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Abstract: The Hox gene cluster, responsible for patterning of the head–tail axis, is an ancestral feature
of all bilaterally symmetrical animals (the Bilateria) that remains intact in a wide range of species.
We can say that the Hox cluster evolved successfully only once since it is commonly the same in
all groups, with labial-like genes at one end of the cluster expressed in the anterior embryo, and
Abd-B-like genes at the other end of the cluster expressed posteriorly. This review attempts to make
sense of the Hox gene cluster and to address the following questions. How did the Hox cluster form
in the protostome-deuterostome last common ancestor, and why was this with a particular head–tail
polarity? Why is gene clustering usually maintained? Why is there collinearity between the order
of genes along the cluster and the positions of their expressions along the embryo? Why do the
Hox gene expression domains overlap along the embryo? Why have vertebrates duplicated the Hox
cluster? Why do Hox gene knockouts typically result in anterior homeotic transformations? How do
animals adapt their Hox clusters to evolve new structural patterns along the head–tail axis?
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1. Introduction

An unexpected discovery in the 1980s was that both arthropods (Drosophila) and
vertebrates (mice) utilise conserved clusters of Hox genes in order to specify pattern
formation along their head–tail axes. The widely held conclusion is that the common
ancestor to these two groups (the protostome–deuterostome last common ancestor, or
P-DLCA) already possessed a cluster of seven, or more, Hox genes which it used, most
likely as in its descendants today, for specification of distinct body parts along the anterior-
to-posterior (A-P) axis (Figure 1) [1–3].

The Hox cluster is an ancestral feature of all bilaterally symmetrical animals (Bilateria)
retained in many, though not all, species (Section 2.2). We can say that it evolved success-
fully only once since the cluster is the same in all groups, with labial-like genes at one end
of the cluster expressed in the anterior embryo, and Abd-B-like genes at the other end of the
cluster expressed posteriorly [4–6].

Although now disrupted in some descendants, the Hox gene cluster in many other
descendants, both protostome and deuterostome, is still conserved to a large extent in its
inferred ancestral form [4–6]. The entire cluster has undergone duplications in vertebrates
(Figure 1, Section 2.6) though it remains unduplicated in invertebrate deuterostomes [4–6].

From his pioneering analyses of Drosophila developmental mutants, Ed Lewis [7] was
the first to propose the following (Figure 2A): that the clustered set of genes now known as
Hox genes are expressed in a series of partially overlapping domains along the length of
the embryo; that the order of the genes along the chromosome corresponds with the order
of their expression domains along the head–tail axis (the spatial collinearity rule); and that
the blend of Hox genes active in each segment or A-P domain of the body is responsible for
the specification of its structure. Subsequent work showed that these predictions hold true
for many or most bilaterally symmetrical animals (Sections 2.4, 2.7 and 2.8).
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Figure 1. Homologous Hox gene clusters in Drosophila, mouse/human and, by inference, their com-

mon ancestor. The ancestor (the protostome–deuterostome last common ancestor, P-DLCA) may 

have had more than the seven genes shown here [4]. Genes that share the same numbers and shad-

ing intensities are most recently related by descent. Hox-derived genes in Drosophila that no longer 

function as true Hox genes are named in grey text. Arrows indicate directions of transcription (pre-

sumed for ancestor). ANT-C, Antennapedia complex; BX-C, Bithorax complex. 
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Figure 1. Homologous Hox gene clusters in Drosophila, mouse/human and, by inference, their
common ancestor. The ancestor (the protostome–deuterostome last common ancestor, P-DLCA)
may have had more than the seven genes shown here [4]. Genes that share the same numbers and
shading intensities are most recently related by descent. Hox-derived genes in Drosophila that no
longer function as true Hox genes are named in grey text. Arrows indicate directions of transcription
(presumed for ancestor). ANT-C, Antennapedia complex; BX-C, Bithorax complex.
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bered at all later stages, enabling guidance throughout the course of development. At any 

region along the body, there is typically only one boundary between expressible and non-

expressible genes in both mice [9,10] (Figures 2A-right and 3) and Drosophila [11]. In the 

subtle difference from Lewis’s original proposal, expressible genes need not always be 

expressed, as illustrated in Sections 2.4 and 2.8. Expression depends upon the availability 

of activating or repressive transcription factors and may change in a tissue over develop-

