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Background Investment in pandemic preparedness is a long-term gamble, with the return on

investment coming at an unknown point in the future. Many countries have

chosen to stockpile key resources, and the number of pandemic economic

evaluations has risen sharply since 2009. We assess the importance of uncertainty

in time-to-pandemic (and associated discounting) in pandemic economic evalu-

ation, a factor frequently neglected in the literature to-date.

Methods We use a probability tree model and Monte Carlo parameter sampling to

consider the cost effectiveness of antiviral stockpiling in Cambodia under

parameter uncertainty. Mean elasticity and mutual information (MI) are used to

assess the importance of time-to-pandemic compared with other parameters. We

also consider the sensitivity to choice of sampling distribution used to model

time-to-pandemic uncertainty.

Results Time-to-pandemic and discount rate are the primary drivers of sensitivity and

uncertainty in pandemic cost effectiveness models. Base case cost effectiveness

of antiviral stockpiling ranged between is US$112 and US$3599 per DALY

averted using historical pandemic intervals for time-to-pandemic. The mean

elasticities for time-to-pandemic and discount rate were greater than all other

parameters. Similarly, the MI scores for time to pandemic and discount rate

were greater than other parameters. Time-to-pandemic and discount rate were

key drivers of uncertainty in cost-effectiveness results regardless of time-to-

pandemic sampling distribution choice.

Conclusions Time-to-pandemic assumptions can ‘‘substantially’’ affect cost-effectiveness

results and, in our model, is a greater contributor to uncertainty in cost-

effectiveness results than any other parameter. We strongly recommend that

cost-effectiveness models include probabilistic analysis of time-to-pandemic

uncertainty.
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KEY MESSAGES

� Pandemic preparedness requires investment now for benefits later, and it is standard economic practice to discount future

benefits.

� We find that time-to-pandemic and discount rate uncertainty are the greatest drivers of uncertainty in cost-effectiveness

results.

� Published pandemic preparedness economic evaluations frequently omit or do not adequately deal with time-to-pandemic

and discount rate uncertainty.

Introduction
Pandemic influenza events have occurred repeatedly through-

out history (Potter 2001). The recent re-emergence of highly

pathogenic avian influenza H5N1 in 2003 and the less fatal but

more transmissible H1N1 swine influenza strain of 2009 have

pushed pandemic influenza up the public health policy agenda.

As a consequence funds earmarked for pandemic influenza

preparedness have risen markedly over the past decade (United

Nations System Influenza Coordinator 2010).

Correspondingly, the number of economic evaluation or cost-

effectiveness studies of pandemic influenza investment options

has also increased. A recent systematic review by Pérez Velasco

et al. (2012) indicates that there have been 44 such studies to

date.

Methodology for the economic evaluation of pandemic

preparedness investments, and public health interventions

generally, draws on methods developed for health technology

assessment. Methodological challenges raised by the more

complex decision context of public health investment including

pandemic influenza preparedness are still being identified and

addressed (Weatherly et al. 2009; Drake et al. 2012).

Modelling pandemic uncertainty

Uncertainty is a characteristic feature of a pandemic. There is a

risk that an as yet unknown highly pathogenic and highly

transmissible pathogen will emerge and cause substantial

mortality and morbidity worldwide. We do not, and perhaps

cannot, know when this will happen, how virulent or how

infectious a novel pathogen will be.

In general, healthcare economic evaluations make an implicit

assumption of consistency in health burden. An analysis based

on a clinical trial, for example, is only relevant to policy making

if the evaluation context remains reasonably consistent over

time. In contrast to this, a pandemic is a one-off event and

although there may be similarities to previous pandemics it will

nevertheless be fundamentally and unpredictably different. A

key challenge for pandemic influenza health economists is to

model prospectively; considering how future pandemic events

could present differently from past events.

Sensitivity and uncertainty analysis are separate but related

approaches for assessing the influence of input model param-

eters on the outcome result. These terms are sometimes used

interchangeably but we use the concept of ‘sensitivity’ to refer

to the degree of change in model output for a given change in a

model input parameter. In contrast, ‘uncertainty’ has Bayesian

connotations and has been defined as ‘any deviation from the

unachievable ideal of completely deterministic knowledge of

the relevant system’ (Walker et al. 2003). We consider attrib-

utable model uncertainty in terms of the total imprecision in

the model output due to imprecision in one or more parameter

inputs (O’Hagan and Luce 2003; Cooper et al. 2004; Duintjer

Tebbens et al. 2008).

