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Abstract: IEEE Time-Sensitive Networking (TSN) Task Group specifies a series of standards such as
802.1Qbv for enhancing the management of time-critical flows in real-time networks. Under the IEEE
802.1Qbv standard, the scheduling algorithm is employed to determine the time when a specific gate in
the network entities is opened or closed so that the real-time requirements for the flows are guaranteed.
The computation time of this scheduling algorithm is critical for the system where dynamic network
configurations and settings are required. In addition, the network routing where the paths of the
flows are determined has a significant impact on the computation time of the network scheduling.
This paper presents a novel scheduling-aware routing algorithm to minimize the computation time
of the scheduling algorithm in network management. The proposed routing algorithm determines
the path for each time-triggered flow by including the consideration of the period of the flow.
This decreases the occurrence of path-conflict during the stage of network scheduling. The detailed
outline of the proposed algorithm is presented in this paper. The experimental results show that the
proposed routing algorithm reduces the computation time of network scheduling by up to 30% and
improves the schedulability of time-triggered flows is the network.

Keywords: IEEE 802.1Qbv; time-sensitive networking; time-triggered flow; scheduling; routing;
computation time; schedulability

1. Introduction

In industrial environments, time-critical tasks such as real-time monitoring and periodic flows of
control applications need to be transmitted, processed and responded in a time-guaranteed manner [1,2].
From the perspective of network transmissions, the delay of these time-critical flows needs to be
confined within a pre-determined bound; otherwise, catastrophic consequences such as the loss
of important messages or the damages of production facilities could take place [3,4]. As a result,
proprietary extensions of ethernet have been studied [5,6] for the improvement of real-time responses
in the network transmission. In addition, the IEEE Time-Sensitive Networking (TSN) task group strives
for the standardized enhancements of the deterministic real-time networks [6,7]. For example, the IEEE
802.1Qbv standard specifies the enhancements of real-time responses for the time-triggered flows [8,9].
A novel traffic shaper, known as the time-aware shaper (TAS), is proposed in the 802.1Qbv standard
so that the frames of the time-triggered flows are transported with an accurate clock-synchronized
mechanism like IEEE 1588 and IEEE 802.1. To realize the accurately synchronized transmission,
time-controlled gates are implemented in the transport ports of the switches or routers for the IEEE
802.1Qbv standard [8,9]. These time-controlled gates need be opened or closed at a scheduled time
that is precisely synchronized with the clock. The flow is transmitted when the corresponding gate
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is opened and is stored in the egress queue waiting to be served when the gate is closed. In such
circumstances, a scheduling algorithm is essential to calculate the timing when any specific gate should
be opened or closed. The design of this scheduling algorithm has gained significant attention and
interest in literature [9–13].

Considering the design of the scheduling algorithm for IEEE 802.1Qbv, it is important to achieve
fine-grained scheduling [9] so that the flows are transmitted in a timely manner. On the other hand,
the computation time of the scheduling algorithm is also critical especially for the scenarios such
as the industry 4.0 concept [14–18] where the dynamic configurations are required and the network
settings may change frequently [15–19]. Furthermore, it has been shown in the literature [6,11,13,20]
that a scheduling-aware routing scheme which determines the path for each flow while simultaneously
considering the scheduling for that flow effectively reduces the computation time of scheduling.
In addition, these scheduling-aware routing mechanisms also improve the schedulability, that is,
minimize the occurrences where the scheduling algorithm fails to find any acceptable timing schedule.
For instance, a routing algorithm based on the K-Shortest Path (KSP) approach [19] is proposed in [6]
where the least used routes are selected for the flows. Furthermore, it is shown in [11] that scheduling
each time-triggered flow with all available routes improves the schedulability of the scheduling
algorithm. Moreover, the work in [13] improves the schedulability by avoiding bottleneck links and
striking a balance between the loading of the path and the transmission delay. In addition, the routing
algorithm is proposed in [20] aiming to avoid the congestion of the links.

