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ABSTRACT Here, we present the draft genome sequences of Pseudomonas sp. strains
MWU12-2020 and MWU12-3103b, isolated from the rhizospheres of wild and culti-
vated cranberry bogs in southeastern Massachusetts; these strains are unrelated to
known Pseudomonas species. The genomes of both isolates exceed 6 Mbp and contain
predicted ice nucleation and type VI and III secretion system genes.

Secondary metabolites produced by members of the genus Pseudomonas allow them to
interact and survive within many different environments (1–5), but little is known about

the role these bacteria play in soil dynamics or plant health in critical wetlands ecosystems.
Pseudomonas sp. strain MWU12-2020 was isolated from wild cranberry bog soil (42.070624
N, 70.210548 W) and strain MWU12-3103b was isolated from cultivated cranberry bog roots
(41.766767 N, 70.66842 W) during culture-dependent microbe surveys. Cranberry plants
have a network of fine roots supported by ericoid mycorrhizae, which makes it difficult to
differentiate between root and fungus and determine where the root zone is (6). In the
case of MWU12-2020, there was no visible root or mycelium in the sample, but for
MWU12-3103b, soil was attached to the root/mycelial network. The soil and rhizosphere
samples were vortexed in sterile water; supernatants were plated onto King’s medium B
(KMB) supplemented with 50 mg mL21 each of ampicillin and cycloheximide and incu-
bated at 26°C for 48 h. Fluorescent colonies were colony purified 3� on KMB and stored
at280°C in 34% glycerol. DNeasy blood and tissue kits (Qiagen, USA) were used to extract
genomic DNA (gDNA) from overnight KMB broth cultures. Libraries for genomic sequenc-
ing were generated from enzymatically sheared DNA (�500 bp) using a HyperPlus library
preparation kit (Kapa Biosystems KK8514; Roche, USA). The sheared fragments were end
repaired and A-tailed at the 39 end. Indexed Illumina-compatible adapters (IDT number
00989130v2) were ligated to the A-tailed fragments; the library was cleaned using KAPA
pure beads (KK8002) and then amplified using HiFi enzyme (KAPA KK2502). Fragment sizes
were determined using an Agilent TapeStation device and then quantified using a KAPA
quantitative PCR (qPCR) library quantification kit (KK4835) on a QuantStudio 5 system
(Thermo Fisher, USA) for sequencing on the Illumina MiSeq platform (2 � 250-bp format).
Using the Comprehensive Genome Analysis feature of PATRIC v3.6.12 (https://www
.patricbrc.org) (7), assembly of the raw reads was completed using Unicycler v0.4.8 (8); the
reads were polished using Pilon v1.23 (9), with default parameters except for enabling
automated end trimming, and annotated using RASTtk (10). QUAST v5.0.2 and Trim Galore
v0.4.0 were used within PATRIC (11, 12) for quality control and adapter trimming, respec-
tively. A summary of the assembly and annotation is given in Table 1. Both isolates were
placed in the genus Pseudomonas by genome BLAST distance phylogeny using TYGS v342
(13), but though most closely related to Pseudomonas koreensis DSM 16610T (GenBank
accession number JAAQYM000000000) (digital DNA-DNA hybridization [dDDHd4] = 51.2 and
43.7 for MWU12-2020 and MWU12-3103b, respectively), neither can be assigned to an
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existing species, and they do not belong in the same species (dDDHd4 = 51.2). Both
genomes contain putative inaA genes for ice nucleation (14, 15) and type VI and III secretion
systems (16–18), all of which have potential implications for interactions with other mem-
bers of the ecosystem.

Data availability. This whole-genome shotgun sequencing project has been deposited
at DDBJ/EMBL/GenBank under accession numbers JALMEX010000000 and JALMEY010000000
and BioProject accession number PRJNA691338 (Table 1). The versions represented in the pa-
per are the first versions. The RASTtk annotations are available under open license at Zenodo
(https://zenodo.org/record/6412376#.Yxj1mEfMKUk).
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TABLE 1 Genomic data summary

Isolate
BioSample
accession no.

GenBank accession
no.

SRA accession
no.

Genome
size (bp)

No. of
contigs N50 (bp)

G+C content
(%)

Mean read
length (bp)

No. of
reads

Coverage
(×)

No. of
CDSs

No. of
rRNAs

No. of
tRNAs

MWU12-2020 SAMN26879216 JALMEX000000000 SRR18531153 6,326,693 65 542,118 60.3 240.75 3,378,022 128 5,924 2 64
MWU12-3103b SAMN26879228 JALMEY000000000 SRR18531152 6,275,820 55 276,792 60.2 236.97 3,012,488 114 5,831 2 64
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