Pandemic economic evaluations often consider a single base

case pandemic scenario, then explore a small number of

variations from this base case using univariate sensitivity

analysis (e.g. Eynard et al. 2004; Halder et al. 2011). Pandemic

‘uncertainty’ is usually not given special attention and the

parameters included in a sensitivity analysis vary between

studies with pandemic attack rate, mortality rate and particu-

larly time-to-pandemic, all omitted in different studies to-date.

A more robust approach than a simple deterministic sensi-

tivity analysis is to simulate a large number of scenarios,

drawing new parameter results for each scenario according to

predefined probability distributions. This method is known as

‘Monte Carlo’ sampling, and in health economics is increasingly

used in probabilistic sensitivity analysis. However, Monte Carlo

sampling (or its stratified version, Latin Hypercube Sampling)

can also be used for uncertainty analysis or even replace the

deterministic base case scenario. Many pandemic economic

evaluations do take a probabilistic approach, including the first

published study of this kind (Meltzer et al. 1999). However,

many subsequent studies present a single base-case scenario

despite the choice of pandemic characteristics being somewhat

arbitrary.

Time-to-pandemic—does it affect decision making?

To a policy maker or public health planner, whether a pandemic

occurs in 5 or 50 years makes a big difference in terms of

investment choices and resource allocation. In all sectors,

including health, the length of time before gains or losses are

likely to occur is weighed in the decision making process. In

economics, discounting is the practice of adjusting the value of

future gains or losses to reflect their present day equivalent.

This is applied to costs and, in many cases, to health impact

and in theory reflects the time preferences of the population.

When undertaking cost-effectiveness analysis of pandemic

influenza investment options, there are four general ways to

handle pandemic timing:

(1) Retrospective—fixed time analysis.

(2) Prospective—fixed time analysis.

(3) Prospective—deterministic sensitivity analysis.

(4) Prospective—probabilistic sensitivity or uncertainty

analysis.
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Interestingly only a minority of pandemic economic evalu-

ations to date include a sensitivity analysis of time-to-pan-

demic. Within the pandemic economic evaluations included in

the review by Pérez Velasco et al. (2012), we identify four

studies that include pandemic timing in a univariate sensitivity

analysis (Meltzer et al. 1999; Siddiqui et al. 2008; Lee et al. 2009;

Newall et al. 2010), and a further three that model uncertainty

in pandemic timing probabilistically (Balicer et al. 2005; Lugnér

and Postma 2009a,b; Carrasco et al. 2011). Siddiqui and

Edmunds (2008) found that pandemic timing is the second

largest source of parameter uncertainty after mortality rate,

while Meltzer et al. (1999) find the results and implications for

policy ‘depend most [our emphasis] on the assumed probabil-

ity of the pandemic’, although they do not include this in the

probabilistic analysis.

To date, all probabilistic models assume a Poisson stochastic

process (a sequence of discrete events where the times between

successive events are independent and exponentially distribu-

ted), expressed in some studies as a constant annual probability

of a pandemic. The implicit assumption is that emergence of a

pandemic event has a constant year on year probability driven

by random mutation or re-assortment, which eventually

produces an influenza strain that results in effective human-

to-human transmission and thus has pandemic potential

(Webster 1997). While viral mutation will be important, there

are a range of socio-economic, environmental and ecological

factors which may influence the emergence of a future

pandemic (Jones et al. 2008). The probability of a pandemic

event that arises from these complex factors may not be well

characterized by Poisson stochasticity.

Pandemic preparedness measures such as stockpiling of

antiviral therapies or personal protective equipment require an

upfront investment for an unknown benefit at an unknown

point in the future. The aim of this study is to establish

whether uncertainty in when a pandemic will next occur

(henceforth ‘time-to-pandemic’) is important when evaluating

whether pandemic preparedness activities are an efficient use of

scarce resources. Is calculation of a cost-effectiveness ratio

sensitive to changes in assumptions of time-to-pandemic? Is

time-to-pandemic an important driver of total model

uncertainty?

