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Abstract: A simulation mathematical model of the state of operability of metal structures under
difficult operating conditions without stopping the equipment was developed in the form of similarity
criteria found on the basis of the laws of conservation of data obtained experimentally during tensile
and four-point bending tests. Criteria are proposed for the similarity of the state of the material of
the samples and the products in service, in which the kinetics of destruction are determined through
the rate of damage accumulation and the movement of the structural components of the material.
The residual life of the equipment under conditions of complex deformation effects was determined
based on the theory of similarity and the analysis of the dimensions of the parameters of acoustic
emission in real time. The use of concepts and models of fracture mechanics when creating methods
and criteria for assessing the results of diagnostics and monitoring allows important information
about the technical state of objects to be obtained.

Keywords: similarity theory; modeling efficiency; complex loads; residual life

1. Introduction

The reliability and efficiency of the operation of metal structures depends on the
quality of monitoring the technical conditions of the mechanical properties of materials
in accordance with the requirements of international standards [1,2]. At the same time,
during operation under conditions of uncertainty in the nature and magnitude of loading,
the properties of materials deviate from their standard values, which requires periodic
shutdowns of the equipment and diagnostic work.

According to the terminology, residual life is the duration of the safe operation of
products at permissible parameters from a given moment in time to its predicted state.

The need to assess the residual life is determined if the estimated service life of the
equipment in operation has been established when the terms of normative technical diag-
nostics are approaching, in the event of deviations in operating modes, when performing
repair and restoration work.

Technical diagnostics to determine the residual resource are performed during planned
shutdowns, as a rule, during major repairs. They include:

• External examination;
• Hardness measurements;
• Flaw detection, one of the methods of non-destructive testing: ultrasonic, magnetic

particle, capillary, and acoustic emission method;
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• Evaluation of metallographic structures;
• Metal cutting to control mechanical properties, chemical composition, and microstruc-

ture; and
• Hydraulic tests.

Such a variety of applied methods and means of technical monitoring is caused by
the ambiguity of the conclusions about the test results, which necessitates the introduction
of their comprehensive control. However, even with the comprehensive application of
non-destructive and destructive testing, there is no strictly defined sequence of their use;
therefore, despite the many means used, the reliability of such estimates is low.

Interest in identifying the state of a material under load has manifested itself in the
development of similar issues in related fields of science and technology. The identification
of bifurcations in distributed complex networks is considered in [3]. The identification
of the operability of power systems is presented in [4]. A method for calculating the
parameters of mechanical tensile strength is described in [5].

Determination of the residual life of metal structures using the phenomenon of acoustic
emission (AE) is presented in [6]. In [7], the AE method was used to assess the degradation
of mechanical properties under complex deformation effects, in [8,9] the method was used
to assess the safety factor using AE and fractal data analysis. In [10], the method was used
to analyze the relationship between the energy of the low and high frequencies contained
in the audio signal during the honing process.

The AE method was also used to predict fractures in composite materials [11,12],
and to determine the residual life of the launching building structures of space launch
vehicles [13]. The use of the similarity theory in determining the residual life is presented
in [14–17].

In the above works, the deformation of the structure of materials occurs under the
influence of one type of tensile or bending loading, while under real operating conditions
of structures, the material is affected by loading forces, which are manifested in combined
deformation conditions.

Since the magnitude of loading during the operation of metal structures is uncertain, it
is not possible to fully use the existing experience under conditions of a combined loading
of structures.

Theoretical estimates of the residual life of structural materials during their operation
under complex deformations requires the involvement of such branches of mathematics as
the theory of elasticity, theory of differential equations, theory of probability, mathematical
statistics, theory of random processes, and information theory. This explains the fact
that, despite the great practical importance, the issues of constructing a methodology for
determining the residual resources of equipment remain unresolved.

Deviation from these states reduces the safety of operation and the resource, which
makes the task of monitoring, diagnosing, and predicting the strength and deformation
parameters of the operated products in real time especially crucial.

The issue of increasing the efficiency of identification processes for the state of metal
structures under conditions of uncertainty in the nature of loading requires the development
of new methods and technologies for non-destructive determination of the mechanical
properties of materials.

2. Methodology

The physical essence of the described toolkit for determining the performance of
products during their operation is based on the accumulation of damage and the resulting
changes in the structure of materials that initiate the generation of information signals,
including AE. Analysis of the theory of dimensions allows the amount of experimental
material to be reduced without losing information about the current state of the structure.

Questions related to the interpretation of the data obtained in the experiment on
specimens with fixed, strictly defined types of deformation, and their transfer to other more
complex types of deformations under the operating conditions of products under load are
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related to one fundamental position. Since the experiment was performed on a less complex
object, it is of interest to know what information from this experiment is contained in other
more complex objects. To do this, it is necessary to clarify the fundamental similarities
and differences between the functioning of the samples and real structures, and between
specific conditions for changing deformations in the experiment and the operation of a
metal structure.

When conducting experiments, due to the large number of multidimensional argu-
ments, it is not always possible to find their dependencies and relationships. In this case,
methods of similarity theory using complexes may be of great help. Similarity theory is the
scientific basis for experimental studies of complex phenomena, using modeling methods,
and methods of analogies.

The general task of similarity theory is to develop a methodology aimed at ordering
information about objects that exist outside of our consciousness, and that interact both
with each other and with the external environment. Methods of mathematical modeling
assume the similarity of the studied phenomena and processes, while the model itself is
built on the basis of the similarity derived from the analysis of conservation laws.

In practice, analogies are used as varieties of similarity, and modeling methods are used
as the implementation of analogies. If all the variables describing this process are known,
then homogeneous equations may be drawn up in terms of dimensions. If the equations can-
not be drawn up, then it becomes necessary to apply the method of dimensional analysis.

