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The sex gap is well-documented in respiratory diseases such as cystic fibrosis and

chronic obstructive pulmonary disease.While the differences betweenmales and females

in prevalence, severity and prognosis are well-established, the pathophysiology of

the sex difference has been poorly characterized to date. Over the past 10 years,

metagenomics-based studies have revealed the presence of a resident microbiome in

the respiratory tract and its central role in respiratory disease. The lung microbiome is

associated with host immune response and health outcomes in both animal models

and patient cohorts. The study of the lung microbiome is therefore an interesting

new avenue to explore in order to understand the sex gap observed in respiratory

diseases. Another important parameter to consider is the gut-lung axis, since the gut

microbiome plays a crucial role in distant immune modulation in respiratory diseases,

and an intestinal “microgenderome” has been reported: i.e., sexual dimorphism in the

gut microbiome. The microgenderome provides new pathophysiological clues, as it

defines the interactions between microbiome, sex hormones, immunity and disease

susceptibility. As research on the microbiome is increasing in volume and scope,

the objective of this review was to describe the state-of-the-art on the sex gap in

respiratory medicine (acute pulmonary infection and chronic lung disease) in the light

of the microbiome, including evidence of local (lung) or distant (gut) contributions to the

pathophysiology of these diseases.
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INTRODUCTION

Sexual dimorphism is a characteristic feature of many major diseases, including in asthma, chronic
obstructive pulmonary disease (COPD), cystic fibrosis (CF), and non-CF-related bronchiectasis.
In these chronic respiratory diseases, female patient generally have more severe symptoms, poorer
quality of life, and greater mortality (1–3). On the opposite, acute pneumonia are associated to
worse prognoses in male patient than in female (2). While sex differences in prevalence, severity,
and prognosis of these diseases are well-documented, the pathophysiology of the sex difference has
been poorly characterized to date.
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In recent years, next-generation sequencing (NGS)
technologies have changed the way we view the microbial
communities that inhabit every mucosal surface of the human
body,including compartments previously considered sterile
such as the lung. These microbiomes are increasingly studied
as they provide many keys to understanding organ homeostasis
and disease pathophysiology. Most research has focused on the
gut microbiome and its relation to disease (4). More recently,
it has been shown that the airways, like the gut, harbor a
unique steady-state microbiome, and that dysbiosis in the lung
microbiome influences respiratory health and disease (5).

Sexual dimorphism is found in many diseases, and a microbial
sex gap, also called “microgenderome,” was described at several
body sites [gut, oral (palatine tonsils, tongue, saliva), skin (retro-
auricular crease and antecubital fossa), and upper respiratory
airways sites (anterior nares)], with potential health impact (6–
11). The objective of this review is to provide an update of sex gap
in respiratory diseases. We investigate the potential microbiome
contribution [including evidence of local (lung) and distant (gut)
microbiome] to the physiopathology of respiratory diseases, for
which female sex is in most cases, a risk factor.

WOMEN AND MEN ARE NOT EQUAL IN
THE FACE OF RESPIRATORY DISEASES

Differences between men and women have been highlighted
in numerous respiratory diseases. Being a woman is either an
advantage or a disadvantage, depending on the disease.

Women are more at risk of chronic pulmonary diseases,
except for lung cancer, where men tend to show greater mortality
and incidence (12). In adults, asthma is more frequent in
women, who present more respiratory symptoms and greater
morbidity (2, 13–15). Interestingly, during childhood, asthma
is more frequent in boys than in girls (16); then the pattern
reverses around 16–18 years of age (17). In adulthood, in
addition to a higher prevalence, asthma is more severe in
women, who tend to have higher healthcare use, poor asthma
control, and a higher number of severe exacerbations leading
to hospitalization than men (18–20). In adulthood, a sex-based
difference is also observed in COPD with regard to clinico-
radiographic phenotype, symptom severity, and quality of life.
Female patients are more sensitive to the adverse effects of
smoking, have more symptoms such as dyspnea or cough, and
have a higher proportion of bronchiectasis (3, 21, 22).