mental time. Expressible Hox genes have been described as “open for business” [12,13]. 
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Figure 2. Hox expression patterns which do, or do not, conform to Lewis’s collinearity model.
(A) Conforming to Lewis’s model for Drosophila [7], and as now known to apply in many different
animals [5,6], Hox genes are expressed in a series of partially overlapping domains along the body
with the order of genes along the cluster being collinear with the order of their expression domains
along the head–tail axis. This is shown in Figure 2A-left, and the genes active at different positions
along the body are shown in Figure 2A-right. (B) Scenario where Hox3 and Hox5 gene expressions do
not conform to collinearity. Arrows show directions of transcription. Figure from Gaunt 2015 [8].
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Lewis’s model describes Hox genes as expressing or non-expressing, but we now
understand that these states are more accurately described as, respectively, expressible
or non-expressible. Recent studies in both mice [9,10] and Drosophila [11] show that the
expressible Hox genes in a given cell (Figure 2A-right) are in an open chromatin state,
characterized by Trithorax (Trx) protein binding, while the non-expressible genes are in a
closed chromatin state, characterized by Polycomb (Pc) protein binding (Figure 3). These
chromatin states are usually heritable from one cell generation to the next, thereby ensuring
that Hox expressibility patterns acquired in the early embryo are faithfully remembered
at all later stages, enabling guidance throughout the course of development. At any
region along the body, there is typically only one boundary between expressible and non-
expressible genes in both mice [9,10] (Figure 2A-right and Figure 3) and Drosophila [11]. In
the subtle difference from Lewis’s original proposal, expressible genes need not always be
expressed, as illustrated in Sections 2.4 and 2.8. Expression depends upon the availability of
activating or repressive transcription factors and may change in a tissue over developmental
time. Expressible Hox genes have been described as “open for business” [12,13]. Regions of
the body where Hox genes are non-expressible (closed for business; red zones in Figure 3)
typically cannot express these genes at any time.
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Figure 3. Discreet domains of open and closed chromatin generally support Lewis’s model. Anti-
body studies show correspondence between the position of cells along the head–tail axis and the
distributions of Hox genes between open (Hox expressible, green domain; Trx-rich) and closed
(Hox non-expressible, red domain; Pc-rich) chromatin states. At each level along the body, there
is only a single boundary between these states, supporting Lewis’s model (Figure 2A-right). Re-
drawn/modified from Noordermeer et al. [10].

In addition to spatial collinearity in Hox expression, many species including verte-
brates [14], cephalochordates [15], some annelids [16] and some arthropods [17] display
temporal collinearity. That is, the order of the Hox genes along the chromosome also
corresponds with the time of their first expression in the embryo, such that anterior genes
are expressed earlier than any more posterior genes.

This review focuses on the role of Hox clusters in patterning the head–tail axis of
bilaterians that develop in a regulative manner. Alternative, cell-lineage dependent (deter-
ministic) development, such as seen, for example, in nematodes [18], and ascidians [19] is
not addressed.
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2. Seeking Sense in the Hox Gene Cluster
2.1. Seeking Sense in the Evolutionary Origin of Hox Clustering and Transcriptional Direction

Clustering arose due to gene duplication from an original proto-Hox gene. Duplication
occurs due to unequal cross-over of DNA during meiosis in germ cells. This may be
due to a cross-over between repeat elements in the DNA, or between other regions of
a similar genetic sequence. It results in one chromosome becoming deleted in a genetic
fragment—such as a Hox gene in our case—while its attached homologue incorporates the
extra fragment.

This process, called “tandem gene duplication” leaves one chromosome with both
the maternal- and paternal-derived copies of the Hox gene lying in tandem on the same
DNA strand, and in the same orientation [20,21]. If this expanded chromosome contributes
to a zygote, then the additional Hox copy offers new scope for evolutionary change. For
example, if it acquires a new anterior boundary of expression and function, due to a change
in regulation or mutation, then this can specify a new zone of development along the
head–tail axis. It is usually suggested that this re-purposing of the new Hox gene occurs
after the duplication event [21]. However, it has been proposed that two identical Hox
genes may provide a selective disadvantage and a more reasonable hypothesis might be
that the genes were initially alleles of the same gene that already possessed some useful
differences in expression and/or function [22].

Repeated cycles of tandem gene duplication then led to the growing Hox gene cluster,
permitting ever-increasing complexity of body structures along the head–tail axis. The
process neatly explains not only why the Hox genes were formed in clusters, but also why
they transcribe in the same direction. The cluster developed with spatial collinearity, and its
polarity (that is, whether anterior-expressed genes lie upstream or downstream of posterior
genes) was likely established with the initial duplication/re-purposing event [23].

Hox genes are members of the ANTP class of homeobox-containing genes. This also
includes developmental gene groups paraHox, Dlx and NK, and all are thought to have
arisen by tandem duplication from the same ANTP class proto-Hox gene [24]. Although
paraHox, Dlx and NK genes are now usually dispersed from the Hox cluster some of
these remain linked to the Hox cluster in at least some protostome and deuterostome
species [24–27]. Apart from the ANTP class genes, there are ten other classes of homeobox
genes [24], such as PRD, POU and LIM, and all classes likely arose by tandem gene
duplication from an original proto-homeobox gene.

The question then arises as to when these events took place. Figure 4 indicates the
origin of homeobox genes within the tree of life. There are no ANTP class genes outside
the metazoa [24]. However, duplication and diversification of ANTP class genes must have
occurred very early in pre-bilaterian evolution because at least some poriferans (sponges)
possess both NK [24] and paraHox genes [28] even though they lack Hox genes, which
are presumed to have been secondarily lost [28]. Cnidarians possess Hox, paraHox and
NK genes, but there is debate over whether cnidarian Hox genes are strict orthologues of
bilaterian Hox genes, and whether they show spatial collinearity (Section 2.9). Proceeding
backwards in time, the greatest proliferation of homeobox genes occurred with the advent of
multicellularity in animals (metazoa), and also in plants and fungi (Figure 4) [29]. Bacteria
do not have homeobox genes. However, they do have helix-loop-helix genes which have
similarities in structure and function, and which may have been the ancestral progenitors
of homeobox genes [29].