Depending on the relative completeness of the available information, three cases of
similarity and simulations are possible.

The case of full simulation and similarity. Mathematically, this case is characterized by
the ratio of the parameters of the model X and the original Y [18].

Xj = mjYj (1)

where mj is a scale factor that determines spatial coordinates and operating time.
The case of partial modeling and similarity providing similarity in either time or space.

The mathematical representation of the system parameters is

Yj = ϕ(y1, y1, . . . , yk−j, t) (2)

or
Yj = ϕ(y1, y1, . . . , yk−j, lx, ly, lz) (3)

where lx, ly, and lz are the size of local changes in the structure, and t is time.
The case of approximate modeling, where an error is deliberately allowed, which

requires its assessment when analyzing the final results. This includes modern knowl-
edge about the qualitative similarity and patterns of ongoing processes, their differences,
and features.

A simulation model of the state of health of structures may be presented in the
following form.

y
y0

= f
(

x1

x10
,

x2

x20
, . . . , π1, π2, . . .

)
(4)

where y/y0 is the desired variable, expressed in relative form, xi/xi0 are independent
variables, and πi are complexes.

The solution is generalized, since it includes countless cases corresponding to different
parameter values x10, x20, . . . , y0.

The mathematical description of the functional dependence of physical quantities does
not depend on the choice of units of measurement, and all terms of the equation must have
the same dimension. To do this, they may be converted to a dimensionless form by dividing
both sides of the equation by a constant value having the same dimension. The solutions
are presented in the form of complexes that combine various parameters in combinations
that are determined by the very mechanism of the process. The transition from individual
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quantities to correctly constructed complexes that acquire the meaning of new variables the
number of arguments to be reduced. The specific conditions for the functioning of systems,
which were previously expressed through changes in their parameters, are now expressed
through complexes.

Two physical processes are considered similar if they are subject to the same laws, and
all quantities characterizing one process may be obtained by multiplying homogeneous
quantities by constant numbers, i.e., similarity constants characterizing another process.

The complex reflects the relative measure of the intensity of the effects determined by
the operators Di and Dk.

Comparing pairwise operators in the form of relations, we obtain relative operators.

dik =
Di
Dk

(5)

If the initial physical quantities allow equations to be composed that determine the
process under study, then the complexes may be found directly from these equations.

The typical form of such equations is

D1 + D2 + . . . + Di + Dk + . . . + Dr = 0 (6)

where D indicates differential operators, each of which determines one of the characteristic
features of the effects of changes in the structure of materials under loading.

Although operators cannot be used directly to determine the properties of processes,
they serve as the basis for finding the laws of constructing complexes.

The dimension of any derived quantity may be expressed as S = FαLβTγ where α, β, γ
and matter 0, 1, 2 . . . The form of the equations describing the phenomenon does not
depend on the choice of the system of units.

Dimensional analysis may be defined as a method for studying the relationships
between the numerical values of quantities that are most significant for the process under
study. Its application requires knowledge of the main primary and secondary variables that
affect the final result. Primary quantities are measured directly, and secondary quantities
are measured indirectly through determinative equations. The number of primary and
secondary quantities for such phenomena is the same.

For most problems related to mechanical systems, three basic dimensions of length L,
time T, and mass M are used.

On the basis of the axiom of the theory of dimensions, the numerical value of a physical
quantity A is equal to the ratio of this quantity to the unit of its measurements. Parameters
of the process of changing the structure of the material under load a1, . . . , an, are expressed
in base units A1, A2, . . . , An. The rest of the derived units B are established on the basis of
physical laws

B = An1
1 , An2

2 , . . . , Ank
k (7)

Since all process parameters are interrelated, their subsequent values depend on the
previous ones, i.e.,

an = f (a1, a2, . . . , an−1) (8)

The units of measurement for the first k quantities are set independently of each other,
and the units of measurement for the remaining n–k quantities are derived.

Ak−1 =
k

∏
i=1

Ami
i , . . . , An =

k

∏
i=1

Api
i (9)

Then, increasing the base units A1, A2, . . . , An respectively by a1, a2, . . . , ak times, the
resulting ratio may be presented in the form of complexes or similarity criteria πi

πn−k = f (1, 1, . . . , 1, π1, . . . , πn−k−1) (10)
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or
πn−k = F(π1, . . . , πn−k−1) (11)

where
π1 =

ak+1

∏k
i=1 ami

i

=
Ak+1

∏k
i=1 Ami

i

, . . . , πn−k =
an

∏k
i=1 api

=
An

∏k
i=1 Api

i

(12)

If n − k = 1, then πn−k = const.
The complex is a generalized variable.
According to the fundamental theorem of dimensional analysis, if any equation is

homogeneous with respect to dimensions, then it may be transformed to a relation con-
taining a set of dimensionless combinations, and find dimensionless similarity criteria
characteristic of this process.

The order of finding the similarity criteria consists in a reasonable choice of the
fundamental variables of the process under study with the subsequent recording of the
functional relationship with respect to one of the fundamental variables. Typically, this is
the variable for which the experiment was performed.

The methodology for finding similarity criteria consists of a set of the following
operations:

• Choice of fundamental variables;
• Records of the functional state of the process;
• Choice of a system of primary variables through which all the fundamental variables

may be expressed;
• Drawing up of dimensional formulas for the fundamental variables;
• Records of the uniformity condition for the interaction of all indicators of the functional

ratio; and
• Drawing up of dimensionless complexes.

It should be noted here that if it is not possible to obtain a system of dimensionless
combinations, then this is a sure sign of an error, i.e., it is necessary to search for which of
the function variables is missing.