In non-CF-related bronchiectasis, prevalence is higher
in men but severity is greater in women (23). In CF,
being a woman incurs greater risk of mortality (1). CF
women had lower median life expectancy than men (36.0
vs. 38.7 years) (1) and female sex was shown to be a
significant risk factor for death (1). Women also acquire
Pseudomonas aeruginosa (PA) at an earlier age, as well as several
other pathogens such as Staphylococcus aureus, Haemophilus
influenzae, Achromobacter xylosoxydans, Burkholderia cepacia,
Aspergillus and non-tuberculous mycobacteria (NTM) (1). CF
women also have a higher risk of non-mucoid to mucoid
conversion of PA (1). This sex effect in CF was confirmed in

mouse models, where females inoculated with PA died earlier
and showed slower bacterial clearance than males (24). A sex gap
was observed in CF patients’ response to ivacaftor, a CFTR (CF
transmembrane conductance regulator) modulator: although
there was no significant sex difference in FEV-1 improvement,
ivacaftor-treated women showed greater reduction in pulmonary
exacerbation and in sweat chloride than men (25).

In respiratory tract infection, it is male sex that is a risk factor
for acute infection (26). The incidence of community-acquired
pneumonia, including Streptococcus pneumoniae, Chlamydophila
pneumoniae, and Legionella pneumophila infection, is higher
in men than in women. Epidemiological findings on the
COVID-19 pandemic in various parts of the world indicated
higher morbidity and mortality in males than females (27).
Within mycobacterial infections, there is a dichotomy between
Mycobacterium tuberculosis and NTM, tuberculosis affecting
more men than women, with higher risk of mortality (26), while
NTM infection ismore common in slender, older womenwithout
any overt immune defects (28).

SEX-ORIENTED MICROBIOME IN
PULMONARY DISEASE: A TWO-SITE
STORY

A wide range of factors have been examined to explain the
sex gap in airway diseases (Figure 1). To date, no single
explanation accounts for this sex difference, which appears to
be multifactorial. However, recent data suggest that the human
microbiome may be a key player. The lung microbiome is, of
course, essential in lung issues, but emerging data on the gut-lung
axis show that it is also important to take stock of the involvement
of the gut microbiome in the sex gap observed in lung disease.

Microgenderome of the Lung Niche
As dysbiosis in the airway microbiome influences respiratory
health and disease (5), sex differences in the airway microbiome
likely contribute to differential expression of respiratory diseases
according to sex. Many lung microbiome-based cohort studies
included both male and female patients, but few investigated or
even discussed a potential sex gap. Sex was considered more as a
standardizing variable than as a focus in itself. Moreover, animal
studies are generally carried out only in animals of the same sex.

Only one study of lower respiratory tract infection clearly
concluded that sex did not correlate with microbiome
composition (29). This study was conducted in a pediatric
cohort, which may explain the lack of difference between the
sexes. The lung microbiome has been shown to evolve with age
(30), and sex-oriented morphological modifications occur in the
lung during life (11, 31).

In mouse models of lung inflammation, Barfod et al. used
denaturating gradient gel electrophoresis to investigate lung
microbiome changes associated with inflammation (32), and
observed different lung microbiome profiles according to sex.
All mice grew up in the same boxes, inhaling the same air and
eating the same food; molecular analysis was performed with
the same kits, and procedures were standardized to limit bias
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FIGURE 1 | Potential mechanisms of gender gap in respiratory diseases. Multiple factors have been examined to explain the sex gap in respiratory diseases. Among

them, the human microbiome, whether local (lung) or distal (intestine), appears to be an emerging key player linking many other factors.

in microbiome description. The study showed that the lung
microbiome is sex-dependent, and not just a reflection of the
gut microbiome.