Methods
We explore the importance of this uncertainty when using

standard cost-effectiveness methods to evaluate investment in

health system pandemic preparedness. We consider a case

study of antiviral stockpiling in Cambodia, a low-income

country with many pressing demands on healthcare resources

considered a hotspot for emerging infectious diseases (Coker

et al. 2011). The comparison is ‘no stockpile’, and the evaluation

perspective is from the medical provider. Health impact is

measured in disability adjusted life years (DALYs), and costs

are the cost of the antiviral stockpile. Health gains resulting

from the stockpile occur at a certain point in the future in the

event of a pandemic and are therefore discounted, whereas the

investment cost occurs in the present and so is not. This

analysis is intended as a stylized decision scenario and is not

intended as a cost-effectiveness analysis of antiviral stockpiling

in Cambodia.

Pandemic Model

To analyse the impact of time-to-pandemic on model output,

we use a simple pandemic event model to generate an

incremental cost-effectiveness ratio (ICER) for an antiviral

stockpile. For a population ðmÞ a proportion ðhÞ is hospitalized

due to the pandemic virus during the course of the pandemic.

Of these a further proportion fð Þ dies from the pandemic

disease. A quantity ðqÞ of antivirals are stockpiled at cost ðcÞ; for

Figure 1 Simple probability tree for pandemic event outcomes under limited antiviral availability.

102 HEALTH POLICY AND PLANNING

Siddiqui and Edmunds
 (
Siddiqui and Edmunds
,
 2008
)
Meltzer etal.
``
''
 (Meltzer etal.
,
 1999)
characterised 
cost 
stylised 
cost 
2.1 
analyze 
cost 
are 
hospitalised 


simplicity the cost of stockpile replenishment is not included.

Receiving an antiviral when hospitalized due to pandemic

influenza reduces the risk of fatality by a proportion ðrÞ. We

define a parameter set which is broadly representative of the

Cambodian context. The model structure is outlined as a

probability tree in Figure 1, and all parameters are detailed in

Table 1. The model was coded in the statistical software

package ‘R’, version 2.15.2.

The net health impact ð��Þ in terms of DALYs is calculated by

subtracting total deaths in a baseline scenario from total deaths

in an intervention scenario and converting to DALYs using a

conservative assumption of an average 30 DALYs lost per death.

Pandemic costs and consequences are adjusted to present day

value using the discount factor (1þdiscount rate) ð�Þ and time-

to-pandemic ðtÞ.

The discounted health impact ð�Þ is given by:

� ¼
��

� t
: ð1Þ

The ICER �ð Þ is then given by:

� ¼
c

�
¼

c� t

��
: ð2Þ

This highlights that the ICER is proportional to the discount

factor to the power of ‘time-to-pandemic’, clarifying the

interaction between discount rate and pandemic timing. The

presence of a power law helps to explain the extent to which

uncertainty in discount rate and time-to-pandemic affects the

ICER.

There is some debate as to whether health outcomes should

be discounted (Severens and Milne 2004; Bos et al. 2005). This

debate centres on whether the measure of health utility already

incorporates a valuation of time. It seems reasonable that long

duration illnesses such as HIV/AIDS do contain consideration of

the value of future years. For pandemic or epidemic events

where the disease duration is short but when the case occurs is

uncertain, it seems likely that some form of discounting is

needed to reflect time preferences. That is, given the choice, an

individual would prefer to contract a highly pathogenic influ-

enza in 10 years rather than next year.

The cost-effectiveness analysis considers the cost per DALY

averted for scaling up the antiviral stockpile by 1 million

courses. Potentially serving 7% of the 14.3 million total

population a stockpile of 1 million courses is a substantial

increase on the 75 000 courses currently retained (data supplied

by Ministry of Health, Cambodia).

Time-to-pandemic parameter sensitivity and
uncertainty analysis

To gather data on time-to-pandemic, we considered major

pandemics in the last 300 years and calculated the inter-

pandemic period. Information on possible earlier pandemic

event years was not included as the veracity of some pandemic

Table 1 Parameter details and justification for cost-effectiveness analysis of antiviral stockpiling in Cambodia

Parameter Notation Value or
sampling
distribution

Uncertainty justificationa

Pandemic characteristics

Hospitalization
proportion

h Uniform
(0.001–0.05)

Assumed between 0.1% and 5% of the population would be hospitalized at
some point during the course of a pandemic.