In the context of IEEE 802.1Qbv standard, this paper presents a novel scheduling-aware routing
algorithm to reduce the computation time in the network scheduling and improve the schedulability of
the time-triggered flows. This algorithm calculates the route for each time-triggered flow by including
the consideration of the periods of the flows. Furthermore, the proposed routing algorithm designs the
weight for each link edge to improve the schedulability of time-triggered flows. Analytical, as well as
experimental results show that the computation time for scheduling is reduced by up to 30% due to the
application of the proposed routing algorithm. Moreover, the schedulability of flows is significantly
improved compared to the shortest path routing algorithm. The rest of this paper is organized as
follows. Section 2 introduces the background and related work. Section 3 introduces the basic concepts
and the details of the proposed routing algorithm. Section 4 introduces the experiment results and
comparisons with prior arts. Finally, this paper is concluded in Section 5.

2. Background and Related Work

The IEEE Time-Sensitive Networking (TSN) 802.1Qbv standard specifies the real-time responses
for the time-triggered flows [5–9]. In 802.1Qbv standard the network planning is comprised of two
stages, namely routing and scheduling. Specifically, the transmission path of each time-triggered
flow is determined in the routing stage by using a certain routing scheme such as the shortest path
routing approach [19]. Furthermore, in the subsequent scheduling stage, the scheduling algorithm is
performed to decide on the timing schedule for the openness and closeness of the time-controlled gates
in the TSN switches along the pre-determined paths [5,9,10]. In addition, for the network planning
in 802.1Qbv, the computation time of the scheduling is essential for the scenarios where dynamic
configurations are required and the network settings may change frequently [15–18]. In particular,
once the network environment or configuration changes, the scheduling algorithm needs to be executed
again to determine the new timing schedules based on the new settings. As a result, an excessive amount
of scheduling time results in a delay in the deployment of the network. Even worse, the scheduling
algorithm could fail so that no available timing schedules for specified paths can found. This is known
as the schedulability issue for the scheduling of the network.

In a typical network planning for the 802.1Qbv, routing and scheduling stages are conducted
subsequently and independently. However, it is recently shown [6,11,13,20] that the outcome of
the routing stage has an impact on the effectiveness in the scheduling stage, especially for the
computational time and schedulability. For example, a routing algorithm based on the K-Shortest Path



Sensors 2020, 20, 6400 3 of 15

(KSP) approach [19] is proposed in [6] where the least used routes are selected for the flows. As a result,
the delay of flow in the worst-case scenario is decreased and the schedulability of flows is improved.
Furthermore, it is shown in [11] that to schedule each time-triggered flow with all available routes
improves the schedulability of the scheduling algorithm. Moreover, the work presented in [13] aims to
minimize the bottleneck link since it is the cause of the infeasible scheduling of the flow. In addition,
the routing of the time-triggered flow with the consideration of load balance as well as the hop counts
is employed in [13]. Finally, the algorithm reported in [20] avoids the congestions by considering the
load balancing of the flows.

Nevertheless, while aiming for the improvement of the scheduling results, how routing approaches
lead to the reduction of the computation time in scheduling has not yet been thoroughly investigated.
In this work, we aim to design a novel scheduling-aware routing algorithm so that the computation
time of the scheduling is reduced and the schedulability of the time-triggered flows is enhanced in the
context of IEEE 802.1Qbv standard.

3. The Concept of the Proposed Algorithm

3.1. The Hyperperiod and the Scheduling of Time-Critical Flows

When more than one time-critical flows are passing through one edge in the network, the scheduling
algorithm must assure that the transmission time for these flows are not overlapped for avoiding
the time-conflict on that edge [10]. This can be achieved based on the procedure shown as follows.
Firstly, the least common multiple (LCM) for the periods of each flow pair, i.e., the hyperperiod of
two flows, on the same edge is computed. Furthermore, the sending time of two different flows are
examined to see if there are any conflicts up to the LCM in the time domain on the edge. If no conflict
occurs, those two flows will not overlap on that edge in the future since the sending time of these two
flows repeats after the LCM. As a result, if two flows of each flow pair do not overlap on the edge up
to each LCM, the scheduling for that edge is declared as conflict-free and is feasible.