In mice fed with vitamin-D-enriched diet throughout
life, a sex difference in the lung microbial community
was observed, with higher rates of Acinetobacter in female
than male lungs (33). No sex effect was observed in
chronically vitamin-D-deficient mice. Likewise, no effect
of vitamin D on the lung microbiome was observed in
initially deficient mice with secondary supplementation.
Acinetobacter may colonize the lungs early in life and
has been linked to allergy protection (33). These data are
consistent with the window of opportunity to intervene
on the lung microbiome being in the early weeks of
life (34).

NGS approaches have allowed further exploration of the
sex specificities of the microbiome in humans. Data from the
Human Microbiome Project (HMP) were reanalyzed to decipher
sex differences (11). Although the lower airway microbiome
was not studied in the HMP, the upper airway (anterior
nares) microbiome differed between the sexes. Comparisons
of community diversity revealed greater diversity in the upper
airways of men with three types of analysis: (1) The whole
community. (2) The five main phyla (higher diversity for men
for the phylum Actinobacteria). (3) The core and accessory
microbiomes. This gender difference was also observed at the
species composition level. Focusing on species interaction, the
central nodes (species) and skeleton (species backbone) can be
selected by sex, including in the upper respiratory tract, resulting

in a different core/periphery species composition between the
two sexes.

In a study investigating the impact of inhaled aztreonam on
the lung microbiome in CF, sex analysis revealed differences
in alpha diversity, and gender-specific OTUs and genera (35).
Males had a more diverse microbiome (significant higher
Shannon diversity index), correlating with a proportionally
lower abundance of PA and increased abundance in other
genera, including Streptococcus, Dialister, Shuttleworthia, and
Stenotrophomonas. In contrast, females showed a higher
abundance of Pseudomonas and a tendency toward greater
responsiveness to aztreonam. However, the authors did not rule
out the possibility that these differences were due to inter-
patient variability.

A study compared the lung microbiome in cohorts of patients
suffering from lung adenocarcinoma (LUAD) and lung squamous
cell carcinoma (LUSC) (12). It was found that the tumor
contained unique, significantly deregulated microbes according
to type of lung cancer and to sex. In young LUSC male
patients, the most prominent bacterial species was Pseudomonas
putida. Likewise, all LUAD females exhibited uniquely implicated
bacterial species, different from those of LUADmales (12). These
uniquely implicated bacterial species may constitute accurate
diagnostic biomarkers for lung cancer type, as they are adapted
to the patient’s sex.

Microgenderome of the Gut Niche
Another important parameter to consider is the gut–lung axis.
The role of the gut microbiome in local health homeostasis
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and disease is now widely recognized. But, apart from its local
impact, the gut microbiome also influences distant organs,
including lungs (36). Accumulating evidence highlighted the
influence of the gut microbiome on lung immunity, giving rise
to the concept of the gut–lung axis (36, 37). This gut-lung
axis consists in vital bidirectional cross-talk, allowing passage of
microbial metabolites, including short-chain fatty acids, reported
to be key local and systemic signaling molecules sustaining
immune and tissue homeostasis (38–40). Thus, disturbance in
this bidirectional exchange is linked to increased emergence of
airway diseases, including asthma, COPD, CF, lung cancer, or
respiratory infection (36, 37, 41). In the light of these data, the
hypothesis is that sexual dimorphism in the gut microbiome may
contribute to the sex gap observed in respiratory diseases.

Based on the Human Microbiome Project (HMP) data, Ding
and Schloss highlighted a sex gap in 300 healthy adults (9):
men were three times more likely than women to harbor stool
community type D, characterized by fewer Bacteroides and higher
levels of Prevotella (9). More recently, a new analysis of the
HMP data assessed sex differences in community diversity and
composition, confirming a sex gap in various organs, including
the gut (11). The lung microbiome was not included in the
HMP project, which is why microbiome data are much fewer for
this niche.

Although the gut microbiome is the most widely tracked, a
sex gap was not considered in most cohort studies: as mentioned
above, sex tends to be seen as an adjustment variable rather than
an endpoint, and it is murine models that provide most of the
data on the sex gap in the gut microbiome.