In the case of multiparameter loading, to determine the safety factor, one should take
into account how the deformation parameters change when the loading parameters change
with respect to the limiting state. The boundary curve of the area of operability of structures
under difficult loading conditions, constructed from the results obtained from samples of
St3sp steel [19], is shown in Figure 1.

Figure 1. Boundary curve 1 and loading trajectory 2 in the coordinates of mechanical stress (I—area
of operability, II—area of destruction) [19].

The condition for operability is the failure of the loading trajectory to go beyond the
area of determining the state of operability of the structure. The intersection of the boundary
curve with the coordinate axes is determined by the values of the strength properties of the
material σB and σ0.2 [19].
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The boundary curve equation has the form(
σb

σ0.2

)2
+

σt

σB
= 1 (13)

where σt and σb are the results of monitoring mechanical stress during the bending and
tensile tests.

For an arbitrary point A, geometrically, the residual resource coefficient λ is equal to
the ratio of segment OB to segment OA.

λ =
OB
OA
≥ 1 (14)

Analytically, the residual resource at point A is expressed by the equation

λ =
σ0.2

σbA

−1
2

σ0.2σtA
σBσbA

+

√
1
4

(
σ0.2σtA
σBσbA

)2
+ 1

 (15)

3. Materials and Methods

St3sp grade structural carbon steel was chosen as a material for the research. This steel
is used for the manufacture of load-bearing structural elements. It is made from I-beam,
structural channel, rolling, metal corners, cold-rolled coils, and steel sheets. ST3sp steel is
well welded by gas and electric arc welding. This steel is not prone to temper brittleness. It
has good technological properties.

International analogues of St3sp grade steel represented in Table 1.

Table 1. International analogues steel of St3sp grade.

Germany USA Japan France Belgium China

1.0038 St37-3 A284GrD
M1017 SS330 SS400 E24-

2 S234JRG2
FE360BFN

FED1FF
Q235A
Q235B

Mechanical properties of steel of St3sp grade represented in Table 2.

Table 2. Mechanical properties of steel of St3sp grade.

Standard σB, MPa σ0.2, MPa δ, %

ISO 4995-78 370–490 206–245 23–26

The methods of the theory of similarity and analysis of dimensions were used as the
research methods.

When solving the general problem of linking the results obtained from the samples
with a prediction of the bearing capacity of structures, along with the use of well-known
similarity criteria, there is a need to develop new criteria closer to the physical essence of
the studied phenomena.

To determine the actual state of structural materials, information about the fracture
kinetics, characterized by the rate of damage accumulation, are taken into account in
strength calculations.

Since the kinetics of fracture are determined by the rate of damage accumulation, it
is necessary to consider similarity criteria, in which the rate of changes in the structural
components of the material, which determine the mechanical properties and performance
of structures under difficult loading conditions, is included as a parameter.
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The main criterion establishing the relationship between the rate of development of
the phenomenon υ0, its scale l and time t, is the criterion of homochronism πH0.

πH0 =
υ0t
l

(16)

The expediency of using this criterion in assessing the performance of structures lies in
the transfer of the basic laws obtained on the samples to complex deformations of products
under load.

The most important similarity criteria are named after the surname of famous scientists
and are designated by the first letters of their surname.

The criterion for the similarity of the motion of local changes in the structure with
mass m under the action of applied forces F is determined from the equation of Newton’s
second law

F = m
d2l
dt2 (17)

and has the form

πNe =
Ft2

ml
(18)

The basis for using this criterion in determining the operability of structures under
loading is the provision that local changes in the structure under load move in the space of
the material with their release to the surface in the form of ruptures and cracks.

The similarity of displacements of structural imperfections inside the material under
stress under the action of gravity is determined by the equation

F = m
d2l
dt2 = mg (19)

where
πg =

l
gt2 (20)

where g is the acceleration of gravity.
The elastic interaction of moving structural imperfections in the material of structures

under loading is described by the Cauchy criterion, for which the corresponding complex
is equal to

πk =
υ0√
Eε

ρ

(21)

where E is Young’s modulus, ρ is the material density, and ε is the relative change in linear
displacement.

When a material is presented as a viscoelastic body, the similarity criteria will be the
Reynolds, Froude, and Strouhal numbers.

The Reynolds number Re characterizes the speed of movement of the main accumu-
lations of dislocations in the direction of the outer surface of the product. This number
manifests itself as the ratio of inertial forces to internal friction forces.

Re =
υ0l
ν

(22)

The Froude number Fr expresses the speed of movement of dislocations in the periph-
eral areas of the zone of changes in the structure of materials υ1, and manifests itself as the
relative value of their gravity.

Fr =
υ2

1
gl1

(23)
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where l1—is the linear dimension from the zone of moving excitations to the outer edge of
the product.

The Strouhall number St expresses the impulsive motion of dislocations under the
action of applied stresses.

St =
υ2t
l

(24)

where υ2 is the rate of growth of movement of dislocations, and t is the pulse alternation time.
Analysis of the above-mentioned criteria is extremely useful for selection of variables

that determine the physical essence of the process of determining the state of health of
structures under difficult loading conditions, and developing the corresponding complexes.

4. Building the Simulation Model

Taking into account the motion of dislocations in a material as in a viscoelastic medium
in the case of unsteady motion of incompressible dislocation imperfections, the Navier–
Stokes equation in vector form may be used.

∂
→
υ 3

∂t
+
(→

υ 3∇
)→

υ 3 −
→
F +

1
ρ

νgradP− 1
ρ

ν∇2→υ 3 = 0 (25)

where F is volumetric force, ν is kinematic viscosity, P is pressure,
(→

υ 3∇
)→

υ 3 is inertial

force, 1
ρ νgradP is pressure force, and ∂

→
υ 3
∂t is non-stationary force.