Figure 1 illustrates an example with three flows where each flow is comprised of one frame. In this
example, the periods of flow F1, F2 and F3 are 15, 30 and 30 ms, respectively and the transmission
durations of flow F1, F2 and F3 are 10, 5 and 5 ms respectively. For the flow pair of F1 and F2,
the hyperperiod is 30 ms, and F1 is sent two times whereas F2 is sent one time before the 30 ms.
Therefore, the scheduling algorithm needs to check two times for conflict-free scheduling, i.e., two F1
cannot overlap with F2 until the 30 ms. Similarly, for the flow pair of F1 and F3, the scheduling
algorithm needs to check two times for conflict-free scheduling while for the flow pair of F2 and
F3, the scheduling algorithm needs to check one time for conflict-free scheduling. According to this
example, it can be observed that the hyperperiod of flows on a specific edge has an effect on the number
of times for checking if the conflict occurs on the edge. Specifically, it can be seen from this example
that the number of times for checking the conflict for one edge increases with the hyperperiods of
the flows.

Figure 1. The example of the conflict-free edge.

3.2. The Concept of the Proposed Routing Scheme

It can be seen from Section 3.1 that time-critical flows with higher hyperperiods lead to higher
computation times for scheduling as more numbers of checking is needed [10]. Thus, it can be
argued that the computation time for scheduling can be decreased if the time-critical flows with small
hyperperiods are routed on the same edges as much as possible. This can be illustrated by using
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an example shown in Figure 2 where a network with 4 switches, 4 hosts, and 3 flows is assumed.
Furthermore, the periods of flows F1, F2 and F3 are 20, 30 and 10 ms respectively, whereas the
hyperperiod of F1 and F3 is 20 ms and that of F2 and F3 is 30 ms. Moreover, in this example, we assume
two routing schemes for the flow F3 shown in Figure 2a,b, respectively, wherein Figure 2a the route for
F3 includes edges [H2, S1], [S1, S2], [S2, S4], and [S4, H3] whereas in Figure 2b the route for F3 contains
edges [H2, S1], [S1, S3], [S3, S4], and [S4, H3]. The sending time of two different flows are checked
up to the LCM on the edge in the time domain for conflict-free scheduling. For the scheme shown in
Figure 2a, F1 and F3 on the edge [S1, S2] and the edge [S2, S4] are checked by two times, while for the
scheme of Figure 2b, F2 and the F3 on the edge [S1, S3] and the edge [S3, S4] are checked by three times.
Therefore, the number of times for the checking and the computation time in scheduling is smaller for
the scheme of Figure 2a than that for Figure 2b.

Figure 2. The example of two different routing schemes shown in (a) and (b) respectively.

A practical experiment is conducted to highlight the differences in scheduling computation time
based on different routing schemes. This experiment is based on a ring topology consisting of 4 switches
and 4 hosts as shown in Figure 3. Furthermore, the settings for the experiment are summarized in
Table 1 where it can be seen that the hyperperiod of the flow F3 and F4 is smaller than that of F2 and F3.
In this experiment, the optimization objective of the scheduling algorithm is to minimize the overall
latency for all flows with two different routing schemes assumed in Figure 3a,b, respectively. It is
noted that the difference between the two routing schemes lies in the path of flow F4. Our experiment
results show that the routing scheme of Figure 3a leads to a computation time of 25.7 s for scheduling
whereas that of Figure 3b leads to the computation time of 15.8 s. The reduction of computation time
in the scheme of Figure 3b is because the flow F4 passes through the edge [S1, S3] instead of [S1, S2]
and results in a reduced occurrence of the overlap. Therefore, these two examples show that routing
flows with a small hyperperiod by using the same edges can effectively save the computation time
for scheduling.

