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Platelets, a reliable source for peripheral
Alzheimer’s disease biomarkers?
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Abstract

Peripheral biomarkers play an indispensable role in quick and reliable diagnoses of any kind of disease. With the
population ageing, the number of people suffering from age-related diseases is expected to rise dramatically over
the coming decades. In particular, all types of cognitive deficits, such as Alzheimer’s disease, will increase.
Alzheimer’s disease is characterised mainly by coexistence of amyloid plaques and neurofibrillary tangles in brain.
Reliable identification of such molecular characteristics antemortem, however, is problematic due to restricted
availability of appropriate sample material and definitive diagnosis is only possible postmortem. Currently, the best
molecular biomarkers available for antemortem diagnosis originate from cerebrospinal fluid. Though, this is not
convenient for routine diagnosis because of the required invasive lumbar puncture. As a consequence, there is a
growing demand for additional peripheral biomarkers in a more readily accessible sample material. Blood platelets, due
to shared biochemical properties with neurons, can constitute an attractive alternative as discussed here. This review
summarises potential platelet Alzheimer’s disease biomarkers, their role, implication, and alteration in the disease.
For easy comparison of their performance, the Hedge effect size was calculated whenever data were available.
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Introduction
Alzheimer’s disease
One of the most common forms of dementia is Alzheimer’s
disease (AD), which is characterised by a progressive cog-
nitive decline. It is estimated to currently affect about 35
million people worldwide and by 2050 this number is pre-
dicted to increase to >115 million, thus reaching over 1%
of the total population. Loss of memory is common
amongst the aged and once this condition becomes more
pronounced, it is termed ‘amnestic mild cognitive impair-
ment’ (aMCI) and is often considered as a very early stage
of AD. Early-onset familiar AD (EOFAD) is caused by
genetic factors like mutations in genes encoding the amyl-
oid precursor protein (APP) and the subunits of the APP-
cleaving enzyme γ-secretase, termed presenilin-1 and −2
(PS1 and PS2). The present review, however, focuses on
the more common late-onset AD (LOAD), which is char-
acterised by more heterogeneous conditions [1]. Besides

neurofibrillary tangles (NFT) and plaques composed of
amyloid beta (Aβ), typical neuropathological characteris-
tics associated with AD are loss of cholinergic neurons in
the basal forebrain and reduced acetylcholine concentra-
tions [2]. In addition, neocortical biopsies of AD brains
show a severe decrease in the levels of the three mono-
amine neurotransmitters dopamine, norepinephrine, and
serotonin [3]. Further comorbid signs of AD are changes
in the metabolome such as vitamin B12 and folate defi-
ciencies, as well as elevated homocysteine levels, poten-
tially providing a functional link to the assumed influence
of lifestyle factors on AD development [4].
Despite worldwide efforts at improving AD detection,

‘definite’ AD diagnosis is still restricted to postmortem
evaluation of coexisting plaques and NFTs in brain prep-
arations from deceased patients [5]. Antemortem, one of
the most reliable diagnostic tools is brain imaging,
i.e. visualisation of atrophies most apparent in the tem-
poral lobe [6]. Hippocampal lesions in patients appear to
be very important characteristics to determine progression
from aMCI to overt AD [7]. However, brain imaging
requires exorbitantly expensive equipment and highly
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trained staff, making these examinations a low-throughput
screening method. Therefore, easily accessible molecu-
lar markers for early and reliable diagnosis would be
of tremendous importance. Moreover, correct diagnosis
at the stage of aMCI followed by immediate treatment
may be more efficacious than administering medication
later on [8,9].

Biomarker sources for AD
Cerebrospinal fluid (CSF) Aβ1–42, total tau, and phospho-
tau181 represent some of the best available AD biomarkers
for clinical diagnosis. When combined, they give accuracy
in the range of 90% [10]. A significant drawback is the re-
quired invasive lumbar puncture, making CSF impractical
for initial diagnosis or clinical routine screening. Easily ac-
cessible blood, in contrast, is a desired sample material
and multiple plasma proteins have already been identified
as potential AD biomarker candidates, for example cyto-
kines, acute phase proteins, adhesion molecules, and
growth factors [11]. Nevertheless, most of these seem to
reflect secondary inflammatory processes of neurodegen-
eration rather than being causative agents. In addition,
many factors are likely to influence the abundance of these
plasma markers, e.g. accompanying infection and inflam-
mation, as well as disease progression of AD itself. Be-
cause of that, many AD-related plasma profiles are hard
to reproduce [12]. Since the mean biological variation of
platelet proteins is more stable (coefficient of variation,
CV = 17% [13]) as compared to other body fluids such as
plasma (CV = 23% [14]), urine (CV = 82% [15]), or CSF
(CV = 83% [16]) and since AD-related pathological changes
responsible for neuron decay most likely start inside cells,

cellular biomarkers may be a more preferable choice for
detection of causal AD signs.

Platelets and their implication as peripheral model
for neurons
Blood platelets are cell fragments shed from megakaryo-
cytes and released into the blood stream. Therefore,
platelets lack a nucleus but contain a number of organ-
elles such as mitochondria for energy generation, dense
granules for storage of small molecules (e.g. serotonin,
ADP, etc.), and α-granules serving as reservoir for
secretory proteins. Upon stimulation, a process required
for haemostasis and other physiological functions, plate-
lets undergo a rapid shape change and release a reper-
toire of substances from mentioned granules [17]. With
regards to neurons, they have been described to share
many biochemical similarities [18-20] and mirror abnor-
malities in psychiatric and neuronal disorders [21,22].
For instance, platelets express high levels of APP [23], in
fact highest concentrations of this protein are found in
brain and platelets. Additionally, tau protein has recently
been detected in their proteome [24,25]. Both proteins
are described to have different isoform patterns in AD
[26,27]. A more obvious advantage of platelets is their
fast, easy, and minimally invasive accessibility from
whole blood in high numbers [28]. For these reasons,
several research teams investigated whether AD-related
changes of the brain are also reflected in platelets. This
review aims to provide an overview of these studies with
particular emphasis on the reliability of potential platelet
AD biomarkers summarised in Figure 1. Additionally, in
order to enable the comparison of their diagnostic
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Figure 1 Overview of potential peripheral platelet AD biomarkers. Besides key players involved in the generation of amyloid plaques and
neurofibrillary tangles, a good many additional AD-specific platelet alterations have been described. APP, amyloid precursor protein; GSK3β,
glycogen synthase kinase 3β; Mao-B, monoamine oxidase B; NO, nitric oxide; ONOO−, peroxynitrite.
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power, we calculated the Hedge effect size (ES) http://
www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.
html [29] for accessible data sets (Table 1). The relative
values, either positive or negative (up- or down-regulation),
are a measure of the difference of mean values between
groups under consideration of their standard deviation.
Thus, the higher the ES, the bigger the difference of a par-
ameter with concomitant small standard deviations be-
tween the groups analysed, indicating a more powerful
biomarker candidate.