The physical meaning of the applicability of this equation is expressed in the form of
the equality to zero of the sum of pressure forces, volume force, inertial force, and internal
friction.

The development of the process depends on the relationship between these forces.

Therefore, for the stationary case where ∂
→
υ 3
∂t = 0, the development of the process depends

on the value of the relative operator
(→

υ 3∇
)→

υ 3/1
ρ ν∇2→υ 3, which determines the ratio of inertial

force to internal friction force.
In the stationary case, the Navier–Stokes equation may be written as(→

υ 3∇
)→

υ 3 −
→
F +

1
ρ

νgradP− 1
ρ

ν∇2→υ 3 = 0 (26)

and contains four homogeneous operators and three complexes.
To create a deterministic simulation model for identifying the state of metal structures

under conditions of uncertainty in loading, it is proposed to use discrete interaction of
particles connected by elastic bonds [20].

The potential energy is a function of the displacement field u(n)

Φ = Φ0 + ∑
n

Φ(n)u(n) + 1
2 ∑

n,n′
Φ(n, n′)u(n)u(n′)+

+
1
3! ∑

n,n′ ,n′′
Φ(n, n′, n′′ )u(n)u(n′)u(n′′ ) + . . .

(27)

where Φ0 is the energy of a linear chain in equilibrium, and n′, n” are numbers of interacting
particles.

For offsets u(n,t), the kinetic energy of such a chain is

T =
m
2 ∑

n

[
∂u(n, t)

∂t

]2
(28)
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The difference in kinetic T and potential Φ energy defines the Lagrange function L

L =
m
2 ∑

n

[
∂u(n, t)

∂t

]2
− 1

2 ∑
n,n′

Φ
(
n, n′

)
u(n, t)u

(
n′, t

)
+ ∑

n
q(n, t)u(n, t) (29)

where q(n,t) is the external force.
Considering that

d
dt

∂L
∂

.
u
− ∂L

∂u
= 0 (30)

the equation of vibrational motion of particles takes the form

m
..
u(n, t) + ∑

n′
Φ
(
n, n′

)
u
(
n′, t

)
= q(n, t) (31)

The vibrations of atoms do not initiate a wave. This requires external excitations
caused by structural changes. Since all atoms vibrate in the same way, it is enough to
consider only one chain, which is deformed as the excitations propagate along it.

Bias un = Aei(ωt-kxn) corresponds to a longitudinal wave that propagates at a speed
υ0 = ω/k, where k = 2π/λ is the wave vector.

The displacement of an atom in the absence of damping is

un = Aei(ωt+φn); un−1 = Aei(ωt+φn−1); un+1 = Aei(ωt+φn+1) (32)

where ω is the frequency, and ϕ is the oscillation phase.
The equation of motion for an atom n with mass m has the form

m
∂2un

∂t2 = Φ(un+1 + un−1 − 2un) (33)

where m is the mass of an atom, and Φ is the force constant.
In moving nanostructured objects, there is a short-range action of discrete structures

and a long-range action of an elastic continuum in which disturbances propagate.
Applying the methods of continuum mechanics, it is possible to reduce the equations

of motion to combined equations with reduced parameters. The boundary conditions will
be the equality to zero of the velocity of movement of dislocations on the surface of the
product when a crack opens, and the act of energy emission stops

→
υ 3 = 0 at large distances

due to the attenuation of elastic waves in the material.
With this in mind 

∇2→υ 3 = grad div
→
υ 3 − rot rot

→
υ 3(→

υ 3∇
)→

υ 3 = rot
→
υ 3 +

→
υ 3

div
→
υ 3 = 0

(34)

Assuming that the volumetric forces of structural change have the potential Π, that is,
F = −gradΠ, the Navier–Stokes equation is reduced to the form

∂
→
υ 3

∂t
+ rot

→
υ 3 +

→
υ 3 = grad

(
υ2

3 + Π +
P
ρ

)
− νrot

→
υ 3 (35)

This equation, together with the equation div
→
υ 3 = 0, is a closed nonlinear sys-

tem of four second-order partial differential equations with four unknown functions
→
υ 3i(i = 1, 2, 3) and P. These equations should be supplemented by the equation of the
vibrational motion of particles during the propagation of signals from structural distur-
bances during loading (31). The model obtained in this way will be a simulation model of
the state of health of structures under difficult loading conditions.
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5. Results and Discussion

The safety margin of metal structures during their operation is determined by the
magnitude of the mechanical stress σ, tensile strength values σB, and fluidity σ0.2 in bending
and tensile tests, which in turn depend on the elastic moduli E, material density ρ, masses
m, and geometric dimensions of the sample l, and are manifested in the form of changes in
deformations under a load determined through energy W and strength F. These quantities
are fundamental variables.

The dimensions of these variables are presented in Table 3.

Table 3. Dimensions of variables that determine the state of health of metal structures.