Figure 3. The practical experiment of the example of two different routing schemes shown in (a) and
(b) respectively.
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Table 1. The settings of the flows for the routing examples in Figure 3.

Flow Source Destination Latency (µs) Size (bits) Period (µs)

F1 Host 1 Host 2 100 480 × 3 2500
F2 Host 1 Host 4 100 480 × 3 5000
F3 Host 1 Host 3 100 480 × 3 3300

4. The Flow of the Proposed Routing Algorithm

This section presents the detailed procedure of the proposed routing algorithm that is aiming
for reducing the computation time for scheduling and improving the schedulability of the flows.
Specifically, as can be seen from the exemplary investigations in Section 3.2, the main objective of the
proposed routing algorithm is to route the flows with a small hyperperiod by using the same edges as
much as possible. The proposed routing algorithm is comprised of two stages, namely sorting and
routing. In the sorting stage, the flows are sorted with the periods and the ordered sequence for routing
the flow is determined. In the following routing stage, a modified Dijkstra algorithm is proposed to
compute the path for each flow according to the order that is determined in the sorting stage. In this
section, we first define the notations and metrics used in the algorithm, followed by the detailed flow
of the algorithm.

4.1. Definition of Notations and Metrics in the Algorithm

In this work, the topology is modeled as directed graph G(N, E) where the set N consists of nodes
like switches and end-users and the set E consists of edges between the two nodes. Furthermore,
the edge between the node a and b is notated as [na, nb]. In particular, flows are period unicast data
transmissions from a source node to a destination node, and each flow fi is a member of the set of
flows F. The period of a flow is denoted as fi.T. The hyperperiod of flows fi and f j on the edge [na, nb]

is noted as hp j
i and is computed by the least common multiple (LCM) of periods of the flows as shown

in Equation (1).

hp j
i = lcm

(
f [na,nb]
i .T, f [na,nb]

j .T
)

(1)

Moreover, parameters α and β are defined to represent the number of times the flows fi and f j

pass through the edge [na, nb] up to the time of hyperperiod hp j
i . These two parameters are computed

according to each flow pair ( f [na,nb]
i , f [na,nb]

j ) on each edge [na, nb] as expressed in Equation (2).

α =
hp j

i

f [na,nb]
i .T

, β =
hp j

i

f [na,nb]
j .T

, ∀[na, nb] ∈ E,∀ f [na,nb]
i , f [na,nb]

j ∈ F, i , j (2)

In addition, an edge weight e[na,nb].weight on the edge [na, nb] is defined to represent the number
of times to examine the scenario if flows do not overlap on the edge up to the hyperperiod on the
time domain. Specifically, each flow pair is examined by α × β times on the edge up to the time of
hyperperiod for a conflict-free schedule. As a result, the edge weight can be computed by using
Equation (3).

e[na,nb].weight =


0, if there is no flow on e[na,nb]

LCM
(

f
[na ,nb ]
i .T,1

)
f
[na ,nb ]
i .T

= 1, if there is a flow on e[na,nb]∑
α× β, if there are multiple flow on e[na,nb]

(3)

It is shown in Equation (3) that since α and β are determined by each flow pair, the edge weight
is equal to the summation of the product of α and β if there are multiple flow pairs on the edge.
Furthermore, if there is only one flow on the edge the edge weight is equal to one, which is a benefit
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for improving the schedulability of flows avoiding bottleneck edges. On the other hand, if the first
flow is routed and the weight of each edge along the route contains a non-zero value, the second flow
would be routed using edges where the weights are zero.