Overall, the distribution of homeobox and Hox genes throughout the tree of life makes
sense in terms of the progressive development over time of the Hox gene cluster.
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Figure 4. Origins of homeobox genes within the tree of life. Branching orders of Porifera relative to
Cnidaria, and Xenacoelomorpha relative to protostomes and deuterostomes are uncertain. LUCA,
last universal common ancestor; Ch-MLCA, choanoflagellate-metazoan last common ancestor; Cn-
BLCA cnidarian–bilaterian last common ancestor; P-DLCA, protostome–deuterostome last common
ancestor; MYA, million years ago. Figure from Gaunt 2019 [6].

2.2. Seeking Sense in the Maintenance and Compactness of Clusters

Clusters are not always maintained. Some species may develop splits in the cluster, e.g.,
Drosophila where splits occur at different positions in separate sub-species [30]. However,
the large regulatory regions between insect Hox genes probably limit the number of places
where clusters can be broken without affecting gene function [31]. Other species, such as
the urochordate Oikiopleura, show complete dispersal of the Hox cluster throughout the
genome though, remarkably, the genes continue to show spatial collinearity in expression
relative to the position that they occupied in the ancestral cluster [19].

Most species, however, continue to maintain the clustering of their Hox genes, at least
to some extent. One explanation for this is enhancer sharing between Hox genes. For
example, the iab-5 regulatory region in Drosophila apparently regulates both abd-A and
Abd-B [32]. Similarly, in mice, the CR3 enhancer regulates both Hoxb4 and Hoxb3 to become
expressed up to the level of rhombomere 6/7 [33], and a separate Kreisler element then
also drives Hoxb3 expression in rhombomere 5 [34]. These are examples of local enhancer
sharing, where the enhancer lies within the Hox gene cluster.

In vertebrates, there are also long-range enhancers, usually located outside the Hox gene
cluster, which can loop-in to regulate multiple Hox genes in a tissue-specific way [35,36].
Long-range enhancers, seen in vertebrates, encourage compaction and exclusion of other,
non-Hox, genes. Compact clusters of vertebrates (Figure 5) are likely a derived rather than
ancestral condition [36].
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Figure 5. Hox clusters are more compact in vertebrates than in non-vertebrates. Clusters shown
are all apparently intact. Sizes shown are from: Ixodes [37]; Parhyale [38]; Apis [39]; Anopheles [37];
Nasonia [37]; Tribolium [40]; Saccoglossus [41]; sea urchin [42]; amphioxus [36]; mouse [37].

Other proposed reasons to maintain clustering are provided by the chromatin opening
model, the Hox conjecture, both discussed below, and by the supposition that transcriptional
activation and repression may each work best on nearby genes, as discussed in Section 2.3.
Species that have lost their clustering have presumably overcome the above requirements.

Transcriptional direction within Hox clusters is usually maintained, but the Dfd gene
in Drosophila provides an example of gene inversion from the ancestral state (Figure 1).
Inversion is normally selected against because the promoter of the inverted gene may
fall under the regulation of neighbour gene enhancers, with serious consequences for
development. For example, the well-known dominant Drosophila Antennapedia homeotic
mutation in which legs develop instead of antennae is usually due to inversions in the
Antp gene, causing it to become ectopically expressed by the enhancers of upstream, more
anteriorly-expressed genes [43,44]. Darbellay et al. [45] inverted mouse Hoxd11 and d12,
including displacement of a CTCF insulator element that normally separates them from
Hoxd13. This caused an anterior shift in expression from the Hoxd13 locus, possibly due to
its misregulation from a Hoxd11/d12, or long-range, enhancer. These authors also describe
a Hoxd11 inversion that robustly suppressed expression from its Hoxd12 neighbour, and
they propose that this may be due to the collision of transcription units on opposing
DNA strands.

2.3. Seeking Sense in Spatial and Temporal Collinearities

Spatial collinearity describes the correspondence between the order of genes along the
cluster (3′ to 5′) and the order of their expression domains (anterior-to-posterior) along the
developing embryo. Temporal collinearity describes a correspondence between the order
of genes along the cluster (3′ to 5′) and the time of their first expression (early to late) in
the embryo.

Many embryo types, including vertebrates, grow by successive addition of new parts
at their posterior ends. That is, they develop in a head-to-tail temporal sequence from a
posterior growth zone, and each new zone moves its overall Hox expression one step down
in the pattern shown in Figure 2A, right. The “chromatin opening” model was developed
principally for embryos that develop from a posterior growth zone. It proposes that genes
are expressed by progressive, timed, 3′ to 5′ opening of Hox cluster chromatin structure that
permits and regulates the expression of Hox genes in their anterior-to-posterior temporal
sequence (temporal collinearity) [46]. This means that temporal collinearity specifies the
need for, and is dependent upon, spatial collinearity. If this was so ancestrally, then we
can likely predict that the ancestral bilaterian already had temporal collinearity [47] and
developed its body axis from a posterior growth zone [48].
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While it is clear that there is indeed a progressive opening of the Hox cluster as
gastrulation proceeds [9], it is not obvious whether this is a cause or a consequence of Hox
gene activation. Some experimental evidence against the chromatin opening model has
been reviewed earlier [8]. More recent work in mouse embryonic stem cell aggregates [49]
indicates that CTCF-binding insulator elements are successively breached along the Hoxd
cluster, with accompanying, progressive chromatin extrusion and change in Hox gene
expression. This process in itself suggests a need for some level of spatial collinearity and
would be in keeping with the chromatin opening model. However, the authors note that
spatial and temporal collinearities persist even after deletion of these insulator elements,
and they conclude that insulators regulate the pace and precision of collinearities rather
than their organization [49,50]. Duboule’s Hox Conjecture [51] proposes that for reasons
yet unclear, but not necessarily dependent upon chromatin opening, spatial collinearity
may still be necessary to achieve temporal collinearity in Hox expression. Evidence for this
is largely circumstantial and is that species displaying temporal collinearity have so far
been found to have an intact, unbroken Hox gene cluster. Studies on the annelid Urechis
unicinctus perhaps provide some evidence against this [52]. Its posterior Hox genes (Lox2
and Post2) are separated from more anterior genes (Hox1 to Lox4) by greater than 1Mb,
as sub-clusters, yet the genes as a whole display spatial and temporal collinearities [52].
Conversely, however, an intact cluster need not necessarily imply temporal collinearity. For
example, the hemichordate Saccoglossus [41] has an intact cluster, but apparently does not
show temporal collinearity [53].