Variable Designation Functional Relationships

Speed u LT−1

Time T T
Mechanical stress σ ML−1T−2

Deformation ε M0L0T0

Young’s modulus E ML−1T−2

Weight m M
Length l L
Force F MLT−2

Energy W ML2T−2

Density ρ ML−3

Based on the determinative equations, it is possible to express the dimensional equa-
tion for the residual life coefficients λ in the form of a functional relationship of fundamental
variables with their exponents

λ = f ((ML−1T−2)a, (ML−1T−2)b, (ML−3)c, (M)d, (L)e, (M0L0T0) f , (ML2T−2)g, (MLT−2)h) (36)

in the form of a functional relationship of fundamental variables with their exponents

λ = f
(

σl2

F
,

El2

F
,

ρl3

m
, ε,

W
Fl

)
(37)

or
λ = f (π1, π2, π3, π4, π5) (38)

This equation expresses the dependence of λ on the dimensionless complexes πi:

• π1 = σl2

F characterizes the relative stresses at constant load for a sample and a metal
structure;

• π2 = El2

F characterizes changes in mechanical properties during loading of a sample
and a product during its operation;

• π3 = ρl3

m characterizes the relative density of the sample material and the metal
structure and determines, in the general case, the propagation velocity of stress waves;

• π4 = ε characterizes the relative changes in deformation in the sample and in the
product under a constant loading force; and

• π5 = W
Fl characterizes the change in energy and disturbing force in a full-scale sample

and in an exploited product.

Analysis of the considered similarity criteria and their physical interpretation show
that for the processes of changes in the structure of the material under load and the
occurrence of internal stresses, Newton’s criterion is the closest in its physical essence (18).
If we describe the components of this criterion in terms of the corresponding dimensions,
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multiplying and dividing the result obtained by L, and combining the closest obtained
representations of the variables, according to Table 3, we obtain a new similarity criterion.

π5 =
ML
T2

T2

ML
L
L
=

ML2

T2
T2

MLL
=

W
Fl

(39)

When applied to the assessment of the operability of structures under load, this
criterion establishes a correspondence between the energy of structural change W and the
disturbing force F.

Similar transformations may be performed with the Froude criterion (23). By express-
ing the components of this expression in terms of the corresponding dimensions, dividing,
and multiplying the formula for the dimension of the Froude criterion by a constant number
MT2/L we obtain

Fr =
L2

T2
T2

LL
L

MT2
MT2

L
(40)

Taking into account the fact that in the resulting expression MT−2L−1 = σ and
MLT−2 = F we obtain a new criterion π1

π1 =
σl2

F
(41)

When applied to the assessment of the operability of structures, it expresses the relative
changes in stresses under a constant load.

Since, when assessing the performance of structures, the main process under study
is the change in internal stresses and the associated change in the mechanical properties
of the material, the Cauchy criterion is the most acceptable similarity criterion. By squar-
ing Formula (20), expressing the components of the resulting expression in terms of the
corresponding dimensions, and uniting the closest variables, we obtain a new similarity
criterion π2

π2 =
υ2ρ

Eε
=

L2

T2
M
L3

LT2

M
=

L2MLT2

T2LLLM
=

E
F

l2 (42)

By writing out the formula for the displacements of structural imperfections of the
material (21) in terms of the dimensions of the quantities included in it, and multiplying
and dividing the result by ML−1, considering that ML−3 = ρ, we obtain one more similarity
criterion π3

π3 =
L2T2

T2LL
M
L

L
M

=
ρl3

M
(43)

This criterion makes it possible to describe in more detail the change in the properties
of materials of products through stresses in the structure that responsible for the generation
of emerging information signals.

When studying the elastic deformations of structures under the influence of external
forces, Poisson’s ratio is used as the main criterion

µ =

∣∣∣∣ ε1

ε2

∣∣∣∣ (44)

where ε1 = ∆l/l, is the relative longitudinal deformation, and ε2 = ∆d/d is the relative lateral
deformation.

A criterion based on these definitions π4 = ε will be another complex that determines
the state of health of structures during their operation.

Complexes πi allow the determination of how many times any parameter of the model
will change when others change.

The choice of a system of dimensionless criteria is predetermined by the ability to
concentrate all the uncertainty associated with the experiment into one of the dimensionless
complexes. One of the most promising means of monitoring the state of critical facilities
during their operation, taking into account the operating time of equipment in modes of
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extreme and peak loads on the structure material, is the use of a complex based on the
implementation of the effect of acoustic emission, which allows the initial stage of changes
in the structure of materials to be determined. In this case, it becomes possible to diagnose
on continuously operating equipment.

The main requirement for the experiment is the equality of the values of the root mean
square errors in measurements on samples and real structures. In this work, this condition
is met due to a single recording unit with digital indication of AE signals for tensile and
bending tests (Figure 2).

Figure 2. Diagram of an experimental setup for AE measurements during tensile and four-point
bending tests: 1. Force measuring mechanism; 2. Deformation mechanism; 3. Controlled sample;
4. Support; 5. Indenter; 6. Filter unit; 7. Analog-to-digital converter; 8. Block for accumulation and
processing of information; 9. Recorder; 10. Piezoelectric sensor; 11. Tensometer; and 12. Blocks of
preliminary amplification.

Samples for four-point bending tests were cut from sheet metal with a size of
300 × 20 × 4 mm, for tensile testing with a size of 223 × 37 × 3 mm. Identification of
the structural features of the bending deformation mechanisms was carried out during
the deformation of the samples on an installation operating on the principle of a given
deformation. The tests were carried out with registration of the load and the corresponding
deformation with simultaneous fixation of the moments of occurrence of AE signals in
compliance with ASNT, ASTM, and ISO9001 standards.

The measuring setup used broadband sensors with a bandwidth of 0.2 . . . 0.5 MHz.
The information-measuring system used in the experiment provided indication, registra-
tion, and pre-processing of AE signals with its further storage in the computer memory
using a storage oscilloscope (RIGOL DS1052E Digital oscilloscope). The results of AE
measurements are shown in Figures 3 and 4.
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Figure 3. Structure of the spectra of AE signals for tension.

Figure 4. Structure of the spectra of AE signals for bending.

In the loading diagram, the moments of occurrence of AE signals are noted not only
by characteristic transitions at the stages of elastic, plastic, and pre-fracture loading, but
also by a more detailed structure change within these stages (Table 4).