Case fatality
proportion

f Uniform
(0.10–0.70)

Lower: WHO severe pandemic threshold is 2% case fatality; however, this refers
to the proportion of all cases which die. This is the case fatality proportion
for hospitalized patients which we would expect to be higher. We assume a
lower bound of 10% and upper bound of 70% case fatality.

Time-to-pandemic
(years)

t Uniform All fitted to data in Table 2 using fitdistrplus package in R using maximum
likelihood method.

Gamma

Normal

Poisson

Population characteristics

Population m 14 305 183 World Bank 2012

Discount rate d Uniform
(0–0.15)

Lower: logical limit

Upper: limit of plausibility

Intervention characteristics

Population covered
by intervention

q 1 million Assumed

Cost of intervention
(US$)

c Uniform
(3–15 million)

The estimated range considers possible reduction in price on patent expiry.
Upper bound defined as current wholesale price from the manufacturer.
Lower bound set to 20% of this.

Fatality risk
reduction ratio

r Uniform
(0.02–0.8)

Lower: 2% efficacy is close to ineffective—recent reviews have challenged
evidence on Olestamivir effectiveness (ref Jefferson, BMJ communications)

Upper: limit of plausibility

aFor all parameters assigned sampling distributions apart from time-to-pandemic the aim of the distribution is to estimate or overestimate parameter

uncertainty.

TIME-TO-PANDEMIC UNCERTAINTY, DOES IT MATTER? 103

hospitalised 
disability adjusted life years (
)
; 
Severens etal.
,
 2004
e
10 
cost 
1 
3 
1 
,
2.2 
Pandemic 
Parameter 
Sensitivity 
Uncertainty 
Analysis 
300 


dates is disputed (Potter 2001) (pandemic dates and intervals

are presented in Table 2). Using the historical pandemic

interval data we carry out a univariate sensitivity analysis to

assess whether observed differences in the number of years

between pandemics can substantially affect cost-effectiveness

results.

However, univariate analysis is limited because it does not

account for interaction between the values of other model

parameters. Sensitivity to time-to-pandemic may be different

given a different set of other input parameter values. We

therefore use multivariate Monte Carlo simulation to sample

parameter values from uniform distributions of six model

parameters (time-to-pandemic, case fatality proportion, hospi-

talization proportion, discount rate, intervention cost and

intervention effectiveness), repeating 20 000 times to produce

results from a wide range of parameter combinations.

Parameter ‘importance’ is assessed using elasticity and mutual

information (MI) measures (described below).

The purpose of this study is to determine whether uncertainty

in the number of years before a pandemic occurs (time-to-

pandemic) is important in cost-effectiveness analysis. For this

reason, the analysis is designed as a ‘challenge’ model using

large estimates of uncertainty in other model parameters to

present the greatest challenge to the importance of time-to-

pandemic. In most cases, little data exists to fit sampling

distributions of the model parameters so in general uniform

distributions have been used with ranges at logical or plausible

limits. If pandemic timing uncertainty is shown to be important

compared with large estimates of uncertainty in other pan-

demic characteristics then we can conclude that pandemic

timing uncertainty is important to cost-effectiveness analysis of

pandemic influenza preparedness.

Measuring parameter importance

We use two measures to determine the importance of uncer-

tainty in the time to the pandemic to the overall uncertainty

in ICER: mean elasticity and MI. Although the potential value

of the MI measure in health economics has been reported

(Coyle et al. 2003), it is not commonly seen in the health

economics literature. Similarly, while elasticity is a concept

commonly used in economics it is rarely found in healthcare

economic evaluation. We describe both measures fully here for

completeness.

