat types

and in the Gu�anica and Susu�a Forest Reserves. Thirty sites

were in each of the forest, urban, and agriculture habitat

types for a total of 90 sites. An additional 38 sites were

established between 300 and 1500 m within the Gu�anica

(18 sites) and Susu�a (20 sites) Forest Reserves and these

are referred to as edge habitat. Survey sites within agricul-

ture and urban habitat types were at least 500 m apart

and those in the forest habitat type and “edge” habitat

were >1 km apart to minimize correlation among sites.

Survey sites between different habitat types were at least

1 km apart. Avian surveys were conducted during the

breeding season (March–June) of 2010 and 2011 by

trained observers and consisted of three repeat visits to

each site in each year. All resident avian species detected

by sight or aurally during a 10-min period were recorded.

For more detailed information about the study area and

sampling design refer to Irizarry (2012).

Study Area – Hudson River Valley

The temperate forest study area is located in the Hudson

River Valley (HRV), New York, which is a 954,600 ha

region, north of New York City. A total of 72 point count

sites were randomly selected in deciduous and mixed-

deciduous forest fragments across the HRV, New York.
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Avian surveys were conducted from 15 May to 1 July of

2006 and 2007. Two trained observers recorded all species

seen or heard during the 10-min, 250-m fixed-radius

point counts at each sampling site. Sites were visited on

three separate occasions during the breeding season (once

each per 2-week period), although not all sites were sur-

veyed both years. Three covariates thought to influence

the breeding success of birds were also recorded at each

location: the forest fragment area in which the site

occurred, the perimeter of the fragment, and perimeter/

area ratio (P/A). For more details about the sampling

design and study area refer to DeWan et al. (2009).

Modeling framework

We modeled both communities using the approach of

Dorazio and Royle (2005) and Dorazio et al. (2006). The

same general model was fit to both data sets (but covari-

ates differed between data sets, see below) and for the dif-

ferent groups within each classification scheme (Table 1).

Let N denote the unknown number of unique species that

occur within the region of interest (here N can represent

the total community of species or the number of species

within a group). Surveys are conducted wherein each of

the j = 1,2,…,J sites is visited k = 1,2,…,K times, and the

identities of all species i = 1,2,…,n are recorded as they

are detected during the sampling event. We assume that

the total number of surveys K are conducted within a suf-

ficiently short period of time such that N remains con-

stant (i.e., community closure).

Site-specific occurrence for species i = 1,2,…n,…,N at

site j, denoted zij, is a latent random variable where

zij = 1 if species i occurs in site j and is zero otherwise.

We specify the occurrence model as zij ~ Bern (wij) where

wij is the probability that species i is present at j. True

occurrence is only partially observed through the detec-

tion/nondetection data where xijk (recorded as a 1 if a

species is observed and zero otherwise) for species i at site

j during sampling period k is xijk � Bern (pijk * zij). The

parameter pijk is the detection probability of species i at

site j for the kth sampling period. If species i is present

(zij = 1) at site j, then the probability of detecting that

species is pijk otherwise if zij = 0, then xijk = 0, and we

ensure that detection is a fixed zero when a species is not

present.

We incorporated covariate effects into the occurrence

and detection models linearly on the logit-probability

scale. For the PR data set, we modeled occurrence as a

function of the site-level habitat type (agriculture, forest,

edge, and urban) on the logit scale as follows: logit

(wij) = li,habitat(j), where li,habitat(j) is the occurrence prob-

ability (on the logit scale) for species i in the habitat type

of location j (i.e., forest, urban, agriculture, or edge). The

detection probability of species i in PR was assumed to

vary based on the year of the survey. We assumed that

the community was closed (i.e., the species pool remained

constant) over the 2 years during which the survey was

conducted, but added a year effect (constant across spe-

cies) to account for changes in detection between the

2 years as a result of annual fluctuations in seasonality:

logit (pi) = υi + byear.
We followed the model described in Zipkin et al. (2009)

for the HRV data set where habitat covariates (fragment area,

perimeter, and perimeter/area ratio [P/A]) were assumed to

influence species occurrences as follows: logit (wij) = li + a1i
perimeterj + a2i areaj + a3i P/Aj. We similarly modeled the

detection probability for species i as a function of survey date

(linear and quadratic effects) and the year of the survey:

logit (pijkÞ ¼ ti þ b1idatejk þ b2idate
2
jk þ b3yearjk. All cova-

riates were centered and normalized (mean = 0, vari-

ance = 1) such that the inverse logit of li, for example, is

the occurrence probability for species i in sites with “average”

habitat conditions. Again we assumed that the community

was closed (i.e., the species pool remained constant) over the

2 years during which the survey was conducted and used the

year effect (constant across species) to account for changes in

detection between the years.

Classification and grouping of species

Our interest lies in comparing different classification

approaches that could be used to group species and the

associated community- and species-level inferences for

each approach. To this end, we made use of several

common approaches to classify species for both the PR

Table 1. The different classification approaches and the associated

groups for the Puerto Rico and Hudson River Valley data sets.

Puerto Rico

Habitat Microhabitat Diet

H1: Wet, upper forests M1: Dense forest D1: Carnivore

H2: Open/anthropogenic M2: Grassland D2: Frugivore

H3: Coastal forest M3: Interspersed forest D3: Granivore

M4: Open D4: Insectivore

D5: Nectarivore

D6: Omnivore

Hudson River Valley

Nest location Habitat Diet

N1: Bush nest H1: Arboreal D1: Frugivore

N2: Cavity H2: Bush D2: Granivore

N3: Ground nest H3: Ground/shrub D3: Insectivore

N4: Ledge H4: Open air D4: Omnivore

N5: Tree nest H5: Terrestrial

H6: Tree trunk

H7: Vegetation
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and HRV data sets. We focused on traits that would

influence occurrence probability or species richness and

did not explore how choice of grouping affected infer-

ences on detection but analogous approaches could be

used to do so.

For both data sets, we identified grouping/classification

approaches that correspond to the three general uses of

hierarchical models (i.e., species richness, community-

level effects, and species-level effects) and potentially

resulted in different responses with respect to the covari-

ates of interest. First, we wanted to explore groupings

based on large or coarse scale habitat requirements. For

the PR data set, we grouped species according to their

dominant land-cover associations, and for the HRV data

set, we grouped species according to their foraging habitat

associations (Hamel 1992; Poole 2005). Large-scale

habitat features are responsible for identifying commu-

nity-level responses to environmental stressors (e.g., frag-

mentation, urbanization) as well as understanding

attributes of biological integrity that would be manifested

in species richness (Caro 2010). For example, in Puerto

Rico, we hypothesized that the forest matrix of habitat

would support greater species richness and occurrence of

native species than the urban and agricultural landscapes

because resident avifauna evolved in forested landscapes

(Lugo et al. 2012). Second, we used a smaller scale of

habitat preference, one that pertains to the use of various

habitat components within large-scale habitat classes (e.g.,

feeding, cover, nesting substrates). This grouping reflects

the purported hierarchical nature of habitat selection

wherein local-scale habitat features drive species occur-

rence and composition (Johnson 1980). For the PR data

set, we used categories that reflected the availability of

habitat for feeding and cover (microhabitats). For the

HRV data set, we used the dominant forest type for the

preferred nest location (nest location; Hamel 1992; Poole

2005). Finally, we used the predominant diet of individual

species to classify species in both the PR and HRV data

sets. Diet is expected to influence the spatial distribution

of species within habitats because individuals will be more

selective at a finer scale driven by habitat structure and

composition, dietary needs and prey availability (Robin-

son and Holmes 1982; Wood et al. 2012). For example,

in PR, we expect that frugivore occurrence and richness

would be particularly sensitive to urbanized and agricul-

tural habitat patches because the distribution and quan-

tity of fruiting resources is vastly different than that of

forested environments (Irizarry 2012). In the HRV data

set, most birds eat insects during the breeding season, but

it is known that their diet is broader and we categorized

species accordingly (Table S1). For example, in HRV, we

expect that patch area and perimeter size would influence

the occurrence of insectivores and omnivores because

their foraging ability depends heavily on the availability

of prey (Robinson and Holmes 1982; Wood et al. 2012).