Review
Platelet activation
Platelets can become activated by a number of agonists.
This introduces shape changes and degranulation of
dense- and α-granules [17], redistributing several proteins
from α-granules to their surface. An elevated degree of
platelet activation in AD patients has been reported by
quantification of CD62P (P-selectin) surface expression,
platelet aggregates, and platelet leukocytes complexes [75].
Results from another study contradict these findings as
these show no difference in surface CD62P expression of
unstimulated platelets but significantly lower levels in
thrombin receptor activating peptide 6 (TRAP-6)-activated
AD platelets [74]. However, this may be a sign of already
exhausted platelets in vivo after sustained activation,
reflected by the increase of sCD62P plasma levels [74].

Coated platelets
Upon parallel activation with collagen and thrombin, a
subset of so called ‘coated’ platelets retains augmented
concentrations of pro-coagulant proteins on their cell
membrane [76]. Determination of surface fibrinogen
levels by flow cytometry is an established method for
their quantification [77]. Coated platelet numbers have
been found to be significantly increased in early stages
of AD as compared to matched controls but decreased
in late stages of AD, even below levels of cognitively
healthy individuals [48,78-80]. This group also showed
that coated platelets can be used to predict which aMCI
patients would rapidly progress to AD [80]. Additionally,
this parameter could distinguish amnestic from non-
amnestic MCI patients by higher levels of coated plate-
lets in these patients [47]. Similarly, they suggested that
these elevated levels could discriminate frontotemporal
dementia from AD [48]. Importantly, all these publica-
tions originate from the same research group; therefore,
and because of the only moderate sample numbers and
ES (Table 1), reproduction by other international experts
is stringently required.

Serotonin metabolism
The idea of using platelets as an experimental system for
neurons was triggered by discovering that platelets’

dense granules (which release their content after stimu-
lation) are the major storage site for serotonin (5-hydro-
xytryptamin, 5-HT) in blood [81], similar to its vesicular
storage in neurons [82]. Consequently, experiments with
the antipsychotic drug reserpine were carried out. Reser-
pine mediates depletion of monoamine neurotransmit-
ters in synapses; the same effect could be simulated in
platelets [18]. Since then, many studies confirmed that
platelets are an adequate model resembling storage and
release of serotonin from serotonergic neurons under
both physiological and pathological conditions [83-85].
Moreover, a significant correlation between interindivid-
ual 5-HT2A receptor binding characteristics in the brain
cortex and in platelets has been observed both in ani-
mals [86] and humans [87]. A decrease in serotonin up-
take and in the number of transporter binding sites in
brain tissue and platelets has been shown to be general
molecular evidence for serotonergic abnormalities in de-
pression [85,88].

Serotonin metabolism in platelets of AD patients
Concentrations of serotonin and 5-hydroxyindoleacetic
acid, serotonin uptake, and K+-stimulated release of en-
dogenous serotonin have all been found to be reduced
below control values in neocortical biopsy samples from
patients with histologically verified AD [89]. A signifi-
cant reduction in serotonin binding in non-depressed
AD patients hints that presynaptic serotonergic function
is already affected before development of psychiatric
problems such as depression [90]. Further evidence for
reflection of cerebral biochemical abnormalities in plate-
lets was the diminished affinity of the platelet 5-HT2A

receptor towards its radioactively labelled ligand [3H]
LSD in AD cases [91], suggesting decreased serotonin
uptake by these peripheral cell bodies. A number of
other studies also registered an impaired uptake of sero-
tonin in platelets [92-94]. However, the reliability of this
marker is questionable since this finding could not be
reproduced in two other investigations [95,96]. In strong
contrast, another study even showed increased accumu-
lation of the neurotransmitter in platelets of female AD
patients [97]. Intraplatelet serotonin concentrations re-
ported in literature are also quite inconsistent as re-
duced [72,98,99], as well as increased [73] values in AD
patients with delusions have been measured. In the latter
observation, there might be a weak parallel to findings
of higher serotonin level in AD patients with psychotic
features than in inconspicuous subjects [98]. Similarly,
in demented patients concentrations of platelet sero-
tonin were higher as compared to controls [73]. Further
details about the role of serotonin in depression, ageing,
and AD can be found in the review by Meltzer et al.
[100] which also compares results from platelets and
neurons. Some of the discrepancies may arise from
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Table 1 Comparison of platelet AD biomarker performance by Hedge effect size

AD platelet biomarkers Reg. AD AD Hedge
ES

Controls Pubmed ID

n Age MMSE MMSE Age n

ADAM 10 ↓ 10a 75 ± 8 16 ± 5 −4.4 27 ± 2 76 ± 7 8 [30]

ADAM 10 ↓ 11b 76 ± 8 13 ± 5 −2.6 27 ± 2 76 ± 7 8 [30]

ADAM 10 ↓ 9c 75 ± 8 1 ± 2 −2.0 27 ± 2 76 ± 7 9 [30]

APP total mRNA ↑ 20 78 ± 5 17 ± 4 1.8 29 ± 1 76 ± 5 18 [31]

APP KPI mRNA ↑ 20 78 ± 5 17 ± 4 1.2 29 ± 1 76 ± 5 18 [31]

APP 115 kDa protein abundance ↑ 30 67 ± 10 25 ± 3 1.6 29 ± 1 68 ± 10 23 [32]