Mean elasticity

The elasticity of a parameter describes the extent to which an

output changes given an incremental change in an input

parameter. This is frequently used in economics to describe

effect of demand given a change in price. Using elasticity to

measure parameter importance is a logical step from routine

sensitivity analysis of economic evaluation, which commonly

presents a change in ICER given fixed univariate changes in an

input parameter. Standard univariate sensitivity analysis is

useful in quantifying the impact of possible parameter changes

on cost effectiveness. To compare the sensitivity of the ICER to

each parameter on equal basis, we normalize the univariate

sensitivity analysis, producing a point elasticity for each Monte

Carlo simulation. We take the mean of the point elasticities and

report the mean parameter elasticity as a unit-less measure of

parameter importance.

The ICER is a function of the parameters listed in Table 1. In

a general mathematical formulation if we denote the ICER by Y

and the model parameters by ðXj, j ¼ 1 . . . nÞ where n is the total

number of parameters, then the ICER can be represented as a

non-linear function g of the n parameters:

Y ¼ g X1, . . . , Xnð Þ: ð3Þ

The normalized local elasticity measure is defined as:

� Y , Xj

� �
¼

Xj

Y

@Y

@Xj

�
Xj¼x

ð4Þ

where the symbol @ denotes partial differentiation, and the

elasticity is evaluated at Xj ¼ x. � Y , Xj

� �
is the proportional

change in Y due to a small proportional change in Xj. The mean

elasticity measure �� Y , Xj

� �
is more appropriate to assess

parameter sensitivity under uncertainty (where there is not a

high degree of confidence in the expected value). This is given

by Coyle et al. (2003):

�� Y , Xj

� �
¼ n�1

X
x� Xj, min, Xj, max½ �

Xj

Y

@Y

@Xj

�
Xj¼x

ð5Þ

where n is the number of point-wise evaluations carried out

within the range Xj, min, Xj, max

� �
, and the symbol � means

‘element of’.

Mutual information

MI analysis is based on information and entropy theory (Fraser

and Swinney 1986; Veyrat-Charvillon and Standaert 2009;

Batina et al. 2011), the origins of which lie in estimating the

entropy of thermodynamic systems. Its use has been advocated

in the health economics literature (Coyle et al. 2003).

The entropy HðYÞ of an uncertain variable Y (such as the

ICER) is defined in continuous space by the following integral

equation:

H Yð Þ ¼ �

Z Ymax

Ymin

� Yð Þlog � Yð Þð ÞdY ð6Þ

Table 2 Historical pandemics and the cost per death averted for a
stockpile of 1 million courses adjusting outcomes according to historical
pandemic intervals

Pandemic Strain Pandemic
year

Pandemic
intervala

(years)

Cost per
DALY
averted
(US$)

Swine Flu H1N1 2009 41 978

Hong Kong Flu H3N2 1968 11 112

Asian Flu H2N2 1957 39 846

Spanish Flu H1N1 1918 29 410

Russian Flu Unknown 1889 59 3599

Unknown 1830 49 1745

Unknown 1781 52 2169

Unknown 1729 –

Mean 30 1409

aYears since previous pandemic.
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where �ðYÞ is the probability density function of Y and

½Ymin, Ymax� is the range of Y (i.e. Ymin and Ymax are the lower

and upper bounds of Y , respectively).

The MI between the ICER ðYÞ and a variable on which it

depends Xj (e.g. case fatality proportion or time-to-pandemic) is

defined by the following double integral equation:

�ðY , XjÞ ¼

ZYmax

Ymin

ZXj, max

Xj, min

� Y , Xj

� �
log

� Y , Xj

� �
� Xj

� �
�ðYÞ

 !
dY dXj ð7Þ

where the double integration is carried over the range of ICER

and the range of parameter Xj, Xj, min, Xj, max

� �
and � Y , Xj

� �
is the

joint probability density function of Y and Xj.

�ðY , Xi) is the MI and can be interpreted as the amount

of uncertainty that is reduced in Y if the uncertainty in Xi

is removed (e.g. because of new information acquired on Xi)

or alternatively the amount of information that Y and Xj share.

In practice, discrete rather than continuous analysis is

carried out. The counterpart equations to (6) and (7) in

discrete space are:

K Yð Þ ¼ �
X

y�½Ymin, Ymax �

p Y ¼ yð Þlog
�
p Y ¼ yð Þ

�
ð8Þ

and

� Y , Xj

� �
¼
X
y�½Y �

X
x� Xj, min, Xj, max½ �

p Y ¼ y, Xj ¼ x
� �

log
p Y ¼ y, Xj ¼ x
� �

p Y ¼ yð Þp Xj ¼ x
� �

 !