The first suggestion of a sex bias in the commensal
microbiome concerned a mouse model of autoimmune disease
(42). In non-obese diabetic (NOD) mice that spontaneously
developed type 1 diabetes (T1D), the incidence of T1D
was almost double in females compared with males. In
contrast, germ-free mice lost this sex bias and male-to-female
microbiome transfer led to testosterone-dependent attenuation
of autoimmune phenotypes and protection against T1D (42).
In this specific model, metagenomic analysis revealed that the
microbiome was sex biased, and that the male microbiome
became less diverse than the female at puberty (8).

Concerning the link between the respiratory tract and the gut
microbiome, a sex difference was reported in human response to
ozone (43, 44). Ozone is a common air pollutant, which causes
airway hyper-responsiveness, a defining feature of asthma. In a
mouse model, a sex gap in the gut microbiome was reported in
animals tested for pulmonary response to ozone (45–48), and was
thought to contribute to the sex difference in pulmonary response
to ozone (45). Male mice developed greater hyper-reactivity to
ozone, but this difference was abolished after antibiotic ablation
of the gut microbiome (46). Interestingly, ozone response was
increased in females housed in cages conditioned by males: i.e.,
in females exposed to male feces, as mice are coprophagic. The
differences in gut microbiome consisted in greater abundance
of the Christensenellaceae family but smaller abundance
of the Streptococcaceae family and Bacteroides acidifaciens
species (46).

MICROBIOME, HORMONES, AND IMMUNE
SYSTEM: A BALANCED TRIANGLE

A wide range of factors have been examined to explain
the sex differences found in respiratory disease, including
sex steroid hormones such as progesterone, estradiol and
testosterone (2). These play a number of physiological roles,
including modulation of the immune response implicated
in chronic airway disease and pulmonary infection (49).
Sex steroid hormones regulate the activity of immune
cells, including lymphocytes, macrophages, granulocytes,
and mast cells (49). Globally, testosterone decreases innate
immune system activation in response to pathogen challenge,
whereas estrogens enhance cell-mediated and humoral
immune response. The differential susceptibility of males
to acute bacterial infections may be due to their usually lower
immune response.