An alternative “gene segregation” model [8] was proposed to account for why spatial
collinearity is largely maintained even in species not showing either temporal collinearity
or posterior growth zone, including perhaps the ancestral bilaterian. It could also be called
the “single boundary” model. In this model, spatial collinearity is the primary feature and
temporal collinearity follows as a necessary consequence in animals that develop from a
posterior growth zone. This is so in these animals because anterior parts form first due to
the earliest expression of anterior Hox genes, which are 3′-located. Posterior parts form
last due to the late expression of posterior Hox genes, which are 5′-located. Overall, spatial
collinearity thereby gives rise to temporal collinearity. The model does not dispute the
importance of timing in Hox gene activation, especially so in species that develop from a
posterior growth zone, but it does suggest that this may not depend primarily upon spatial
collinearity, as it does in the chromatin opening model.

Comparison of Figure 2A with Figure 2B shows how spatial collinearity (Figure 2A)
provides the minimum number (one) of boundaries between expressible and non-expressible
Hox genes within the cluster at all positions along the body (Figure 3). The single boundary
model proposes that the bilaterian cluster was established and maintained with spatial
collinearity because this arrangement allows a number of potential benefits: see [8] and
references therein, and now briefly summarized as follows. (i) Minimal boundaries mean
the minimum risk that gene repressive factors, e.g., Pc protein, will inadvertently spread
from inactive to active genes; and also, a minimum risk that gene activating factors, e.g.,
Trx protein, will spread from active to inactive genes. (ii) All active genes can more readily
be grouped together in a nuclear transcription factory where there may be higher local con-
centrations of transcription and other factors necessary for gene expression. Additionally,
all non-expressible genes can be grouped together in a nuclear Pc body where there may be
higher local concentrations of repressive factors. (iii) Segregated active and inactive genes
are less likely to interfere sterically with each other in their movement to transcription facto-
ries and Pc bodies. (iv) Contiguity of repressed Hox genes allows potential cross-spreading
between them of repressive components.

Hox gene collinearity, well known to be ubiquitous in bilaterians, therefore remains
an enigmatic feature of Hox gene expression. The ancestral bilaterian cluster was likely
to have had an incompact Hox cluster, with vertebrate clusters having since become
compacted [36]. Vertebrate Hox genes, perhaps becoming mutually more entangled in their
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regulation, might therefore not provide the ideal system to make sense of the ancestral
state. There remains a need to investigate collinearity in a wide range of species.

2.4. Seeking Sense in the Partially Overlapping Nature of Hox Gene Expression Patterns

There are three obvious features of Hox gene activity (Figures 2A, 6A and 7). First,
each gene is usually expressed over a long A-P domain, and for segmented animals this
means that it is usually expressed across multiple segments. Second, within these long
domains there is usually a gradation of Hox expression intensity, often forming an A-P
gradient. Third, the long expression domains for different Hox genes are usually partially
overlapping along the head–tail axis.
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These features of Hox gene expression can greatly increase the number of possible
positional addresses along the body. For example, a cluster of 13 Hox genes expressed
without graded activity or overlap could provide only 14 positional addresses (if we assume
that the most anterior address is the absence of Hox gene expression). However, if cells
are able to monitor their intracellular concentrations of two or more Hox expressions then
many more than 14 positional addresses become possible.

The long domains of Hox gene expression allow structural features to be reiterated
along the body. For example, forward walking legs in the crustacean Parhyale occur on
adjacent segments that express Ubx but not abd-A (Figure 6A). Regions along the body of
arthropods that show similar anatomical features are called tagmata. A change from one
tagma to the next is typically accompanied, and caused (Sections 2.7 and 2.8), by a change
in the complement of Hox gene activity.

Similarly, along the mouse vertebral column, a sudden change from one vertebral type
to another is usually marked, and caused (Section 2.7), by the anterior expression boundary
of a new Hox gene. For example, Hox6, Hox10 and Hox11 expression boundaries mark,
respectively, the transitions from cervical to thoracic, thoracic to lumbar and lumbar to
sacral vertebrae (Figure 7).