An additional hierarchical component was added to the

model wherein we assumed that the species-level parame-

ters were random effects governed by community- or

group-level hyperparameters. All coefficients from the

models in both data sets (PR and HRV) were assumed to

come from a normal distribution (e.g., a1i ~ N (la1,
ra1)) where the mean of the distribution represents the

community or group response to that particular covariate

and the standard deviation is the variation among species

within the particular group. We follow Dorazio et al.

(2006) and use a parameterization of the unconditional

likelihood and data augmentation to estimate species

richness N for all groups within each of the different clas-

sification schemes.

We fit each of the models with the different classification

schemes separately using a Bayesian approach in WinBUGS

(Spiegelhalter et al. 2003) through R (R2WinBUGS; Sturtz

et al. 2005) by running three parallel chains each of length

>77,000 with burn-in of at least 25,000 and thinning by 25

(code available in Data S1). We used vague priors (e.g., uni-

form distribution from 0 to 1 for community- or group-level

occurrence and detection covariates; normal distributions

with mean zero and variance 1000 for community- or

group-level habitat and sampling covariates) for all hyperpa-

rameters in all models. Convergence was confirmed through

trace plots, correlation, and the Gelman–Rubin statistic

(Gelman and Rubin 1992).

Model evaluation

We used area under the receiver operating characteristic

(AUC) curve to evaluate the model fit of each classifica-

tion scheme (Sing et al. 2005; Fawcett 2006). In the con-

text of occurrence models, AUC measures a model’s

goodness of fit by estimating the probability that a ran-

domly chosen occupied sampling point (zij = 1) has a

higher occurrence probability than a randomly chosen

unoccupied sampling point (zij = 0). If a model fits well,

then it consistently predicts a higher occurrence probabil-

ity for occupied sites yielding an AUC closer to 1.0. If a

model performs poorly, it will perform the same as

chance yielding an AUC closer to 0.5 (Fawcett 2006).

W calculated the mean and 95% Bayesian credible

intervals (BCI) AUC values reflecting goodness of fit for

each of the classification approaches for both data sets

using an approach that accounts for the fact that zij is a

latent variable and thus can only be imperfectly observed

(Zipkin et al. 2012; Mattsson et al. 2013). This provided

an overall AUC value for each model classification scheme

that allowed us to evaluate relative model fit for each

classification approach in both data sets.
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Results

Forty-nine species were detected during the PR study

with a total of 5998 detections. Group size ranged from

three species with only 98 total detections (Diet group

1; carnivores) to 23 species with 3287 detections (Habi-

tat 3; coastal forest; Fig. 1). Individual species detec-

tions ranged from 2 detections (cave swallow;

Petrochelidon fulva) to 556 detections (bananaquit; Coer-

eba flaveola; Fig. S1). The model that grouped all spe-

cies together had the highest mean AUC value (mean:

0.80; BCI: 0.76–0.85) followed by the Habitat (mean:

0.75; BCI: 0.68–0.82), Microhabitat (mean: 0.74; BCI:

0.65–0.82), and Diet (mean: 0.71; BCI: 0.54–0.82) mod-

els. However, BCIs were overlapping indicating uncer-

tainty about which classification scheme fit the PR data

best.