4.2. The Concept of the Proposed Routing Scheme

Figure 4 presents the overall procedure of the proposed algorithm which is comprised of a Sorting
stage and a Routing stage. In particular, the flowchart of the proposed algorithm is shown in Figure 4
and the pseudocode is further provided in Algorithm 1. In the Sorting stage, the flows are sorted
with the periods where the flow with the smallest period would be routed first in the Routing stage.
The procedure of the Routing stage and the pseudocode of the algorithm are also presented in Figure 4
and Algorithm 1. At the beginning of the Routing stage, the weight of each edge is initialized to zero.
In the following, the flow with the smallest period is selected and the shortest path is computed for
the selected flow. It is noted that the search area is gradually expanded in the proposed algorithm.
In other words, the candidate routes are updated only when another route containing a smaller cost
compared to the current route can be found. Furthermore, when routing the first flow, the weight of
each available route is zero since the weight of each edge is initialized to be zero. As a result, the first
candidate route will not be updated by other routes and the route of the first flow is not only the
minimum cost route but also the shortest route. Furthermore, the weight of each edge along the route
of the first flow is updated according to Equation (3) and the overall edge weight is updated as the
summation of the weight of all edges. The nodes which are visited by the first flow are also updated.

Figure 4. The overall procedure and the procedure for the Routing stage of the proposed algorithm.
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Algorithm 1: Proposed Routing Algorithm

Input: G(N,E) and F
Output: Routes
1. Sort TT flows with periods.
2. Initialize the weight of each edge.
3. repeat

4. Choose flow with the smallest period.
5. if First flow then

6. Compute the shortest path of the flow.
7. else

8. Route the flow with visited nodes, the source node, and the destination node.
9. if Existing paths to destination then

10. Compute the rising ratio.
11. if Rising ratio >= threshold then

12. Compute the minimum-cost path with all nodes.
13. else

14. Compute the minimum-cost path with all nodes.
15. Update weights and visited nodes.

16. until There is no unrouted TT flow;

The remaining flows will be routed subsequently after the route for the first flow is determined.
It is shown in the flow chart of Figure 4 and the pseudocode of Algorithm 1 that each flow is routed with
the visited nodes (i.e., the nodes that have been visited by previous flows), the source node, and the
destination node as shown in the block of (A) in Figure 4. In other words, the flow is routed with a part
of nodes in the topology and this step attempts to make flows with small hyperperiod pass through
the visited nodes. Furthermore, this step results in a scenario where the unvisited nodes can be used
for routing the flow which would have a period with prime for the purpose of avoiding a dramatically
increased edge weight. As a result, this step of routing flows with visited nodes, the source node,
and the destination node leads to a reduced computation time in scheduling. In the following step
of block (B) shown in Figure 4, a rising ratio is computed if there is an available route for a flow.
This rising ratio is defined in Equation (4) to represent the impact of overall edge weight caused by the
flow routed in the iteration.

rising ratio =
new overall edge weight − old overall edge weight

old overall edge weight
× 100% (4)

It can be seen from Equation (4) that a high rising ratio shows that the route of the flow significantly
increases overall edge weight. Since the edge weight represents the number of examinations for the
scenario if flows do not overlap on the edge up to the hyperperiod time, a high rising ratio caused
by the flow also indicates an increased complexity and computation time in scheduling. As a result,
the route with a high rising ratio needs to be avoided for reducing the computation time in scheduling.

In addition, in the following step of (C) in Figure 4, a rerouting condition is checked to determine
if the flow needs to be rerouted to avoid a route resulting in the dramatic increment in the edge weight.
To be specific, the flow will be rerouted if the rising ratio is higher than or equal to a pre-defined
threshold that is between 0% and 100%. The proper value of the threshold will be further discussed in
Section 5.1. It is noted that according to Equation (3), the edge weight is determined by the summation
of the product of α and β if multiple flows pass through the edge. Furthermore, the values of α and
β are affected by the hyperperiod of flows on the edge. In step (D) shown in Figure 4, the flow is
rerouted if there is no available path from the source to the destination via visited nodes or the rising
ratio is greater higher or equal to the threshold. In this case, the flow is rerouted using all nodes in
the network. Moreover, since nodes that are reserved in step (A) can be used to route the flow with
dramatically increased edge weight, the minimum cost path of the flow is computed. The weight of
each edge, the overall edge weight, and the visited nodes are updated according to the computed route.
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In particular, the weight of the edge where multiple flows pass through is computed using the variable
α and the variable β, as shown in Equations (1)–(3). The flow with the smallest period will be routed
and finally, this algorithm terminates after all flows are routed.