APP ratio 130/106-110 kDa ratio ↓ 30 67 ± 10 25 ± 3 −2.0 29 ± 1 68 ± 10 23 [32]

APP ratio 130/106-110 kDa ratio ↓ 12 71 ± 2 28 ± 2 −1.2 29 ± 2 70 ± 6 10* [33]

APP ratio 130/106-110 kDa ratio ↓ 33 68 ± 6 18 ± 4 −2.4 29 ± 1 63 ± 6 26 [34]

APP ratio 130/106-110 kDa ratio ↓ 32 72 ± 10 13 ± 7 −3.0 28 ± 4 68 ± 14 25 [35]

APP ratio 130/106-110 kDa ratio ↓ 85 68 ± 0 14 ± 7 −2.4 29 ± 2 n.a. 24 [36]

APP ratio 130/106-110 kDa ratio ↓ 23 74 ± 9 19 ± 5 −1.1 29 ± 1 70 ± 6 29 [37]

APP ratio 130/106-110 kDa ratio ↔ 66 77 ± 10 14 ± 8 −0.1 29 ± 1 73 ± 11 46 [38]

APP ratio 130/106-110 kDa ratio ↓ 15 n.a n.a −1.0 n.a n.a 19 [39]

APP ratio 130/106-110 kDa ratio (AChE-inhib.) ↓ 20 70 ± 10 19 ± 4 −0.4 28 ± 2 70 ± 10 10 [40]

BACE1-β secretase activity ↑ 86 80 ± 7 18 ± 5 0.6 29 ± 1 79 ± 8 115 [41]

BACE1-β secretase activity ↑ 52* 76 25 ± 1 0.7 30 74 75 [42]

BACE1 whole protein abundance ↓ 15 82 ± 5 19 ± 6 −0.9 29 ± 1 80 ± 5 12 [43]

Calcium intracellular ↑ 100 68 ± 7 n.a. 2.0 n.a. 65 ± 9 50 [44]

Calcium intracellular female ↑ 60 72 ± 7 18 ± 2 1.6 29 ± 1 70 ± 8 25 [45]

Calcium intracellular male ↑ 40 66 ± 5 18 ± 3 1.5 29 ± 2 63 ± 4 25 [45]

Coated-platelet levels ↑ 10 n.a. < 20 1.1 n.a. n.a. 19 [46]

Coated-platelet levels ↑ 36* 74 ± 8 28 ± 1 0.5 28 ± 1 73 ± 8.8 30* [47]

Coated-platelet levels ↑ 20 72 ± 10 23 ± 2 0.9 30 ± 0 74 ± 7 40 [48]

Cytochrome c oxidase activity ↓ 10 <60 n.a. −0.8 n.a 61 ± 3 5 [49]

Cytochrome c oxidase activity ↓ 10 >60 n.a. −1.0 n.a 61 ± 3 5 [49]

Cytochrome c oxidase activity ↓ 20 65 ± 9 18 ± 5 −4.4 n.a. 63 ± 9 20 [50]

Cytochrome c oxidase activity ↓ 22 66 ± 9 17 ± 8 −1.5 26 ± 3 63 ± 9 20 [51]

Cytochrome c oxidase activity ↓ 6 n.a. n.a. −1.3 n.a. n.a. 8 [52]

Cytochrome c oxidase activity (Complex IV) ↓ 8 78 ± 7 17 ± 7 −1.4 30 ± 1 73 ± 5.7 7 [53]

Cytochrome c oxidase activity (Complex IV) ↓ 5* 78 ± 10 26 ± 2 −1.4 30 ± 1 73 ± 5.7 7 [53]

GSK3β Ser-9 phosphorylated/total GSK3β ↓ 24 76 ± 4 19 ± 4 −1.1 28 ± 3 71 ± 5 23 [54]

GSK3β Ser-9 phosphorylated/total GSK3β ↓ 22* 74 ± 7 26 ± 2 −0.6 28 ± 3 71 ± 5 23 [54]

Hyperacidification after activation ↓ 19 71 ± 5 n.a. 4.7 n.a. 61 ± 8 14 [55]

Immunoglobulin ↑ 25 78 ± 1 21 ± 1 2.7 28 ± 0 71 ± 2 26 [56]

Mao-B activity (phenylethylamine) ↑ 20 81 ± 11 5 ± 7 1.0 28 ± 1 80 ± 11 9 [57]

Mao-B activity (phenylethylamine) ↔ 15 68 ± 3 n.a. 1.2 n.a. 54 ± 2 8 [58]

Mao-B activity (benzylamine) ↑ 50 68 ± 14 n.a. 2.1 n.a. 64 ± 14 50 [59]

Mao-B activity (phenylethylamine) ↑ 11 65 ± 1 n.a. 1.2 n.a. 65 11 [60]

Mao-B activity (kynuramine) ↔ 11 64 ± 7 14 ± 4 −0.7 n.a. 64 ± 8 11 [61]

Mao-B protein abundance ↑ 34 79 ± 8 5 ± 4 1.4 28 ± 2 79 ± 9 34 [62]

Mean platelet volume ↑ 126 76 ± 7 n.a. 0.3 n.a. 75 ± 6 286 [63]

Membrane fluidity ↑ 12 72 ± 4 11 ± 2 1.0 n.a. 68 ± 4.5 18 [64]
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different stages of AD, given a recent study showing that
serotonin levels were only reduced in late stage AD [99].
Additionally, diurnal and seasonal variations have been
described for intraplatelet serotonin content [101]. The
isolation method of easy-to-activate platelets can also in-
fluence the measured concentration as this monoamine
is taken up from plasma, stored in dense granules of
platelets, and released upon stimulation, contributing to
an aggregative response [82]. Therefore, by having an ef-
fect on the degree of activation and degranulation, the
choice of anticoagulant and centrifugation force can
strongly influence serotonin concentrations [102]. This
might be one reason for the inconsistent results (positive
and negative ES in Table 1) for this parameter and great
care should be taken if serotonin is considered as AD
biomarker.