With an overlapping pattern of Hox gene expressions, the question then arises as
to whether two or more Hox genes expressed in a region are cooperative (combinatorial)
in their actions, or whether one is dominant (hierarchical) in its effect over the other(s).
Some examples are known of combinatorial Hox gene activity. In Parhyale, for example,
abd-A and Abd-B are expressed in partially overlapping domains along the abdominal
segments (Figure 6A). Segments expressing abd-A in absence of Abd-B develop reverse
walking legs; those expressing both abd-A and Abd-B develop swimmerets (also called
pleopods); and those expressing only Abd-B develop uropods. Swimmerets apparently
require combinatorial gene activity since animals mutant for either abd-A or Abd-B do
not develop swimmerets (Figure 6D,E, Section 2.7). Although cooperating Hox genes are
seen to be expressed in the same tissue it is not always clear whether or not they are also
expressed in the same cells.

More common are examples of how a Hox gene is dominant in its developmental
effect over any more anteriorly expressed Hox genes, a mechanism known as “posterior
prevalence” [59,60]. Dominance may act at the level of suppressing a more anterior Hox
gene’s expression, or only its function. The mechanisms are often unclear but at least some
cases involve microRNAs or long non-coding RNAs [61]. In the Pc mutant of Drosophila,
Abd-B expressed anterior to its normal domain is able to prevail in its function over those
of all more anterior Hox genes, converting all segments to the morphology of the eighth
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abdominal segment (A8) [62]. Drosophila Ubx is normally expressed in parasegments 5 to 13
and notably acts to specify parasegment 6, visualized in A1. Over- and ectopic-expression
of Ubx throughout the Drosophila embryo [63] results in the transformation of anterior
segments towards an A1 morphology since Ubx function dominates over those of more
anterior Hox genes. However, overexpression of Ubx in segments posterior to A1 does
not affect their morphology since abd-A and Abd-B are dominant to Ubx. Many similar
examples are seen in mice. For example, Hox10 genes suppress the rib-forming activity of
more anteriorly expressed Hox genes in order to specify the rib-free lumbar region [64].

With an overlapping pattern of Hox gene expressions (Figure 2A) dominance of
posterior genes makes sense: it allows for a sharp A-P boundary between one set of
anatomical structures and the next. Crucially, it requires that posterior, dominant gene
expression is excluded from anterior parts of the embryo, and this is the mechanism
sustained by Pc repression (Figure 3).

2.5. Seeking Sense in the Head–Tail Polarity of Hox Expression Domains

A partially overlapping pattern of Hox gene expression could be formed with spa-
tial collinearity in the pattern shown in Figure 2A, but also as the alternative forms of
Figure 8A–C. In scenario 8A the Hox genes lie in the opposite 3′ to 5′ relative positions
from that found in nature (Figure 2A). While this may appear to be acceptable for embryo
development it is also possible that it is less so due to read-through into more posterior,
and dominant, Hox genes. Transcriptional read-through in the Figure 2A cluster can result
only in sense transcripts for more anterior, and likely therefore repressed, Hox genes. There
are several reports of transcriptional read-through between adjacent Hox genes: in crus-
taceans [65], in human HOXC6, C5 and C4, where the same 5′ non-coding exon is spliced on
both HOXC6 and HOXC4 mature placental mRNAs [66], and in several other mammalian
Hox genes where the function is unknown [67].
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Scenarios 8B and 8C could work only if anterior (Hox1-end) genes had evolved domi-
nant to posterior genes. In animals that develop in a head-to-tail temporal sequence there
would be a need for sequential suppression of Hox genes and their proteins. Sequential
removal of Hox proteins from cells may be less easily controlled than their sequential
activation, as is the case in Figure 2A. The fact that the cluster did not arise in the form of
Figure 8B or Figure 8C may be support for the suggestion that the ancestral animal did
indeed develop in a head-to-tail temporal sequence [48]. Scenario 8C carries the possible
additional problem of read-through into more dominant (this time, anterior) Hox genes.

These arguments suggest that there is sense in the fact that the Hox cluster developed
with the head-tail polarity of Figure 2A. However, we know that the Hox cluster evolved
successfully only once, and it may have been by chance alone that this was in the way
shown in Figure 2A.

2.6. Seeking Sense in the Duplication of Hox Genes and Clusters

An increase in the number of genes within the cluster potentially provides more
positional cues along the body. For example, one ancestral Hox gene duplicated to
give Antp, Ubx and abd-A in Drosophila and, independently, Hox gene groups 6 to 8 in
vertebrates (Figure 1). These genes have now acquired different roles and expressions
(Sections 2.7 and 2.8). Similarly, the ancestral Abd-B gene was duplicated to give Hox gene
groups 9 to 13 in vertebrates and some other deuterostomes (Figure 1). Most protostomes,
however, acquired diversity without substantial change in Hox gene numbers [5,6].

A more profound increase in Hox genes has been achieved in vertebrates by whole
cluster duplications. Two rounds (2R) of whole genome duplication, likely occurring by
chance in early vertebrates, gave rise to the four clusters seen today in mice and humans [68].
Analysis of the Hox genes present or missing in the four clusters indicates that the A and B
and the C and D clusters are most likely to be sister clusters. That is, the 1R event resulted in
two clusters (A,B) and (C,D). The 2R event then resulted in four clusters A, B, C and D [68].
Modern bony fish often have more than 4 clusters due to ancestral 3R and 4R events [69].