In addition to acting on immunity, estrogen also has a role
in mucus. Mucus plays a central role in protecting the airways
from bacterial infection. The main components of mucus are
mucins, and in particular the two secreted mucins MUC5AC and
MUC5B (50). MUC5AC and MUC5B participate in mucociliary
transport and facilitate airway clearance. However, mucus hyper-
secretion is deleterious in multiple chronic respiratory diseases
such as CF or COPD (51). Both MUC5AC and MUC5B are
upregulated by estradiol (21, 50). Thus, estradiol, by causing
excessive mucus production, could be a detrimental factor
in chronic lung infections. Furthermore, by increasing the
hydrophobic properties of these mucins (by increasing the total
fucose residues), estradiol inhibits mucociliary clearance, which
may also have a negative impact on women with chronic lung
disease. With regard to the gut niche, mucins also have an
important impact on the composition of the microbiome (52).
In the lung as in the gut, mucins represent a continuous source of
nutrients for bacteria. Fermentation of mucins generates short-
chain fatty acids (SCFAs) and amino acids that are used by
mucin-degrading species themselves, but also by opportunistic
lung pathogens like PA (53). The concentration of SCFAs has
been shown to have a direct impact on bacterial growth (54).
High concentrations of SCFAs would impair PA growth, while
low concentrations would allow a transient increase in PA
growth. In total, the effect of estradiol is potentially harmful
to women. It is involved in the hyperproduction of inadequate
mucus which could, in addition, represent a potential source
of nutrients for pathogenic bacteria. Sex steroid hormones are
also involved in communication between microbial pathogens
and host (49). This has been shown in CF, where women
are more at risk of PA infection. In a retrospective cohort,
Chotirmall et al. found that non-mucoid PA predominated in
sputum during luteal phase exacerbations (characterized by low
estradiol rates) and that more mucoid PA strains were isolated
during exacerbations in the follicular phase (high estradiol rates)
(55). These findings were consistent with the changes in lung
function over the menstrual cycle in CF women (56), with
significantly higher FEV-1 in the luteal phase compared to
ovulation and menstruation phases. Inflammatory biomarkers
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and lung function are thus associated with hormonal cycling.
In a prospective study, Holtrop et al. followed 23 women with
CF who were not taking hormonal contraceptives (57). At
the time of estrogen peak (ovulation), there was a significant
increase in pro-inflammatory cytokines in sputum (neutrophil
elastase) and a decrease in lung function. The introduction
of a standard oral contraceptive pill combining estrogen and
progesterone was associated with an improvement in pro-
inflammatory cytokines (IL-8, TNF-α, neutrophil elastase).
Recently, Shaffer et al. described an association between estrogen
therapy and first PA isolation in an 18-year-old affirmed woman
(transgender) despite improvement in lung function with the
CFTR modulator (58). Estrogen level seems to act on survival
rates in CF by modifying PA physiology. Estradiol and estriol
induced mucoid conversion of PA in CF women, through the
mutation of mucA gene in the PA genome, as demonstrated
in vitro (55). This molecular mechanism was associated with
selectivity for mucoid isolation, increased exacerbations, and
mucoid conversion in vivo (55). These results are consistent with
other in vitro studies that demonstrated that estrogen increased
secretion of PA virulence factors such as pyocyanin, and
increased PA motility, biofilm formation, swarming, twitching
motility, adherence, and invasion of bronchial epithelial cells
(59). Experiments in a murine PA infection model showed
that ovariectomized mice supplemented with 17β-estradiol
succumbed to PA challenge earlier than progesterone or
vehicle supplemented mice (24). In male mice, 17β-estradiol
supplementation increased the severity of the infection. Two
potential mechanisms were suggested: enhancement of Th-17-
regulated inflammation, and suppression of innate antibacterial
defense (60). Neutrophils treated with 17β-estradiol exhibited
an enhanced oxidative burst but decreased PA killing ability
and earlier cell necrosis. This hypothesis is borne out by the
fact that the estrogen receptor antagonist ICI 182,780 improved
survival in female mice infected with PA and restored neutrophil
function (24).

This hormonal clue could lead to a means of narrowing the
sex gap in pulmonary disease. However, sex steroid hormones
as a link between risk of microbial infection and sex are an
incomplete explanation as, in several respiratory diseases such
as CF, the sex gap is observed before puberty (61) or after
menopause (55).

CONCLUSION

The sex gap is now well-described in respiratory diseases, with
male sex as a pejorative factor for acute lung infection, and
female sex for chronic respiratory diseases. The pathophysiology
of the sex gap in respiratory diseases, however, remains largely
unexplained. Interestingly, as microbial communities came to
be increasingly described in various body sites, a sex gap
was also discovered in human microbiomes, especially in the
gut niche. However, the “microgenderome” associated with
respiratory diseases is still poorly characterized. The role of
the lung microbiome, which has a strikingly different microbial
community and functional repertoire from the gut microbiome,
remains to be explored from a sex point of view. Future
investigations of the microbiome in respiratory diseases need
to stratify data for sex differences in order to better decipher
the intricate relationships between microbiome, sex steroid
hormones and immune system.

Prioritizing the role of sex in pathophysiological processes
is crucial for effective prevention, diagnosis, prognosis and
treatment. In this regard, the microbiome-based approach
has become a powerful tool to identify sex-specific disease
markers. In the near future, it will be crucial to understand
local (lung) and distant (gut) microbial contributions to the
pathophysiology of respiratory disease (62). This should enable
the role of sex-associated microbial taxa to be deciphered
as powerful prognostic biomarkers and/or potential health
promoters in chronic respiratory disease. It should also enable
personalized health-care that takes account of the specificities of
women’s pathophysiology.
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