Monoamine oxidase B
Another neuropharmacological drug target frequently
studied in platelets is the neurotransmitter-degrading
enzyme monoamine oxidase (Mao, EC 1.4.3.4). The

existence of Mao in platelets was first reported in 1964
[103]. This enzyme exists in two isoforms, Mao-A and
Mao-B, which are encoded by two genes with exactly
the same exon-intron pattern, implying evolvement from
a common ancestral gene. Differences do exist though in
their primary structures and tissue-specific expression
patterns, substrate preferences, and inhibitor sensitivities
[104]. Mao-B is a mitochondrial membrane protein that
catalyses oxidative deamination of monoamines, includ-
ing phenethylamine and the neurotransmitters dopamine
and aforementioned serotonin. Human platelets exclu-
sively express Mao-B with the same amino acid se-
quence as brain Mao-B [105]. This enzyme has been
proposed to be involved in ageing, as well as the patho-
genesis of AD and Parkinson’s disease (PD) through in-
creased generation of reactive oxygen species (ROS) and
neurotoxic aldehyde catabolites [106]. The observation
that Mao-B activities in brain and platelets correlate
positively with ageing [107] has led researchers to sug-
gest a systemic alteration of this potential neurological
biomarker. In the course of AD, Mao-B activity was

Table 1 Comparison of platelet AD biomarker performance by Hedge effect size (Continued)

Membrane fluidity ↔ 23 74 ± 9 19 ± 5 −0.5 29 ± 1 70 ± 5.8 29 [37]

Membrane fluidity ↑ 24 n.a. n.a. −1.6 n.a. n.a. 36 [65]

Membrane fluidity external ↓ 100 68 ± 7 n.a. 0.3 n.a. 65 ± 9 50 [44]

Membrane fluidity in submitoch. particles ↓ 30 n.a. n.a. −2.3 n.a. n.a. 30 [66]

Membrane fluidity internal ↓ 100 68 ± 7 n.a. 0.8 n.a. 65 ± 9 50 [44]

Na+/K + −ATPase activity ↓ 100 68 ± 7 n.a. −6.0 n.a. 65 ± 9 50 [44]

Na+/K + −ATPase activity female ↓ 60 72 ± 7 18 ± 2 −8.5 29 ± 1 70 ± 8 25 [45]

Na+/K + −ATPase activity male ↓ 40 66 ± 5 18 ± 3 −7.3 29 ± 2 63 ± 4 25 [45]

NO production ↑ 100 68 ± 7 n.a. 6.3 n.a. 65 ± 9 50 [44]

NO production female ↑ 60 72 ± 7 18 ± 2 4.5 29 ± 1 70 ± 8 25 [45]

NO production male ↑ 40 66 ± 5 18 ± 3 6.5 29 ± 2 63 ± 4 25 [45]

ONOO− production ↑ 100 68 ± 7 n.a. 6.8 n.a. 65 ± 9 50 [44]

ONOO− production female ↑ 60 72 ± 7 18 ± 2 8.4 29 ± 1 70 ± 8 25 [45]

ONOO− production male ↑ 40 66 ± 5 18 ± 3 8.1 29 ± 2 63 ± 4 25 [45]

Phospholipase A2 activity ↓ 16 70 ± 11 n.a. −0.9 n.a. 63 ± 10 13 [67]

Phospholipase A2 activity ↓ 21 75 ± 7 14 ± 9 −1.6 28 ± 2 73 ± 5 17 [68]

Phospholipase A2 activity ↓ 11* 73 ± 5 25 ± 4 −0.7 28 ± 2 73 ± 5 17 [68]

Phospholipase A2 activity ↑ 37 73 ± 6 19 ± 5 0.3 n.a. 72 ± 5 27 [69]

Phospholipase A2 activity ↓ 44 75 ± 7 19 ± 5 −0.6 28 ± 4 75 ± 7 66 [70]

Phospholipase A2 activity ↓ 59* 72 ± 6 27 ± 3 −0.6 28 ± 4 75 ± 7 66 [70]

Phospholipase C delta protein and activity ↓ 10 81 ± 1 1 ± 2 −3.4 1 ± 2 80 ± 2 10 [71]

Serotonin [c] ↓ 22 n.a. n.a. −1.5 n.a. n.a. 20 [72]

Serotonin [c] ↑ 57 n.a. n.a. 1.0 n.a. n.a. 20 [73]

Tau high molecular weight/monomeric tau ↑ 15 81 15 1.6 28 68 10 [24]

TRAP-induced CD62P expression [%] ↓ 23 70 ± 8 n.a. −1.2 n.a. 60 ± 10 17 [74]

The Hedge effect size was calculated based on published values of mean, standard deviation, standard error of mean, and sample size. Positive ES indicate
up-regulation, negative ES down-regulation in AD patients. aMild AD, bModerate AD, cAdvanced AD, *MCI.
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elevated in the temporal lobe and white matter as com-
pared to age-matched controls [108]. These profiles were
confirmed at the mRNA level in brain tissue, signifying
that the increased activity arises from an enhanced level
of transcription and a higher Mao-B concentration ra-
ther than from post-translational mechanisms [109].
Though, intraneuronal increase in Mao-B activity in
both AD and ageing has been doubted [110,111] with
the hypothesis that because of higher constitutive Mao-
B expression by glial cells, elevated brain Mao-B levels
may be a consequence of gliosis during AD [108,110].
Already in 1980, the finding by Adolfsson et al. of a

similar increase in Mao-B activity in brain and platelets
of AD patients suggested to use platelets as a peripheral
diagnostic tool for AD [60]. Higher Mao-B activity in pa-
tient samples could only be detected with the Mao-B-
specific substrate phenethylamine. These AD-related
findings were subsequently confirmed in at least 12 clinical
studies from different research groups [57,59,73,112-120].
Five other studies, however, reported no AD-related activ-
ity increase [58,61,73,99,121]. Importantly, instead of phe-
nethylamine, three of these studies used the substrates
tyramine or kynuramine [61,73,99], both converted by
Mao-A and Mao-B [122]. In a recent study, Mao-B activ-
ity quantified by kynuramine has been found to be signifi-
cantly lower in late stage AD patients as compared to
healthy controls, whereas in early and middle stage AD
Mao-B activity was not changed significantly [99]. This
finding stands in strong contradiction to the majority of
previous studies, where most AD patients also suffered
from moderate (mini–mental state examination (MMSE)
score <20) to severe (MMSE score <10) dementia (unless
otherwise specified; Table 1). Curiously, there does also
not seem to be an agreement in the conclusions drawn by
this group, since they additionally demonstrated a signifi-
cant increase in Mao-B activity in a considerably larger
AD patient cohort with an average MMSE of 18.9 [98].
In an unbiased proteome analysis, our laboratory