Seventy-eight species were detected during the HRV

study with a total of 4200 detections. Group size ranged

from three species with only 14 total detections (Nest 4;

ledge group) to 54 species with 2570 detections (Diet 3;

insectivore; Fig. 1). Individual species detections ranged

from 1 detection (Eastern bluebird, Sialia sialis; magnolia

warbler, Dendroica magnolia; Nashville warbler, Vermivora

ruficapilla; pine siskin, Carduelis pinus) to 239 detections

(black-capped chickadee; Poecile atricapillus; Fig. S1). The

all species grouped together model (mean: 0.84; BCI:

0.77–0.9) also had the highest mean AUC for the HRV

data set, followed by the Diet (mean: 0.79; BCI: 0.57–
0.93), Habitat (mean: 0.77; BCI: 0.54–0.96), and Nest

location (mean: 0.75; BCI: 0.52–0.91) models. Again, BCIs

for all schemes where overlapping.

Species richness

Estimates of species richness for the PR data set were very

similar across all classification schemes and ranged from

49.15 to 50.08 (posterior means; Fig. 2). The BCI on spe-

cies richness was largest for the diet classification scheme,

but was still relatively narrow (49–52; Fig. 2). Estimates

of species richness by site were consistent among all clas-

sification schemes with the diet groupings showing the

largest amount of uncertainty (Fig. S2).

Estimates of species richness for the HRV data set ran-

ged from 87.91 (posterior means: all species) to 95.89

(Diet), and all three classification schemes produced esti-

mates that were higher than estimates from the full com-

munity model (i.e., all species combined; Fig. 2). The

BCI was largest for the Diet scheme and relatively similar

for the other approaches. Estimates of site-level richness

were higher for all of the classification schemes compared

with using all species together (Fig. S2). Similar to the

PR results, the Diet scheme had the most variability

around each of the site-level estimates of species richness

(Fig. S2).

Community-level inference

Community or group-level occurrence estimates were

consistent among classification schemes in response to the

Figure 1. Group summaries (total number of

species and detections for each group) for the

different classification schemes associated with

the Puerto Rico and Hudson River Valley data

sets. We used three different classification

approaches for each data set; PR: H – Habitat,

M – Microhabitat; D – Diet; Hudson River

Valley: Nest location – N, Habitat – H, D –

Diet, see Table 1.
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urban and edge habitats for the PR data set (Fig. 3).

There was much larger variability in how groups

responded to both agriculture and forest habitat (Fig. 3).

For example, the open/anthropogenic group in the habitat

classification, the grassland group in the microhabitat

classification, and the frugivore group in the diet classifi-

Figure 2. Posterior mean estimates of species

richness with 95% posterior credible intervals

for the full community model and each of the

three different classification approaches for the

Puerto Rico (top) and Hudson River Valley

(bottom) data sets.
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Figure 3. Community- and group-level mean occurrence probabilities (posterior means with 95% and 50% Bayesian credible intervals) in the

four different habitat types (agriculture, forest, urban, and edge) in the southwestern Puerto Rico study area. We used three different

classification approaches to group species: Habitat – red, Microhabitat – blue, and Diet – purple, along with using all of the species – black, see

Table 1 for more details.
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cation tended to show unique responses that significantly

differed from other groups including when all species

were combined. There was no consistent pattern in the

relationship between total number of detections or num-

ber of species within a group to performance (in terms of

precision of parameter estimates). In some instances,

groups with small sample sizes and/or number of total

species had very different responses to habitat and high

levels of within-group uncertainty, but this was not

always the case. For example, the diet approach had three

groups with <5 species and the lowest number of total

detections, but in some instances, these groups showed

the lowest within-group variability (Diet 2; frugivores) in

response to agriculture and forest habitats, leading to

more precision in species-level estimates.