Several reasons can be suggested as to why cluster duplication was advantageous in
vertebrate evolution. First, it permitted increased complexity along the head-tail axis. Thus,
while expression studies [70] and functional analyses (Section 2.7) have revealed some
cases where paralogous genes from different mouse clusters apparently share the same or
similar anterior boundaries of expression and function (e.g., Hoxa4, b4, d4), in other cases
paralogues have clearly adopted different expression boundaries (e.g., Hoxc4), suggesting
that duplication could have provided opportunity for increased positional information
along the head-tail axis [57].

Second, cluster duplication allowed individual clusters to acquire separate roles. This
is suggested by observations that expression in developing spinal cord tracts and in internal
organs is often similar for genes within a cluster but different for genes between clusters.
As examples, Hoxb genes alone are confined in expression to the dorsal nerve tracts of
the mouse embryo spinal cord [57]; Hoxc genes (c4 and c5) are expressed abundantly in
the embryonic mouse oesophagus but not the trachea, while Hoxa genes (a3, a4, a5) are
expressed in trachea but not oesophagus [71,72]. Similarly, Hoxc (c5, c6) and Hoxd (d4, d8,
d9) genes are expressed in the embryonic mouse testis [73,74], while Hoxa and Hoxb genes
are not.

Third, cluster duplication may have been required in other ways for anatomical change
in part of the vertebrate body. For example, heart tube folding and Hox cluster duplication
are features present in vertebrates but not in non-vertebrate chordates. Heart folding
required duplication to Hoxa and Hoxb clusters, and deletion of either from mice results in
a heart tube that does not fold: an apparent atavistic change [75]. It is not certain whether
heart folding is due to a gene dosage effect or to an acquired, cooperative, regulatory
difference between the Hoxa and Hoxb clusters.

The question arises as to why cluster duplications have provided a selective advantage
in vertebrates but not, typically, in non-vertebrate deuterostomes or most protostomes.
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Vertebrates are believed to be more constrained than other animals in the numbers and
spacing of the Hox genes and regulatory elements within their clusters (Figure 5). This
is likely due to their acquired dependence on long-range enhancer elements which co-
regulate multiple contiguous genes within each cluster (Section 2.2). Such regulations are
correlated with vertebrate-specific traits [36,76,77]. In vertebrates, therefore, it is likely that
the numbers of Hox genes could increase further only by whole cluster duplications [78].

Just as evolving increased axial complexity has demanded rising numbers of Hox
genes, so evolving increased axial simplicity may be accompanied by loss of Hox genes.
For example, tardigrades are protostomes, and ecdysozoans, that possess only four pairs of
legs due to the apparent loss from the ancestral condition of more posterior leg-bearing
segments. The Hox genes that specified the lost segments (Antp, Ubx and abd-A) are
now absent from the tardigrade genome [79]. A similar example might be the acoel
flatworms which are bilaterians possessing only three Hox genes that represent the anterior,
middle and posterior groups of other bilaterians [80,81]. Acoels are sometimes regarded
as degenerate deuterostomes [82,83]. A more intriguing view, however, is that acoels are
primitive bilaterians that form part of a sister group to all other bilaterians [84]. Consistent
with this, all members of this group lack features that are common to most other bilaterians
such as an anus, kidney tubules and a circulatory system. The acoels might therefore be
providing us with a glimpse into the early evolution of the bilaterian Hox gene cluster.

2.7. Seeking Sense in the Phenotype of Hox Gene Knockouts

Reference to Figure 2A shows how partially overlapping domains of Hox expression
along the body dictate that loss (e.g., by knockout) of a Hox gene results in its functional
domain expressing the Hox profile normally expressed by the more anterior segment(s). In
consequence, this region commonly duplicates the anatomy of a more anterior segment
(producing a so-called anterior homeotic transformation). This is a prediction intrinsic
to Lewis’s model. For example, the bxd mutation in Drosophila disrupts a normal pattern
of Ubx expression in parasegment 6 [85,86]. In keeping with this, the bxd mutant has a
pair of legs on the first abdominal segment, now specified by the Antp gene. As described
below these same principles are seen in the results of Hox gene knockout studies in another
arthropod, Parhyale, and in vertebrates.

In Parhyale (Figure 6A), a crustacean, the T1 segment bears a pair of maxillipeds
(feeding appendages, such as the maxillae on head segments); T2–T3 bear prehensile
claw-like chelipeds (legs bearing claws); T4–T5 bear forward walking legs; T6–T8 bear
reverse walking legs; A1–A3 bear swimmerets; and A4–A6 bear uropods. Each of these
morphologies corresponds with its own unique Hox expression profile as follows. (1) The
maxillipeds of T1 express Antp but not Ubx. (2) The chelipeds of T2 and T3 express high
levels of Antp but only low levels of Ubx. (3) The forward walking legs of T4 to T5 express
high levels of Ubx, while the reverse walking legs on T6-T8 additionally express abd-A.
(4) The swimmerets on A1–A3 express both abd-A and Abd-B. (5) The uropods on A4–A6
express only Abd-B.

Knockout of Hox genes in Parhyale [54] generally supports the predictions of Lewis’s
model (Figure 2A). Knockout of Ubx results in partial transition of cheliped appendages
on T2 and T3 to maxilliped morphology (Figure 6C), presumably under the influence of
Antp. Knockout of abd-A results in only one leg type, forward walking leg, presumably
formed under the influence of Ubx (Figure 6D). Knockout of Abd-B transforms swimmerets
into reverse walking legs, presumably under influence of abd-A; and uropods into forward
walking legs, perhaps due to loss of a normal Abd-B posterior prevalence over Ubx in the
posterior segments (Figure 6E). In apparent contradiction to Lewis’s model, knockout of
Antp in Parhyale transforms T2 and T3 chelipeds into forward walking legs, a posterior
homeotic transformation (Figure 6B). This could be explained if the low levels of Ubx
expression in T2 and T3 are normally overridden by high levels of Antp (Figure 6A).