found a predominant elevation in Mao-B expression in
platelets from AD patients which strongly correlated
with the enzymatic activity [62]. Nevertheless, concen-
tration of Mao-B also increased with age (55 to
104 years) in healthy subjects. Centenarians exhibited
platelet Mao-B levels comparably high to those of AD
platelets [62], potentially reflecting the age-dependent
cognitive decline indicated by lower MMSE scores. This
suggests an age-related increase in Mao-B expression
that is more pronounced in AD patients.
Despite a number of studies about excessive platelet

and brain Mao-B activity in AD, little is known about
the molecular causes underlying these changes. Platelet
Mao-B activity is strongly influenced by lifestyle factors
such as nutrition, alcohol, and smoking. Norharman, a
compound of tobacco smoke, is a specific Mao-B

inhibitor [123]. Paradoxically, it was observed that Mao-
B inhibition in smokers was accompanied by elevated
enzyme concentration in platelets [124]. Smoking in-
duced a hypomethylation of the Mao-B promoter,
followed by an increased Mao-B protein expression
[124]. Since high homocysteine, as well as low vitamin
B12 and folate levels are associated with AD [125],
homocysteine-lowering therapies based on these B-
vitamins counteract the accelerated atrophy in brains of
MCI patients [126]. In good agreement with these obser-
vations, a correlation between plasma vitamin B12 levels
and platelet Mao-B activity was observed in dementia
patients: the lower the vitamin levels, the higher the en-
zymatic activity. Following vitamin B12 supplementation,
platelet Mao-B activity was significantly reduced in these
patients to apparently normal levels [127]. Recently, we
have shown that a high animal protein diet in healthy
young adults decreased platelet Mao-B expression by
26% compared to controls fed with normal protein diet.
This was accompanied by improved cognitive function
and correlated with increased plasma vitamin B12 levels
[128]. Since both increased Mao-B protein expression
levels and enzymatic activity (determined with the sub-
strate phenylethylamine) in AD patients have repeatedly
been reported by different research groups (Table 1),
Mao-B is one of the most reliable and promising AD
biomarker candidates.

Nitric oxide and oxidative stress
Nitric oxide (NO) produced by activated astrocytes is
thought to contribute to neurodegenerative processes.
Reaction of NO with oxygen radicals leads to formation
of peroxynitrite (ONOO−). This unstable structural ni-
trate isomer generates cytotoxic species which oxidise
and nitrate proteins. Increased levels of nitrated proteins
have been reported in AD brain and CSF [129]. Platelet
NO production, as well as ONOO− levels were evaluated
in a large AD study cohort and significantly increased in
afflicted individuals [44] with one of the highest ES of
6.3 (Table 1). In a subsequent study, elevated NO and
ONOO− production was more pronounced in male than
female AD patients, but generally higher in males [45].
Defects in the mitochondrion’s electron transport

chain are the main source of ROS, the central element
of the free radical theory of ageing [130]. Given that age-
ing is the main risk factor for AD, this may also have an
impact on the pathology of AD. Platelets have a high
number of mitochondria what makes them attractive to
study AD-related systemic malfunctions of the electron
transport system. Investigations have revealed that both
in isolated platelet and hippocampal mitochondria cyto-
chrome c oxidase (complex IV of the respiratory chain)
activity was significantly lower in AD patients as com-
pared to controls [50]. Different research teams have
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confirmed this finding consistently [49,51-53,131,132].
While one of these studies additionally found reduced
adenosine triphosphate (ATP) concentrations in AD
platelets [49], another investigation reported no signifi-
cant differences between platelet ATP levels of patient
and control groups [133]. Increased ROS levels in AD
platelets have been detected [49], just as an enhanced
blood lactate concentration correlating inversely with di-
minished platelet cytochrome c oxidase activity [51]. Simi-
lar findings in adult children of AD-affected mothers
imply an exclusively maternal heredity of this biomarker
[134]. Taken together, most results point towards the im-
portance of increased oxidative stress in AD. Whether any
of the indicators could be used as biomarker remains to
be elucidated.

Inflammatory mediators
In the periphery of amyloid plaques and NFTs, pro-
inflammatory molecules are highly expressed [135]. One
enzyme synthesised by platelets after an inflammatory
stimulus is cyclooxygenase-2 (COX-2) that in turn is re-
sponsible for the production of prostaglandins. Several
studies indicate that treatment with non-steroidal anti-
inflammatory drugs and COX-2 inhibitors may reduce
the risk of developing AD [136]. Indeed, Western blot
analysis revealed a 50% increase in platelet COX-2 in
MCI and a 25% increase in AD patients [137]. COX-2
expression profiles in platelets could indicate which pa-
tient groups may benefit from a COX-2 inhibitor ther-
apy. Further details can be found in a recent review on
inflammatory AD biomarkers in platelets [138].