Community or group-level parameters for the HRV

data set tended to have larger variances compared with

the PR data (Fig. 4). Results were most consistent for

group-level responses to P/A where the all species

approach had the lowest variability (Fig. 4). The response

to perimeter and area was not as clear as there was evi-

dence of substantial variation among almost all of the

group responses (Fig. 4). For example, the bush nesters

(group 1) had a negative response to perimeter, while the

tree trunks habitat group (6) showed a positive response

to perimeter compared with the all species combined

group, which showed a slightly negative response (Fig. 4).

Such patterns were found for other covariates as well,

suggesting that groups of species respond very differently

to habitat covariates. Not surprisingly, these differences

tend to be “averaged” out when using all of the data in

one community-level grouping.

Group-level responses also show a large amount of var-

iation for the HRV data set (Fig. 4). Several groups have

wide credible intervals, (e.g., ground/shrub, open, tree

trunk groups – 3, 4, and 6, respectively, and frugivores

and granivores – Diet groups 1 and 2), suggesting that

there is a lot of within-group variability not strictly due

to low sample sizes (sample sizes range from 31 for the

open habitat group to 508 for the tree trunk habitat

group). Similar to the PR data set, there was no strict

relationship or pattern between sample size and group
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Figure 4. Community-level effects on the occurrence probability (posterior means with 95% and 50% Bayesian credible intervals) to three

different covariates, perimeter (Perm), area (Area), and perimeter/area ratio (P/A) for the Hudson River Valley data set. We used three different

classification schemes to group species: Nest – red, Habitat – blue, and Diet – purple, along with using all of the species – black, see Table 1 for

more details.
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performance. In most instances, groups with a higher

sample size had narrower BCIs, but there were many

exceptions (e.g., bush group, H2, in response to P/A).

Species-level inference

For the PR data set, species-level responses to habitat

were consistent among the different classification

approaches with overlapping BCIs (e.g., Fig. S3). Figure 5

shows the group response for each of the groups that An-

tillean mango (ANMA; Anthracothorax dominicus) belongs

to in relation to habitat. Species with fewer detections

generally had more variability in their individual estimates

regardless of the group they were in, with few exceptions.

Species-level occurrence estimates for the HRV data set

also had BCIs that overlapped among the different classi-

fication schemes in all instances. However, in many cases,

individual species had occurrence estimates who’s BCIs

ranged from 0 to 1 (Fig. S5). Marginal mean response to

covariates often varied significantly leading to very differ-

ent predicted responses for certain species based on classi-

fication. This result was closely tied to sample size and

the specific covariate of interest (Fig. 6 and Fig. S4). Spe-

cies inferences can be extremely variable depending on

the classification approach when the number of detections

is low (e.g., Vesper sparrow, Pooecetes gramineus), but this

was not always the case (e.g., cerulean warbler, Setophaga

cerulean; Fig. 6). Species with low sample sizes generally

had wider BCIs and more discrepancy in individual esti-

mates among groups, suggesting that species-level infer-

ences for rare species should be approached with caution.

However, these problems diminished as the number of

detections increased.

Discussion

We showed that different classification schemes have the

potential to affect inference at both the community- and

species-level, while species richness appeared to be the

metric that was most robust to differences in group classi-

fications. In both data sets, using all species in one group

(i.e., the full community model) resulted in the most pre-

cise estimates (smaller variability in species richness BCI)

and arguably, the best model fit as measured by AUC

although many of the AUC BCIs overlapped. However,

we also found that there were often unique group-level

responses to habitat covariates that were missed when

species were all grouped together because these distinct

responses were “averaged out” (Sauer and Link 2002).

The sensitivity of inference to grouping at both commu-

nity and species levels is a clear indication that the spe-

cific motivations for using multispecies models should be

articulated and that this should precede any data collec-

tion and/or analysis.