Knockout of Hox genes in mouse generally supports the predictions of Lewis’s model
(Figure 2A). Hoxa4, b4 and d4 paralogues all share an anterior boundary of expression
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at the second cervical vertebra, C2 or axis (Figure 7) [70]. In the absence of Hoxa4, b4
and d4 (that is, absence of all six genes, both maternal and paternal copies) the first five
cervical vertebrae assume a complete or partial C1 identity (Figure 9), presumably under
the influence of Hox3 genes. The extent of this transformation varies with the dose of
normal Hox4 genes [87]. Thus, in single mutants for Hoxb4 or Hoxd4 there is sometimes
a partial transformation of C2 to C1 morphology. In Hoxb4/Hoxd4 double mutants C2 is
almost completely transformed to a C1 identity, but if double mutants possess only a single
copy of a normal Hoxb4 or Hoxd4 gene then the C2 to C1 transformation is less complete.
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Figure 9. Mouse knockout (KO) anterior skeletal phenotype for Hox4 genes. (A) Normal newborn
mouse. (B) Mouse knocked out for six Hox4 genes (Hoxa4, b4, d4, maternal and paternal).

The Hox9 group of mouse Hox genes, expressed as in Figure 7, has its main zone
of influence in the posterior thoracic region. In the normal embryo, the first seven pairs
of ribs attach to the sternum ventrally and the next six pairs attach either to the seventh
pair or are unattached ventrally (Figure 10A). It appears that Hox9 genes are required for
the formation of non-sternal ribs. Thus, in absence of all eight Hox9 genes (that is, both
maternal and paternal copies) the posterior thoracic vertebrae fall under the influence of
the more anterior Hox genes resulting in about 13 pairs of ribs attached to the sternum
(Figure 10B) [88]. In addition, thoracic-type vertebrae with unattached ribs replace the
anterior lumbar vertebrae. As found for Hox4 genes the most severe phenotypes require
extensive loss of normal genes within the Hox9 group. Leaving just one normal Hox9 gene
in a mutant that is otherwise mutant for seven Hox9 genes results in a less severe phenotype.

The Hox10 group of mouse Hox genes, expressed as in Figure 7, has its main influence
in the lumbar region. This apparently requires suppression of more anterior Hox genes
that fashion the thoracic (ribbed) phenotype. In absence of all six Hox10 genes (Hoxa10,
c10, d10) [89], the lumbar and sacral regions fall under the influence of more anterior Hox
genes resulting in thoracic type vertebrae with ribs instead of normal lumbar and sacral
vertebrae (Figure 10C). The presence of only one functional Hox10 gene results in a much
less severe phenotype, displaying only one extra pair of ribs.

The Hox11 group of genes, expressed as in Figure 7, has its main influence in the
sacral region. This apparently requires suppression of more anterior genes that fashion the
lumbar phenotype. In absence of all six Hox11 genes (Hoxa11, c11, d11) [89], the lumbar
and sacral regions fall under the influence of more anterior Hox genes resulting in lumbar
type vertebrae instead of normal sacral vertebrae. The lumbar-type vertebrae also replace
the most anterior caudal vertebrae (Figure 10D). The presence of only one functional Hox11
gene results in a less severe phenotype.
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Figure 10. Mouse knockout (KO) skeletal phenotypes for Hox9, Hox10 and Hox11 genes. (A) Normal
newborn mouse. (B) Mouse knocked out for all eight Hox9 genes (a9, b9, c9, d9, maternal and
paternal). (C) Mouse knocked out for all six Hox10 genes (a10, c10, d10, maternal and paternal).
(D) Mouse knocked out for all six Hox11 genes (a11, c11, d11, maternal and paternal). Figure from
Gaunt [6].

2.8. Seeking Sense in the Evolution of Axial Morphologies by Shifts in Hox Expression

We have already mentioned two ways that may lead on to an evolved change in axial
patterning. First, the generation of new Hox genes by duplication of either individual
genes or entire clusters. These new genes may then acquire new expressions and functions
(Sections 2.1 and 2.7). Second, acquisition in vertebrates of long-range enhancers located
outside the ancestral Hox cluster (Section 2.2). These allow the use of the Hox cluster, in
addition to its role in head–tail patterning, to specify development along evolutionarily
novel structures such as limbs and external genitalia [35]. However, the main objective in
what follows is to examine the commonly utilized mechanism whereby axial morphologies
may change by shifts in the expression domains of existing Hox genes, without the prior
need to generate new ones. The mechanism is especially clear in arthropods where axial
patterning is highly variable, and is seen readily in the range of appendage types, even
though the overall complement of Hox genes remains rather stable [37]. Figure 11 shows the
expression domains of a variety of Hox genes in arthropods Drosophila, Artemia and Parhyale.