Amyloid precursor protein
One of the first milestones in understanding the patho-
genesis of AD dates back to 1985, when cerebral Aβ de-
posits in senile and neuritic plaques were recognised as
playing a central role [139,140]. Amyloid plaques are
formed by aggregation of Aβ peptides produced by pro-
teolytic cleavage of APP. This single-pass type I mem-
brane protein can be N-terminally hydrolysed by two
alternative, differently initiated routes. In the non-
amyloidogenic pathway, α-secretase cleaves APP first,
releasing the neuro-protective, soluble fragment sAPP-α.
In the amyloidogenic pathway, though, β-secretase is the
first enzyme to cleave and the resulting soluble fragment is
sAPP-β. The remaining carboxyl-terminal fragment de-
rivatives are subsequently cut by γ-secretase to generate
either a 3 kDa product or Aβ, respectively. Accordingly,
when α-secretase cleaves, Aβ is not produced [141]. It is
hypothesised (but still under debate [142]) that Aβ is a
causative molecule of AD by inducing neuronal cell death
and concomitant disturbance of synaptic function.
Platelets are equipped with α-, β-, and γ-secretases

[143]. Studies have shown a reduction of α-secretase

protein level in platelets of early stage AD patients
[30,144], in line with attenuated release of sAPP-α from
thrombin-activated AD platelets [145]. In addition, an
increased activity of β-secretase was indirectly shown by
a decreased ratio of its 37/56 kDa fragments from two
different groups [143,144]. Another group determined it
directly by an enzymatic assay with a 17% elevation in
activity in AD platelets [41] and with an even more pro-
nounced 24% upregulation in MCI platelets [42]. The
concentration of β-secretase cleavage products was also
found to be significantly increased [145]. On the other
hand, the enzymatic activity did not correlate with
MMSE scores, signifying that it might be a primary
pathophysiological sign and may predict disease onset
[41]. A recent study has confirmed altered soluble frag-
ment ratios: while sAPP-α level were unchanged in both
MCI and AD patients, there was a strong increase in
sAPP-β level. Therefore, an ELISA-based assay to detect
this altered β-fragment released by platelets incubated
with recombinant BACE1 might be used as diagnostic
screening tool [146].
Alternative splicing generates several APP mRNAs

with the three major isoforms being APP695, APP751,
and APP770 [141]. While the two longer forms (APP751
and APP770) possess a Kunitz-type serine protease in-
hibitor domain and are found in most tissues, the
shorter APP695 is predominantly expressed in neurons
[147]. Analysis of brain biopsies is difficult because of
the mixture of cells such as astrocytes, glia cells, and
neurons. Additionally, protein profiles may be influenced
by gliosis (generally occurring in AD), masking neuron-
specific expression changes. Microdissection studies
would specifically show which proteome changes origin-
ate from a single cell type but only few have been con-
ducted from AD brain so far. Therefore, scant and
conflicting data are available on abundance and process-
ing of the Aβ parent molecule in AD-affected brains
[148-151]: APP751 and APP770 isoform patterns were
found to be unchanged but concentrations of total APP
and fragment APP695 decreased on mRNA level [150]
and protein level [151] with an increase of the Aβ pep-
tide level in samples of the frontal cortex of AD cases
[151]. Due to these confusing data on neuronal APP
isoform abundance, platelets may be an interesting alter-
native sample material. At this point it should be men-
tioned that it is assumed that generation of Aβ is
boosted in EOFAD, whereas clearance of Aβ may be di-
minished in LOAD [152]. Since above mentioned alter-
ations of APP processing and isoform abundance are
mainly found in LOAD patients, this suggests that not
only clearance of Aβ is affected in LOAD.
In platelets, the two prevalent isoforms are APP751

and APP770 though APP695 is also present [153]. This
fact may have significance in haemostasis, since the
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Kunitz-type domain inhibits certain blood coagulation
factors [154-156]. Intraplatelet localisation of the numer-
ous APP isoforms is also different: full-length protein
(140–150 kDa) is plasma membrane-bound, the pre-
dominant 100–130 kDa species (C-terminally truncated
forms in activated platelets) are located in α-granule
membranes [157]. APP metabolism has been found to
be specifically altered in platelets of LOAD patients: a
large number of publications from different groups report
a decreased ratio of the two major platelet APP isoforms
(130 kDa/110 kDa) in AD patients [26,33,35,36,39,143,
158,159]. One of the studies could also distinguish AD
from PD and stroke patients since these values equalled
those of controls [158]. Still others correlated the reduced
ratio with disease progression [160]. Thus, despite huge
variation in the reported values, APP ratio is still the most
reproducible and promising AD biomarker in platelets to
date (Table 1).
Interesting in this context is a newly identified C-

terminally-truncated 115 kDa APP isoform which is not
glycosylated and non-releasable upon platelet activation
[32]. Experiments of this laboratory suggest that this
fragment could represent an easily detectable diagnostic
marker as it significantly and inversely correlated with
reduced 130/110 kDa isoform ratios of AD patients.
From a therapeutic perspective, the acetylcholine (ACh)
esterase inhibitor donepezil was found to restore APP
metabolism [145] and alter APP ratios in AD patients
[40]. At the same time, statin-lowered cholesterol levels
inversely correlated with increased APP ratios [158], in-
dicating great potential of the APP isoform ratio or the
115 kDa fragment as a prognostic and surrogate marker
for medication efficacy.
Since several smaller isoforms are produced from

130 kDa APP upon platelet activation [161], it can be
possible that APP ratios in AD are due to altered platelet
reactivity. This might have an important influence on
APP biomarker studies as platelets are easily activated
during sample collection. On top of that, anticoagulants
strongly affect platelet activation and degranulation, as
demonstrated previously [28]. Great care is therefore es-
sential to avoid activation during venipuncture, blood
collection, and platelet isolation. CTAD blood tubes
[162] (containing citrate, theophylline, adenosine, and
dipyridamol) are most suitable, as indicated by strongly
reduced levels of plasma platelet factor 4 compared to
those measured from EDTA or citrate blood tubes [28].