The AE method allows real-time recording of the processes of violation of the structure
of metals in the dynamics of their changes. The fixation of deformation transitions by AE
methods shows that these changes occur earlier than it follows from tensile tests. This
makes it possible to establish the degree to which a material is approaching the state of
destruction.

To implement the method for determining the state of operability of structures under
difficult loading conditions, it is necessary to perform measurements on samples under
loading and certain types of deformation, such as bending and tension, which is reflected
in the complex π4 to assess the state of operability of metal structures. Such measure-
ments were performed in [21,22] and presented in the form of their digital processing in
determining the information parameters recommended for technical diagnostics.

An effective way to study the dynamic processes of changing the structure of materials
is an active experiment. The purpose of this experiment is to establish correlations between
mechanical, deformation, and information diagnostic parameters of AE under various test
conditions.

Studies have shown that peak amplitudes, amplitude-frequency distributions, amplitude-
time distributions, energy spectrum, and density of AE signals are recommended as infor-
mation parameters of AE signals for use in bending. For stretching, parameters such as the
total number of pulses and the intensity of AE acts are also added to them.
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Table 4. Amplitude parameters of AE signals under tension and four-point bending of samples of
St3sp steel.

Work Hardening Zones Loading Force
F, H

Maximum
Amplitude Umax,

mV

Average
Amplitude Ucp,

mV

Tension

I zone of elastic deformation

16,867.44 3 0.1
18,436.50 20 0.3
18,828.77 11 0.2
19,711.37 12 0.2

II zone of plastic deformation
20,103.63 22 7.0
20,495.90 19 3.5
20,888.16 9.8 2.2

III zone of yield and pre-fracture

21,182.36 22 1.4
21,280.43 21 0.4
23,535.96 14 2.8
25,497.29 7.6 0.1
29,419.95 15 0.3

Bend

I zone of elastic deformation
166.71 3 0.03
196.13 4.3 0.01
264.78 6.6 0.01

II zone of plastic deformation

372.65 2.1 0.007
377.56 2.5 0.008
386.38 3.0 0.029
392.27 3.7 0.047

III zone of yield and pre-fracture 460.91 6.1 0.184
465.82 10.0 0.473

The agreement with the similarity criteria proposed in this work made it possible to
select from the informational parameters of the AE that most clearly reflect the essence
of the loading process. It was found that in relation to the AE phenomenon, the closest
criterion is π3 = ρl/m, with the only difference in interpretation being that the density of
the AE signals is now defined as the number of pulses in the investigated range. Then
the number of experiments using the AE phenomenon in diagnosing the performance of
products is significantly reduced.

The density of AE signals was chosen as an information parameter in acoustic mea-
surements. For ST3sp steel, this parameter bends by an order of magnitude when biological
objects are deformed.

The experimental values of the fundamental variables to determine the state of health
of structures under difficult loading conditions are presented in Table 5.

The density and energy of the AE signal reflect changes in the mechanical properties
of the materials.

The density of the AE signal is determined by the relationship

N =
N∑

tH
(45)

where NΣ is the number of crossings of the AE signal threshold level.
AE signal energy

W =
n

∑
i=ic

|ui − ubase| (46)
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where ic is the sample number corresponding to the time of arrival of the AE signal, ubase is
the displacement of the AE signal relative to the zero level, and ui is the current offset of
the AE signal.

Table 5. Experimental values of fundamental variables in tension and four-point bending of full-scale
samples of St3sp steel.

Loading
Force F, (N)

AE Signal
Density N,

108 s−1

AE Energy
W, 10−3 rel.

Units (1)

Mechanical
Stress σ,
(MPa)

Elongation
(Deflection)

l, (mm)

Relative
Deformation

ε, (%)

Tension

16,867.44 0.47 0.302 281.1 0.375 0.17
18,436.50 0.40 4.955 307.3 0.463 0.20
18,828.77 0.19 1.616 313.8 0.477 0.21
19,711.37 0.16 2.855 328.5 0.577 0.26
20,103.63 0.55 16.000 335.1 0.591 0.27
20,495.90 0.41 4.354 341.6 0.705 0.32
20,888.16 0.33 2.360 348.1 0.737 0.33
21,182.36 0.65 34.000 353.0 1.923 0.86
21,280.43 0.44 5.464 354.7 4.189 1.88
23,535.96 0.29 4.307 392.3 11.022 4.94
25,497.29 0.25 1.804 424.9 13.330 5.98
29,419.95 0.22 2.403 490.3 17.390 7.80

Bend

166.71 1.39 0.302 93.8 6.511 1.13
196.13 1.02 0.512 110.4 6.815 1.19
264.78 1.37 0.859 149.0 8.011 1.39
372.65 1.92 0.083 209.7 14.011 2.44
377.56 1.88 0.158 212.4 14.312 2.49
386.38 1.86 0.376 217.4 14.823 2.59
392.27 1.54 0.256 218.7 15.418 2.69
460.91 1.66 1.270 234.5 23.901 4.17
465.82 1.73 2.323 235.3 24.030 4.19

They are an indicator of structural transformations during loading of metal structures.
The presented AE information was processed together with directly measured me-

chanical characteristics, which reflect the strength properties of the material.
The calculated values of the similarity criteria are presented in Table 6.
To calculate complexes π2 and π3, data on the geometric dimensions of the samples

were used, as well as reference data on the density ρ (7850 kg/m3) and Young’s modulus
E (200 GPa).