In both data sets, using all species in one group (i.e.,

the full community model) resulted in the most precise

estimates, while the Diet group appeared to have the

greatest uncertainty (largest credible intervals) around

estimates of species richness. This uncertainty was even

more dramatic in the HRV data set where the posterior

mean was significantly higher for the Diet group com-

pared with any of the other schemes including all of the

species analyzed together. This may be due to a smaller

total sample size for the HRV data set compared with the

PR data set. A second hypothesis is that the Puerto Rican

species are less sensitive to grouping because they are

much more adept at utilizing different habitats. Strictly

defining species groups may not be particularly meaning-

ful in many instances because island species are capable

of enduring landscape changes and disturbances (e.g.,

hurricanes), and exploiting novel resources (Lugo et al.

2012).

We expect similar complications will arise in many

studies when it is difficult to clearly define species’ groups

or there are many factors influencing species habitat pref-

erences. Often the underlying ecological mechanisms that

regulate species’ responses are not understood (usually

this is the motivation for research), yet this information

is critical in classifying groups of species. It is also possi-

ble that species are responding to different covariates

based on more than one classification scheme. For exam-

ple, shrub cover could be important to ground nesters,

but mature trees could be important to granivores and

one species may belong to both the ground nesters and

granivores. Rare species present unique challenges because

inferences are further compounded by scarce data. They

typically require extra sampling effort just to collect a suf-

Figure 5. Community-level mean occurrence probabilities in the four

different habitat types (agriculture, forest, urban, and edge) for the

groups that the Antillean mango (ANMA, Anthracothorax dominicus)

was classified in including the wet, moist upper forests (habitat

classification), dense forests (microhabitat classification), and

frugivores (diet classification) groups.

884 ª 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Grouping in Hierarchical Community Models K. Pacifici et al.



ficient amount of data for analysis (Stockwell and Peter-

son 2002; Thompson 2004; Noon et al. 2012). We found

that the estimated response of data-poor species can be

highly variable depending on the grouping approach and

associated group members (e.g., Fig. 5). This suggests that

caution should be taken when interpreting model results

for species with few detections and ideally studies should

be explicitly designed to obtain sufficient data for rare

species if this is the main objective (Thompson 2004;

Pacifici et al. 2012).

We suggest the following guidelines for the successful

application of hierarchical community models. First, clas-

sification schemes should be determined based on study

objectives. For example, if the objective is to evaluate how

habitat changes may disparately affect ground versus can-

opy nesting bird guilds, then use of a nest classification

scheme would arguably be most appropriate. When inter-

est is focused on estimating richness and understanding

the community as a whole, our results suggest that use of

an all-species grouping will be most prudent. Using an

all-species grouping may be the best option when interest

is focused on understanding species-level responses.

Although this approach may lead to higher BCIs for

parameters and thus greater uncertainty in the effects of

covariates, it is less likely to lead to misleading results,

which could be possible if species where misclassified rela-

tive to a specific covariate response. Second, some form

of model selection to quantitatively compare different

classification approaches should be used when study

objectives call for use of multiple classification schemes.

Model selection among hierarchical models is an area of

active research. We presented results using a recently

developed AUC approach that both accounts for imper-

fect detection of species and explicitly quantifies uncer-

tainty (by calculating a BCI for AUC values). However,

many other formal approaches to model selection exist

(e.g., information-theoretic approaches, reversible jump

MCMC). One new approach is to allow group member-

ship to be estimated while including prior information

about possible groupings, such that the model searches

over all possible combinations and gives posterior weight

to the best group for species placement relative to the set

of covariates. This is an interesting and active area of

research (Madon et al. 2013) but could present challenges

to implementation for complex communities. Finally, it is

a good idea to assess the sensitivity of results to different
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Figure 6. Mean marginal occurrence probabilities for four priority conservation species (Vesper sparrow, VESP: two detections at two sites;

cerulean warbler, CERW: seven detections at six sites; black-throated blue warbler, BTBW: 20 detections at nine sites; and Scarlet tanager, SCTA:

141 detections at 56 sites) in relation to forest fragment perimeter in the Hudson River Valley. We explored three different classification schemes

for grouping species: Nest location – red lines, Habitat – blue lines, and Diet – purple lines; black lines represent using all of the species.