In insects, Abd-B is expressed in the posterior-most segments of the abdomen [90] and
abd-A is not expressed in the thorax [91]. In crustaceans, Abd-B is expressed throughout the
abdomen and abd-A expression extends into the thorax [17,91,92]. It has been suggested
that the pattern of Ubx, abd-A and Abd-B expressions in ancestral arthropods may have
been similar to those found today in Artemia [91] (Figure 11).

There is also variation between arthropod types in which of the Hox genes Ubx, abd-
A and Abd-B are able to suppress limb development [92]. This may have occurred in a
step-wise sequence over time, and it takes place most notably by their suppression of the
Distalless (Dll) gene [93]. In Parhyale (Malacostra) none of these genes repress limb development.
In Artemia (Brachiopoda) it has been suggested that only Abd-B represses limb development [92].
In Drosophila (Diptera) Ubx, abd-A and Abd-B all suppress limb development.
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How may the ancestral arthropod have evolved the diverse head–tail morphologies
seen among arthropods today, bearing in mind the evolved changes in the roles of Ubx, abd-
A and Abd-B as suppressors of Dll and limb development? Some likely possibilities are seen
in Figures 6 and 11. First, in the ancestry of Drosophila a backward shift of Ubx may have
facilitated the formation of the three leg-bearing thoracic segments under the control of
Antp (Figure 11). Second, a backward shift of Ubx in a Parhyale ancestor may have permitted
activity of Antp in the anterior thorax, facilitating here the evolution of maxillipeds. On this
topic, different crustacean species vary in the number of anterior thoracic segments where
walking legs have become evolutionarily transformed into maxillipeds. An examination
of 13 different crustacean species, where maxilliped numbers vary from 0 to 3 pairs,
showed that changes in their anterior expression patterns of Ubx and abd-A correlate well
with the axial level of the transition from walking leg to maxilliped [95]. Third, in the
ancestry of Parhyale a backward shift in the anterior boundary of abd-A expression may
have permitted the development of forward walking legs, under the control of the Ubx
gene (Figures 6 and 11). The Malacostra include the group Amphipoda (“different foot”)
which has diverse walking leg types (e.g., Parhyale), but also the group Isopoda (“equal
foot”) which typically has only one type of thoracic leg. In isopods, but not amphipods
(Figure 11), abd-A extends over most of the thorax [94].

Vertebrate shifts in Hox expression, with corresponding morphological changes, have
been shown most clearly in comparisons of mouse, chicken and goose. The position of
the cervical/thoracic vertebral junction, and hence the length of the neck, has changed
by axial shifts in expressions of Hox6 genes, known to regulate thoracic vertebra and rib
development [96–98]. In an additional strategy, the rib cage of snakes extends posteriorly
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because Hox10 genes have lost their ability to block the thoracic phenotype. This is due to a
mutation in the Myf5 gene enhancer, which is normally a downstream target of Hox10 [99].

Most of the conclusions reached above regarding the effects of evolutionary shifts in
Hox expression are supported by the results of Hox gene knockout studies (Section 2.7).

2.9. Seeking Sense in the Hox Clustering of Pre-Bilaterians

This article so far describes Hox gene clusters of bilaterally symmetrical animals
(the Bilateria). Amongst pre-bilaterians, only Cnidaria possess Hox genes. These may
include Hox genes orthologous with those of Bilateria: a group 1, a group 2, and a middle
or posterior group Hox gene [100,101], suggesting that the bilaterian Hox cluster had
already begun to form in the cnidarian/bilaterian ancestor, perhaps even to pattern its
head-tail axis [102]. However, some authors question such close homology [103]. In the
coral Acropora, all three Hox genes are linked in a single cluster, but in some other cnidarian
species there is either no cluster or only clustering of the anterior genes [101]. The number
of Hox genes often varies between different cnidarian species, and the particular genes
present may also vary. Hox expression analyses on several cnidarians have shown no
consistent evidence for collinearity, no consistency in expression patterns of orthologous
Hox genes in different species, and therefore no evidence for a conserved cnidarian Hox
code [100,103,104].

We can assume that our distant P-DLC bilaterian ancestor arose on an evolutionary
pathway that had provided it with the core Hox gene cluster, collinear Hox expressions and,
probably, a role for these expressions to specify pattern formation along its head–tail axis. It
seems likely that alongside this ancestor other creatures were also experimenting with Hox
genes, using them to specify body parts, and evolving ever more complex clusters. It is also
likely that many of these were evolving Hox clusters with collinearity and so this alone
seems unlikely to be the reason why one animal came to dominate and take over the world.
Some other evolutionary event, perhaps the acquisition of a three-layered body wall, or
bilateral symmetry, may instead have provided the selective advantage to our ancestor
which allowed it to prevail. The cnidarians with their two-layered body wall and radial
symmetry might therefore represent animals “stuck” at an early experimental stage of Hox
cluster evolution.

3. Conclusions

It is suggested here that there is much sense in the way that the Hox cluster of bilateri-
ans arose in clusters by gene duplication, expressed its genes in overlapping patterns with
a specific head–tail polarity, maintained its clustered Hox genes with the same directions of
transcription, shifted its expressions for change in head–tail patterning, generates anterior
homeotic shifts in Hox gene knockout studies, and was compacted and duplicated during
vertebrate evolution.

Hox gene collinearity, well known to be ubiquitous in bilaterians, remains an enigmatic
feature of Hox gene expression. Two different models that attempt to make sense of it
are discussed.
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