The exploited product and the sample are described by the same dimensionless
equations

λ1 = f (π1, π2, π3, π4, π5) (47)

λ2 = f
(
π1
′, π2

′, π3
′, π4

′, π5
′) (48)

The only difference is in dimensionless complexes.
The values of the complexes presented in Table 4 reflect different moments of changes

in the structure of the materials. In this case, the primary event was a change in load.
To assess the state of operability of the operated structures at a given time, it is neces-

sary not only to determine the mechanical properties, but also to determine the properties
that are sensitive to local structural changes manifested in microplastic deformation and
changes in local micro-stresses. The strength properties decrease not only with an increase
in the service life, but also with an increase in the strength conditions. Accumulation of
damage under complex dynamic deformation effects characterizes structural degradation
processes such as deformation and destruction of cementite in pearlite columns, evolution
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of dislocation substructure, and formation of carbide precipitates in the bulk of ferrite
grains. This leads to a significant decrease in the strength properties of metals, and the
residual resource in general.

Table 6. Calculated values of similarity criteria for samples specimens of St3sp steel.

Tension

Loading
force F, (N) π1, 10−3 π2 π3, 10−6 π4, 10−3 π5, 10−5

16,867.44 2.34 1.67 4.43 1.70 4.77
18,436.50 3.57 2.32 8.34 2.00 58.04
18,828.77 3.79 2.42 9.12 2.10 17.99
19,711.37 5.55 3.38 16.14 2.60 25.10
20,103.63 5.82 3.47 17.34 2.70 134.70
20,495.90 8.28 4.85 29.45 3.20 30.13
20,888.16 9.05 5.20 33.64 3.30 15.33
21,182.36 61.62 34.91 597.57 8.60 83.47
21,280.43 292.48 164.92 6177.09 18.80 6.13
23,535.96 2024.92 1032.33 112,521.00 49.40 1.66
25,497.29 2961.10 1393.79 19,904.10 59.80 0.53
29,419.95 5039.87 2055.83 44,192.80 78.00 0.47

Bend

Loading
force F, (N) π1 π2 π3 π4, 10−3 π5, 10−4

166.71 23.85 50,858.50 0.023 11.30 2.78
196.13 26.14 47,360.70 0.027 11.90 3.83
264.78 36.11 48,475.10 0.043 13.90 4.05
372.65 110.47 105,358.00 0.231 24.40 0.15
377.56 115.23 108,504.00 0.246 24.90 0.29
386.38 123.63 113,733.00 0.274 25.90 0.66
392.27 132.53 121,200.00 0.308 26.90 0.42
460.91 290.64 247,883 1.147 41.70 1.15
465.82 291.68 247,924.00 1.166 41.90 2.07

The reason for the degradation of the mechanical properties of the metal is strain
aging, which is explained by the fact that during long-term operation there is a change in
the microstructure of the metal, a decrease in strength, embrittlement, and a decrease in the
bonding forces between crystal grains.

The mechanisms of degradation of the mechanical properties of metals are:

• Accumulation of dislocations at barriers;
• Evolution of dislocation structures;
• Formation and growth of nuclei of new carbide phases;
• Penetration of atoms into tetrahedral voids of the ferrite lattice; and
• Decomposition of cementite and fragmentation of pearlite grains.

When assessing the performance of metal structures using AE methods, it is necessary
to solve the inverse problem by the values of the AE signals at the moments of recording
the occurrence of the AE phenomenon, to determine the initiating values of the loads on
the product. This may be performed using approximating polynomials.

The approximating polynomials for the dependences of mechanical stress on the
density of AE signals σp(N) or σи(N) for stretching and bending are

σt(N) = −4 · 104N4 + 6.54 · 104N3 − 3.61 · 104N2 + 7313N + 0.86 (49)

σb(N) =
−74.51N2 + 200.3N + 0.43

N2 − 3.63N + 3.82
(50)
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The approximating polynomials for the dependences of the relative deformation on
the density of the AE signals εt(N) or εb(N) for stretching and bending are

εt(N) =
−0.094N2 + 0.348N − 0.108

N2 − 3.394N + 2.929
(51)

εb(N) =
0.238N2 + 0.022N + 0.002

N2 − 0.436N + 0.049
(52)

When approximated, the resulting smoothing curve does not necessarily pass through
all the nodal points and is a general trend and pattern. Application of approximating
polynomials to determine σt, σb, εt, and εb allows for a transformation from the analysis
of the input information obtained on the samples to the input information obtained on
the product.

To identify the state of metal structures, it is necessary to transform the graph of
Figure 1 in the form of a plane λ = f (Nt, Nb).

The change in the residual life coefficient under combined loading conditions is
presented in the form of a response surface to the disturbing effect of the accumulation of
damage to the structure of materials. When constructing the response surface, we used
calculations according to Formula (15), performed for the values σB and σ0.2 for a given
steel grade, and changing values σt and σb. In this case, the presented surface is the domain
of existence of function (15), where the values of strength characteristics included in it are
expressed through approximation polynomials. In addition to a visual representation, such
a visualized form of changes in the coefficient λ has its practical meaning. After performing
acoustic measurements and the necessary operations to determine the density of acoustic
signals, it is possible to identify the value of λ as the third coordinate of the intersection Nt,
Nb with this surface. The healthy state area is characterized by the values λ ≥ 1. In Figure 5,
this area is above the plane λ = 1.

Figure 5. Graphical interpretation of the residual life of specimens made of ST3sp steel under difficult
loading conditions: (a) The surface of the safety factor in the coordinates of the density of the AE
signals (the horizontal plane corresponds to the value λ = 1 and separates the operability region from
the fracture region). (b) An orthogonal projection showing the line of intersection of the safety factor
surface with plane λ = 1.
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The quantitative values of the results of the AE measurements performed on a single-
girder bridge crane during its loading are presented as point A of the load curve 2 (Figure 3),
which shows the current values Nt,Nb corresponding to the applied load.