ð9Þ

where pðY ¼ yÞ denotes the probability that Y ¼ y, and

p Y ¼ y, Xj ¼ x
� �

denotes joint probability that Y ¼ y and Xj ¼ x.

From Equation (9), it can be shown mathematically (Dragomir

and Goh 1996) that �ðY , XjÞ � 0, � Y , Xj

� �
¼ 0 if Y is independ-

ent of Xj and that �ðY , XjÞ attains its maximum when Y ¼ Xi

(i.e. Y and Xj are the same) or when Y is a deterministic

function of Xj. This fits exactly with the interpretation given

above of MI. In one extreme, if the ICER is independent of a

parameter then reducing the uncertainty of that parameter

would not have any effect on the uncertainty of the ICER. At

the other extreme, if the ICER depends on one parameter only,

then reducing the uncertainty in the ICER is maximized by

reducing the uncertainty of the parameter to its minimum. We

used the R package ‘entropy’ for MI calculations (Hausser and

Strimmer 2009).

Figure 2 Cost and DALYs averted of antiviral stockpiling.

Table 3 Parameter importance in pandemic stockpiling cost-effective-
ness model

Parameter Measure of importance

univariate
mean

elasticity

Probabilistic
mean

elasticity

MI

Time-to-pandemic 2.91 2.87 0.019

Case fatality proportion �1.00 �1.00 0.011

Hospitalization proportion �1.00 �1.00 0.015

Discount rate 2.74 2.74 0.022

Intervention cost 1.00 1.00 0.009

Intervention effectiveness 1.04 1.04 0.010
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Time-to-pandemic sampling distribution choice

In the parameter uncertainty analysis outlined above a uniform

distribution is used to model time-to-pandemic uncertainty

(mean 40 years, range 14–66 years). We relax this assumption

in a secondary analysis of uncertainty by also running analyses

with normal, Poisson and gamma distributions. All distribu-

tions are fitted to the data on pandemic interval in Table 2,

using the fitdistrplus package within R (Delignette-Muller et al.

2012). The normal distribution is truncated at 0 to prevent

sampling of negative values. We use the MI to assess whether

time-to-pandemic uncertainty remains important irrespective of

sampling distribution choice.

The World Health Organization recommends using a cost-

effectiveness threshold of 1–3 times the national Gross

Domestic Product (GDP) per capita (World Health

Organization 2012); however, there are many limitations to

using this rule including situations when funds originate from

international organizations (Drake 2013). Nevertheless, we

include an illustrative calculation of the proportion of simula-

tions found to be ‘cost effective’ at a threshold of US$900 per

DALY averted, the GDP per capita in Cambodia (World Bank

2012).

Results
Base case cost-effectiveness analysis

The mean cost of the 1 million course stockpile is US$9 million

(median also US$9m) with mean 831 000 DALYs averted

(median: 235 000 DALYs averted), and a mean ICER of

US$28 375 per DALY averted (median: US$911 per DALY

averted). Note that the mean and median ICER is calculated

per Monte Carlo simulation not from the mean and median

costs and DALYs averted. Figure 2 shows the spread of

simulation results on the cost-effectiveness plane. Costs range

uniformly between US$3 and 15 million while deaths averted

are highly skewed with a small number of pandemic scenarios

producing a high death toll.

Time-to-pandemic parameter sensitivity and
uncertainty analysis

Univariate analysis of change in ICER adjusting for timing

according to pandemic intervals from historical data is pre-

sented in Table 2; the range is US$112 to US$3599 per DALY

averted.

In the probabilistic analysis, parameter sensitivity and uncer-

tainty are assessed by calculation of elasticity and MI,

respectively (Table 3). Using both measures, the most ‘import-

ant’ parameters identified are discount rate and time-to-

pandemic. These have an elasticity slightly greater than two,

indicating that, on average, an increase in discount rate or

time-to-pandemic causes a greater than proportional increase in

the ICER. All other parameters have a mean elasticity magni-

tude of 1 indicating that a change in the parameter causes a

roughly proportional increase or decrease (for negative elasti-

cities) in the ICER; that is an doubling of the parameter value

causes the ICER to double or halve, respectively. Similarly, MI

scores for discount rate and time-to-pandemic are two to three

times larger than the other parameters, indicating a greater

contribution to total uncertainty in the ICER result.