Membrane fluidity and cholesterol
There are indications that low membrane cholesterol levels
have a considerable impact on the pathogenesis of AD
[163]. Cholesterol is the major lipid constituent of bio-
logical membranes and plays a key role in defining their
physical state by regulating fluidity in a concentration-

dependent manner [164]. An example was provided in a
study demonstrating that an initial decrease in cholesterol
content of total brain lipid extracts by approximately 5%
in vitro also reduced membrane fluidity, whereas further
decrease in cholesterol increased fluidity again [165].
Moreover, this study could demonstrate that addition of
Aβ1–40 to brain lipid membranes resulted in diminished
vesicle fluidity, thereby linking the amyloidogenic pathway
with altered membrane fluidity. In line are findings that
Aβ aggregates can disturb the structure of brain mem-
branes and that membranes derived from AD-affected
hippocampi had lower fluidity [166]. This together with
lower cholesterol levels in brain preparations of AD pa-
tients challenge the application of cholesterol-lowering
statins as therapeutic agents [167].
Literature on AD accompanying changes of platelet

membrane fluidity is rather inconsistent. Platelet mem-
brane cholesterol content has been found to be lower in
cognitively impaired subjects and β-secretase activity
correlated bimodally with these levels: when concentra-
tions were below 50 pmol cholesterol/μg membrane pro-
tein, the correlation was negative, above this threshold it
was positive [168]. Additionally, this study identified ele-
vated cholesterol levels in platelet membranes of statin-
treated versus untreated subjects. Another study has
detected reduced fluidity in platelet membranes from
AD patients; this effect was even more pronounced in
males [45]. Similarly, lower fluidity has been detected in
membranes of sub-mitochondrial particles of AD plate-
lets [66]. On the other hand, only insignificant differ-
ences in this parameter between LOAD patients and
controls have been reported [169]. Despite a weak cor-
relation with the 130 kDa/110 kDa APP ratio, platelet
membrane fluidity differed only minimally between AD,
MCI, and controls [37]. Others have even reported re-
sults pointing to the opposite direction: elevated fluidity
in AD platelet membranes [64,170,171] and intracellular
membranes [172]. This inconsistency on the relationship
of Aβ, cholesterol, and AD has been reviewed with the
outcome that more data are needed before a definitive
conclusion can be drawn on the connection of mem-
brane fluidity and AD pathogenesis [173]. Since AD is
an age-related disease, it needs to be emphasised that
membrane fluidity is also reduced during ageing, a de-
cline less pronounced in centenarians [174].
Na+/K+-ATPase is another indicator of membrane

functionality as the physicochemical properties of the
microenvironment have great influence on the activity of
this integral membrane protein. The activity of this
sodium-potassium pump has been found to be reduced
in platelets of AD patients [44]. In agreement are results
of significantly diminished levels of both Na+/K+-ATPase
enzymatic activity and protein expression in AD brains
[175]. A further study compared its activity in platelets
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from male and female AD patients as well as control
subjects. While enzyme activity was generally higher in
females, an AD-related decrease persisted within both
gender groups [45]. In summary, these results indicate
that Na+/K+-ATPase activity could be a promising
candidate in AD diagnosis with a high ES of −6
(Table 1).

Phospholipase A2
Another enzyme family involved in membrane physiology
are the phospholipases A2 (PLA2, EC 3.1.1.4) which play
an important role especially in lipid metabolism. Catalys-
ing the hydrolysis of membrane glycerophospholipid
ester bonds, free fatty acids (e.g. arachidonic acid) and
lysophospholipids are generated [176,177]. Their exact
role in neurodegeneration is still to be explored as earlier
data showed ambiguity regarding the consequences of al-
tered PLA2 activity. On the one hand, studies have indi-
cated that increased PLA2 activity alters membrane
integrity which (especially via Ca2+-induced lipolysis) ul-
timately leads to cell structure disruption and thus to neu-
rodegeneration [178]. On the other hand, in animal
experiments inhibition of PLA2 impaired learning and
spatial memory, similar signs occurring in the earliest
phases of AD [179]. Additionally, PLA2 inhibition led to
reduced fatty acyl chain flexibility, linking PLA2 with AD
via altered membrane fluidity [180]. In line, membrane
phospholipid metabolism has been described to be re-
duced in the prefrontal cortex of mildly and moderately
demented AD patients [181]. These findings of PLA2-
dependent reduction in membrane hydrophobic core flu-
idity correspond with the recent observation of dimin-
ished membrane fluidity in platelets of AD patients [45].
Moreover, PLA2 activity was significantly reduced in par-
ietal and frontal cortices of AD patients; this enzyme defi-
ciency could be connected with earlier onset and severity
of the disease, as well as a worse outcome [182]. A further
hint of a link between PLA2 and AD was provided by dif-
ferentially processed and secreted APP after inhibition or
activation of PLA2 [183]. An increase in both sAPPα se-
cretion and membrane fluidity, as well as a decrease in
Aβ1–42 levels was detected when neuronal cells were ex-
posed to sPLA2 [184].
The search for peripheral surrogates of cerebral

changes in AD encouraged several groups to investigate
PLA2 activity in platelet membranes. In 1996, a study
demonstrated significant reduction in enzymatic PLA2
activity in platelets of AD patients [67]. In a subsequent
publication, this group reported a correlation of lower
platelet PLA2 activity in MCI and AD patients with se-
verity of cognitive decline. Accordingly, MCI individuals
had mean PLA2 activity levels between those of AD pa-
tients and controls [68]. After a one-month long cogni-
tive training period, platelet PLA2 activity increased in

healthy elderly subjects [185]. In contrast stands a sig-
nificantly increased activity of PLA2 in platelets of AD
patients reported by another team [69]. They assumed
that the differences of these results may be due to differ-
ent severity of the disease since their AD patients were
at an earlier stage. Finally, a 4-year follow-up study of
MCI subjects detected that patients with a low baseline
platelet PLA2 activity had a higher risk of progressing to
AD, suggesting that low platelet PLA2 activity may be
an AD risk marker in such patients [70]. As indicated in
Table 1, only few data sets originating from different
publications are available. Together with the low sample
numbers and inconsistent ES, we would not recommend
PLA2 as trustworthy AD platelet biomarker until other
researchers confirm a reduced platelet PLA2 expression
in AD and MCI patients.