When processing the results of the AE measurements, the values of the density and
energy of the AE signals were determined using Formulas (45) and (46).

The results of the acoustic measurements and processing of the obtained information
for the construction of complexes of the exploited product are presented in Table 7.

Table 7. Experimental values of input information for calculating dimensionless complexes of an
exploited product.

Loading Force F, (N)
AE Signal
Density N,

108 s−1

AE Energy
W, 10−3 rel.

Units (1)

Mechanical
Stress σ,
(MPa)

Elongation
(Deflection) l,

(mm)

Relative
Deformation

ε, (%)

Tension

40,848.80 ± 1225.46 0.02 4.64 147.12 ± 4.41 0.50 0.06

Bend

1579.41 ± 47.38 0.90 1.16 90.62 ± 2.72 1.61 0.18

By values N, presented in Table 5, and using Formulas (50)–(53), it is possible to find
the values σ and ε corresponding to the applied loads F.

To identify the load applied to the product in use, it is necessary to identify from the
whole variety of characteristics in Table 3 and complexes in Table 4, only those in which the
density of AE signals corresponds to point A during tension and bending (Table 7). The
results of this identification are presented in Table 8.

Table 8. Dimensionless complexes of samples made of ST3sp steel under loading.

Loading Force F, (N) π1 π2 π3 π4 π5

Tension

16,867.44 ± 506.02 2.34 × 10−3 1.67 4.43 × 10−6 1.70 × 10−3 4.77 × 10−5

Bend

264.78 ± 7.94 36.11 4.85 × 104 4.30 × 10−2 13.90 × 10−3 4.05 × 10−4

This part of the research represents the part of the experiment that may be carried over
from the assessment of the state of the sample to the state of the product in use.

The calculated values of the dimensionless complexes of the exploited product are
presented in Table 9.

Table 9. Dimensionless complexes of the exploited product.

Loading Force F, (N) π1 π2 π3 π4 π5

Tension

40,848.80 ± 1225.46 2.15 × 10−1 155.78 6.40 × 10−6 6.64 × 10−4 1.01 × 10−3

Bend

1579.41 ± 47.38 14.75 3.28 × 104 1.48 × 10−4 1.89 × 10−3 4.57 × 10−5

Considering [π1, π2, π3, π4, π5] as a vector, in accordance with (47.48) with known
values of the complexes for tension and bending of the samples and the operated product,
it is possible to find the normalized scalar product

Rλ1λ2 =
∑i πiπi

′√
∑i π2

i

√
∑i π′2i

(53)
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With the same characteristics of the devices used in the study of the residual life
coefficient on the sample and the operating product, we have

λ2 = Rλ1λ2 λ1 (54)

Substitution of the data in Tables 6 and 7 into Formula (53) gives the following value of
the correlation coefficient Rλ1λ2 = 0.94, to assess the values of the residual life coefficients
on the sample λ1 and used product λ2, calculated by Formulas (15) and (54), we obtain
λ1 = 1.38, and λ2 = 1.30.

It is not the residual resource ratio that is of practical interest. λ2, and the value of the
safety factor ∆λ, determine the excess of this value over the limit value λ = 1 determining
the performance of the structure

∆λ = λ2 − 1 (55)

Determination of the safety factor of a controlled item under complex dynamic loading
using AE signal density as a recorded parameter without stopping the equipment for
diagnostics is visualized in Figure 6.

Figure 6. Determination of the safety factor and the state of operability of structures under difficult
loading conditions.

The values calculated based on Formula (15) λ2 using approximation polynomials
(50–53) and found based on the proposed complexes πi’ differ on average by (15 ± 3)%.
This allows us to conclude about the adequacy of the proposed estimates for determining
the safety factor, and the possibility of applying the theory of similarity and dimensional
analysis to obtain information on determining the operability of structures under difficult
loading conditions without stopping the equipment for diagnostics.

6. Conclusions

1. The use of similarity criteria and dimensional analysis when constructing complexes
of a simulation model for determining the state of operability of structures in diffi-
cult loading conditions was aimed at ordering information about objects that exist
outside our consciousness, and interact with each other. The developed method for
determining the operability of structures under difficult loading conditions makes
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it possible to concentrate the estimation uncertainty into one of the dimensionless
complexes. It was proven that one of the most promising means of monitoring the
state of critical objects during their operation, taking into account the operation time
of equipment in modes of extreme and peak loads on the structure material, is the use
of a complex based on the implementation of the effect of acoustic emission, which
allows the initial stage of changes in the structure of materials to be determined. The
obtained results may serve as a model representation for predicting the residual life
and safety factor of metal structures.

2. The found similarity criteria make it possible to recalculate the results obtained from
experiments on samples subjected to tension and bending to determine the residual
life of equipment operated under difficult loading conditions. This may be used
as a basis for the formulation of recommendations for reducing operational loads
for continuously operating equipment and the turnaround time for servicing metal
structures.

3. The main advantage of the practical application of the theory of similarity and analysis
of dimensions is that it may be applied to complex phenomena, knowing only the set
of variables that determine the essence of the phenomenon under study without losing
information about the current state of the structure. The use of material constants in
the formulas of complexes testifies to the versatility of the methods for constructing
complexes. When switching to other loading, it is enough just to change the numerical
values of these constants.

4. The use of dimensional analysis provides three main benefits:

• The number of variables under consideration is always reduced;
• New dimensionless variables make it possible to conduct experiments more

economically and efficiently; and
• Ratios derived from dimensionless variables are general and not limited to any

particular system of units.
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