Figure 3 presents how ICER and elasticity vary with each

parameter. The first row of Figure 3 shows how change in input

parameter (x-axis) affects the ICER result (y-axis). Each point

represents a model simulation and skewness in the distribution

of simulations reflects the relationship between the parameter

and the ICER. A loess mean regression line with 95% confidence

interval is overlaid using the R package ‘ggplot’ (Wickham 2009).

The second row of Figure 3 also plots change in input parameter

(x-axis) but this time against elasticity, outlining whether

parameter point elasticity is dependent on the value of the

parameter being measured or on other parameters. Elasticity is

measured for each Monte Carlo simulation, and each simulation

probabilistically samples from six model parameters, so each

elasticity measurement corresponds to a new model parameter

set describing a new pandemic scenario. For the hospitalization

proportion and the case fatality proportion elasticity is constant

at �1 irrespective of their value at measurement or the value of

other parameters. Similarly, intervention cost has a constant

elasticity of 1. Elasticity for intervention effectiveness increases at

greater parameter values but is independent of other model

parameter values. The elasticity for discount rate and time-to-

pandemic is dependent not only on their own parameter value

but also on the value of the other parameter. That is, there is an

interaction between discount rate and time-to-pandemic when

assessing elasticity.

Time-to-pandemic sampling distribution choice

The uniform sampling distribution for time-to-pandemic is

replaced with gamma, normal and Poisson distributions,

repeating 20 000 Monte Carlo simulations for each distribution

type. Mean ICERs for Uniform, Gamma, Normal and Poisson

distributions are US$28 375, US$78 809, US$33 006, US$10 199

per DALY averted, respectively (Table 4). The proportion of

Table 4 Cost effectiveness and MI of pandemic stockpiling using different sampling distributions for time-to-pandemic

Distribution
type

Mean
ICER
(US$)

Proportion cost
effective (%)

MI

Time-to-
pandemic

Case
fatality
proportion

Hospitalization
proportion

Discount
rate

Intervention
cost

Intervention
effectiveness

Uniform 28 375 49.5 0.036 0.017 0.023 0.040 0.017 0.018

Gamma 78 809 48.8 0.016 0.007 0.007 0.009 0.007 0.007

Normal 33 006 48.5 0.049 0.021 0.026 0.043 0.021 0.020

Poisson 10 199 44.9 0.026 0.024 0.043 0.060 0.020 0.020
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simulations cost effective at a willingness-to-pay of US$900 per

DALY averted does not differ substantially with different time-

to-pandemic sampling distributions and the contribution of

time-to-pandemic to uncertainty in the ICER remains high

compared with other model parameters as measured by the MI.

This can be seen in Figure 4 which presents the prior (time-to-

pandemic) and posterior (ICER) probability density curves. The

shape of the posterior or ICER probability density curve is

consistent irrespective of the prior or time-to-pandemic distri-

bution choice.

Discussion
The results of this analysis demonstrate that uncertainty in

time-to-pandemic is important in pandemic cost-effectiveness

models. Both univariate and multivariate measures of elasticity

found that in our model the ICER was most sensitive to

changes in time-to-pandemic and discount rate. Similarly, MI

analysis found that time-to-pandemic and discount rate were

the principle drivers of uncertainty in the model results.

Uncertainty in pandemic hospitalization rate was also import-

ant, as would be expected. While time-to-pandemic is import-

ant the choice of sampling distribution was less so, with similar

contributions to uncertainty resulting from uniform, gamma,

normal and Poisson distributions.

Pandemic cost-effectiveness models should either take a prob-

abilistic (Bayesian) modelling approach to incorporate uncer-

tainty in time-to-pandemic and other pandemic parameters into

the base case analysis or conduct a full probabilistic sensitivity

analysis around a fixed base case scenario. The large amount of

pandemic uncertainty in the model, which cannot easily be

reduced, may mean that reducing uncertainty in other param-

eters, such as treatment effectiveness, offers minimal improve-

ment to the usefulness of pandemic cost-effectiveness models.