Covariates have been standardized to have a mean of zero and variance of one. Although uncertainty was high for all models, using all species

had the lowest uncertainty (narrowest credible intervals) followed by nest location, habitat, and diet models.
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classification approaches when possible. If a sensitive or

highly specialized species is placed in a group that also

contains a ubiquitous species that is less sensitive to envi-

ronmental change or management actions, the resulting

inferences can be misleading. Species- and group-specific

parameter estimates can be compared across multiple

classification schemes when study objectives include the

need for precise species-level estimates. Covariate relation-

ships can be honed in on for individual species if parame-

ter estimates are similar across multiple classifications.

Conversely, if species-level estimates are quite different

(and have nonoverlapping BCIs) with different classifica-

tions, then it is clear that such estimates are not meaning-

ful (Picard et al. 2012). One indication of a poor match

between a species and group is imprecise estimates even

when the total number of detections for the group is

high.

Classifying species into groups, coupled with multispe-

cies hierarchical models, provides an opportunity to

examine the influence of macroecological covariates and

climate change on species assemblages at large spatial

scales (e.g., Ruiz-Guti�errez et al. 2010; Ruiz-Guti�errez and

Zipkin 2011). These approaches gain importance because

emerging conservation paradigms and strategies favor

assessments of multispecies responses across heteroge-

neous landscapes (Caro 2010). We stress the importance

of clearly defined objectives and hypotheses before

embarking in studies of this complexity. Our analysis

should help researchers to understand the potential trade-

offs with different classification groupings.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. Total number of detections by species for the

Puerto Rico and Hudson River Valley data sets.

Figure S2. Posterior mean estimates of species richness

with 95% posterior credible intervals for the full commu-

nity model and each of the three different classification

approaches for the Puerto Rico (top) and Hudson River

Valley (bottom) data sets at each site.

Figure S3. Individual species occurrence probabilities

(posterior means with 95% credible intervals) in the four

different habitat types (Agriculture, Forest, Urban, and

Edge) of the study area in southwestern Puerto Rico for

four important species (ANMA, Antillean mango, Anthra-

cothorax dominicus; PRVI, Puerto Rican vireo, Vireo lati-

meri; PRSP, Puerto Rican spindalis, Spindalis portoricensis;

and PUEB, Puerto Rican bullfinch, Loxigilla portoricensis).

Figure S4. Mean marginal occurrence probabilities for

four priority conservation species (VESP, Vesper sparrow,

Pooecetes gramineus; CERW, Cerulean warbler, Setophaga

cerulean; BTBW, Black-throated blue warbler, Setophaga

caerulescens; and SCTA, Scarlet tanager, Piranga olivacea)

in relation to forest fragment area in the Hudson River

Valley.

Figure S5. Posterior mean occurrence probabilities for

four priority conservation species (Vesper sparrow, VESP:

two detections at two sites; Cerulean warbler, CERW:

seven detections at six sites; Black-throated blue warbler,

BTBW: 20 detections at nine sites; and Scarlet tanager,

SCTA: 141 detections at 56 sites) at individual sites in the

Hudson River Valley study area.

Table S1. Individual observed species and their group

classifications (PR: H – Habitat, M – Microhabitat, D –
Diet; Hudson River Valley: Nest location – N, Habitat –
H, D – Diet, see Table 1) for both the Puerto Rico and

Hudson River Valley data sets.

Table S2. Model performance for each group classifica-

tion approach (italics and bold; PR: H – Habitat, M –
Microhabitat, D – Diet; Hudson River Valley: Nest loca-

tion – N, Habitat – H, D – Diet, see Table 1) and sub-

group within each group classification approach

calculated by computing the area under the curve of the

receiver operating characteristic (AUC) for both the

Puerto Rico and Hudson River Valley data sets.

Data S1. WinBUGS code and convergence assessment.
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