Tau
A second hallmark of AD is represented by intracellular
NFT that consist of hyperphosphorylated tau protein
[186,187]. Tau is mostly found in axons where it attaches
to and stabilizes microtubules, crucial for anterograde
and retrograde axonal transport. Hyperphosphorylation
of tau causes it to dissociate from microtubules, thereby
greatly reducing their stability and ultimately leading to
cell death. Free hyperphosphorylated tau tends to aggre-
gate into helical filaments which result in formation of
the aforementioned NFT [188,189].
Apart from hyperphosphorylation, aberrations in tau

splicing are further regulations directly causing neurode-
generative diseases [190]. High molecular weight tau
protein (130 kDa) was detected in tangles of AD brains
already in 1992 [191]. Several years later, a 110 kDa tau
variant was also found in peripheral tissues such as hu-
man oral epithelium [192] and rat muscle [193]. Expres-
sion of tau protein in human platelets has been reported
[56] together with an elevated ratio of high molecular
weight (>80 kDa) oligomeric isoform variants to mono-
meric tau in AD patients [24]. In a follow-up study, this
group identified tau modifications also in healthy sub-
jects, without any age dependency. Nevertheless, the
above described ratio seemed to correlate with the cog-
nitive status of AD patients [27]. Other studies analysed
platelet tau quantities in AD patients and control sub-
jects but could not detect any disease-specific differences
[25,56]. However, C-terminal end tau protein levels of
MCI subjects were significantly different from normal
ones. Additionally, they detected elevated total tau levels
in older AD patients as compared to both younger AD
patients and healthy controls, concluding that tau might
be a diagnostic marker for the detection of the onset of
the disease [25]. Together, results on platelet tau as AD
biomarker are sparse, unsettled, and originate from two
research groups only. Thus, interpretation should be
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done with great care and more data are required to de-
fine its diagnostic value, ideally by conducting clinical
studies.

Glycogen synthase kinase 3β
One of the most important tau kinases in neurons is
glycogen synthase kinase 3β (GSK3β) which is suspected
to play a central role in AD [194]. Its activity has been
found to be increased in specific regions of the AD brain
[195-197], thereby promoting hyperphosphorylation of
tau and formation of NFTs. Normally, GSK3β is consti-
tutively expressed in all cells and primarily inhibited via
phosphorylation of serine-9 [198]. Lithium can increase
GSK3β phosphorylation indirectly [199], thereby redu-
cing its tau hyperphosphorylation activity and stabilising
cognitive ability in AD patients [200]. Comparison of the
ratio of Ser-9-phosphorylated GSK3β versus total GSK3β
in platelets of AD patients and controls revealed a sig-
nificant reduction in AD and MCI samples, indicating
seriously enhanced enzyme activity [54]. This ratio cor-
related with cognitive scores and might therefore repre-
sent an interesting diagnostic target in platelets.
Nevertheless, these findings need to be reproduced by
others before the diagnostic value can be defined.

Conclusion
Due to increased ageing of the world population and
concomitantly elevated prevalence of AD, a vast number
of publications have been produced during the last de-
cades, deepening our understanding about AD and ac-
companying molecular changes. Nevertheless, to date
there is no alternative for diagnosis of definite AD than
postmortem brain autopsy. However, findings that blood
platelets could serve as a source of efficient biomarkers
to assist early AD detection are promising.
Here, we compiled AD platelet biomarker candidates

with available information to calculate their Hedge ES as
a measure for comparability in a tabular form (Table 1).
AD-related alterations (and standard deviations) of vari-
ous molecules and physicochemical platelet changes
from different studies are quite heterogeneous and data
therefore difficult to compare. In order to offer a more
standardised factor, the Hedge ES is provided as useful
tool to determine the separating power of a given bio-
marker. It is interesting to observe that highest ES were
calculated for potential biomarkers that are indicators of
either oxidative stress or membrane integrity. This sup-
ports the idea that inflammation and oxidative stress
play crucial roles in the pathogenesis of AD. The quite
large ES of sub-mitochondrial platelet membrane fluidity
implies that these structures become extremely sensitive
to oxidative stress and may be involved in initiating dis-
ease progression. At the same time, it is important to
note that ROS production is considered to be a function

of ageing, which in turn is the most significant risk fac-
tor of LOAD. However, the large effect sizes of NO me-
tabolism and membrane fluidity together with changed
Na+/K + −ATPase activity have only been shown by one
laboratory so far [44] and need to be validated by other
research facilities.
Conflicting data on some potential AD biomarkers are

highlighted by inconsistent ES calculated for e.g. platelet
membrane fluidity and serotonin concentration (Table 1).
These contradictions are perhaps due to difficulties ana-
lysts face when examining heterogeneous and hard-to-
identify target populations such as suspected AD pa-
tients and their appropriate controls. Furthermore, it is
crucial to avoid activation in the case of platelets, thus
the choice of both the anticoagulant and the protein ex-
traction method can modify the outcome of any blood-
based study. Complications also arise from the lack of
standardised sample collection and isolation methods,
which have a dramatic impact on the results. These lat-
ter shortcomings are not restricted to platelets either but
generally apply to biomarker studies in all media, e.g.
CSF or plasma, which have similar drawbacks. Accord-
ingly, some of the less obvious candidates like mem-
brane fluidity have been found to be both increased
[170] and decreased [44] in AD patients. On the other
hand, some of the molecular marker candidates indeed
showed great reliability, such as decreased APP isoform
ratio and APP-processing proteases ADAM10 and
BACE1. Elevated levels of multimer tau, the second hall-
mark of AD, have been reported, though available data
are limited to two publications from the same group
[24,27] and a contradictory report from another [25].
Mao-B, a further highly promising candidate, has uni-
formly been found to be up-regulated with quite stable
ES, at least when the substrate phenethylamine was
used. We suggest that Mao-B and APP isoform ratios
are currently the two top AD biomarker candidates in
platelets due to consistent results from several different
groups.
Finally, we can conclude that platelets represent a

promising peripheral surrogate to detect AD-related mo-
lecular changes and provide crucial data necessary for
taking the next step towards development of a diagnostic
and/or therapy-predictive tool for AD. However, as none
of the individual markers described is powerful enough
to meet the required levels of sensitivity and specificity
for routine AD diagnosis [201], it may be useful to ex-
ploit several of these biomarker candidates contempor-
aneously. It remains to be seen whether a combination
would be robust enough to expose molecular changes
occurring at the early phase of AD so as to distinguish
between healthy and affected individuals. Future work
into AD platelet biomarkers might shift the focus to-
wards a proteomic approach in order to identify the best

Veitinger et al. Acta Neuropathologica Communications 2014, 2:65 Page 10 of 15
http://www.actaneurocomms.org/content/2/1/65



combination of biomarkers with the intention of design-
ing diagnostic multiplex devices.
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