One additional aspect of the relationship between time-to-

pandemic and cost effectiveness is that if year-on-year no

pandemic occurs then the expected time to pandemic decreases

and the expected cost effectiveness of investment rises.

Ironically there may be an inverse relationship between cost

effectiveness and likelihood of investment in pandemic pre-

paredness measures, i.e. decision makers are more likely to act

on pandemic preparedness immediately following a pandemic

and interest wanes with time.

The consequence of discounting future health losses leads to a

greater emphasis on the short term. Should standard rate of time

preference be applied to events with potentially catastrophic

impact? Are population time preferences in line with individual

preferences? Individual preferences can betray the public good as

seen in individual vs social demand curves for vaccine uptake

(Fine and Clarkson 1986). If we take a long run perspective,

individuals come and go, and so they have a clear time-

preference, but the population remains. In effect the problem

becomes philosophical; relating to the current generation’s

responsibility to future generations. This problem is mirrored in

other population level challenges such as climate change, national

debt accumulation or risk of redundant antibiotics resulting from

widespread antibiotic usage. This analysis points towards the

heavy impact that time-preferences of individuals has on these

decision contexts. Further work is needed to (re)establish norms

for discounting in these contexts. Central to this will be the

question of whether time preferences are different when individ-

uals make decisions as a community, whether time preferences

differ with very high impact events and whether discount rates

are indeed constant for long time-spans.

This study has several limitations. The model is a simple

decision tree and does not include more sophisticated model

structures recommended in pandemic preparedness cost-effect-

iveness analysis (Lugnér and Postma 2009a,b; Drake et al. 2012).

However, this is not likely to be a significant problem as these

approaches aim to more accurately assess the effectiveness of

pandemic preparedness of interventions and therefore would be

unlikely to lead to a lower estimate of the importance of time-to-

pandemic. The model also only considers antiviral stockpiling as a

pandemic preparedness measure. Other pandemic preparedness

options may not require upfront investment, such as social

distancing measures in response to a pandemic and therefore

time-to-pandemic would not be an issue.

Conclusion
Pandemic preparedness requires upfront investment and the

benefits of this investment are only realized during the course

of the next pandemic, an unknown number of years after the

investment. We find that in the economic evaluation of

pandemic preparedness investments the uncertainty in time-

to-pandemic is a dominant factor in model uncertainty.

Mathematical models to assess the cost effectiveness of

pandemic preparedness options should include probabilistic

sensitivity or uncertainty analysis of time-to-pandemic. At the

same time, steps should be taken to carefully consider the most

appropriate approach to discounting the impact of future

catastrophic events such as pandemics.
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Walker W, Harremoës P, Rotmans J. 2003. Defining uncertainty: a

conceptual basis for uncertainty management in model-based

decision support. Integrated Assessment 4: 5–17.

Weatherly H, Drummond M, Claxton K et al. 2009. Methods for

assessing the cost-effectiveness of public health interventions: key

challenges and recommendations. Health Policy 93: 85–92.

Webster RG. 1997. Predictions for future human influenza pandemics.

The Journal of Infectious Diseases 176: S14–9.

Wickham H. 2009. ggplot2: Elegant Graphics for Data Analysis. New York:

Springer.

World Bank. 2012. World Development Indicators. http://data.world

bank.org/indicator/NY.GDP.PCAP.CD, accessed 22 January 2013.

World Health Organization. 2012. Cost-effectiveness Thresholds. http://www.

who.int/choice/costs/CER_thresholds/en/index.html, accessed 21

November 2012.

110 HEALTH POLICY AND PLANNING

http://cran.r-project.org/web/packages/fitdistrplus/citation.html
http://link.springer.com/chapter/10.1007/978-3-642-04138-9_30
http://link.springer.com/chapter/10.1007/978-3-642-04138-9_30
http://data.worldbank.org/indicator/NY.GDP.PCAP.CD
http://data.worldbank.org/indicator/NY.GDP.PCAP.CD
http://www.who.int/choice/costs/CER_thresholds/en/index.html
http://www.who.int/choice/costs/CER_thresholds/en/index.html