Based on the pseudocode presented in Algorithm 1, the complexity of the proposed routing
algorithm can be evaluated. Specifically, it can be observed from Algorithm 1 that each flow is routed by
using the Dijkstra algorithm [21,22] with edge weight in the proposed routing algorithm. Furthermore,
if the route though visited nodes are not assigned to a flow or the rising ratio is larger than the threshold,
the flow will be rerouted. Considering that all flows need to be routed and certain flows could be
rerouted, also with the complexity of the Dijkstra algorithm being O(V2), the complexity of the proposed
algorithm is O(2n × V2) where n is the number of flows and V represents the number of nodes.

4.3. An Example of the Proposed Algorithm

An example is given to illustrate the operation of the proposed algorithm. This example considers
four flows in a mesh network containing nine switches, six hosts, and thirty-six edges, whereas the
information of each flow is summarized in Table 2. The path of each flow computed by the proposed
algorithm is illustrated in Figure 5. To be specific, the initial condition where no flow is routed is shown
in Figure 5a. Furthermore, since the order for routing each flow is according to the period of each flow,
the flow F1 will be routed first. Thus, the shortest path for F1 is computed and the routing results
including the weight of edges, the overall edge weight, and visited nodes along the path are updated
as shown in Figure 5b. Moreover, since the F2 cannot be routed with the visited nodes, the source node,
and destination node due to that fact that S1 is not visited by any previous flows, the F2 is rerouted
with all nodes in the network and the routing results are updated as shown in Figure 5c.

Table 2. The information of each flow in the example of Section 4.3.

Flow Source Destination Period (ms)

F1 Host 3 Host 5 2
F2 Host 2 Host 6 4
F3 Host 1 Host 4 8
F4 Host 3 Host 6 9

Figure 5. The example that illustrates the operation of the proposed algorithm. (a) The mesh topology
with 9 switches and 6 hosts. (b) The shortest path of the flow F1. (c) The path with the minimum cost of
the flow F2. (d) The result of routing the flow F3 with visited nodes, source node, and the destination
node. (e) The result of updating the weight of each edge along the path of flow F3. (f) The result of
routing the flow F4 with visited nodes, the source node, and the destination node. (g) The result of
computing the weight of each edge where the flow F4 passes through. (h) The result of rerouting the
flow F4 with all nodes in the topology.
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The flow F3 is then routed with the visited nodes, source node, and destination node, as shown in
Figure 5d. The rising ratio is then computed by the algorithm which is smaller than the pre-defined
threshold (set to be 50% in this example) as shown in Figure 5e. In addition, it is shown in Figure 5f that
the flow F4 is routed with the visited nodes, the source node, and the destination node. The rising ratio
is computed again and is found to be higher than the threshold, as shown in Figure 5g. Finally, it is
shown in Figure 5h that the flow F4 is rerouted with all nodes in the network. It is noted that routing
the F4 with all nodes can avoid the overall edge weight increment significantly. This is because the
proposed routing algorithm can route F4 with reserved edges. As the weight of each reserved edge
is zero, and there is no flow passing through reserved edges, the overall edge weight only increases
slightly when routing F4 through reserved edges.

Figure 6 presents the sending time of each flow on nodes along the path resulted from the proposed
routing algorithm. It can be observed from this figure that each flow passes through edges along the
path sequentially. For example, the flow F3 passes through edges [H1, S1], [S1, S2], [S2, S5], [S5, S8],
and [S8, H4] sequentially. In addition, it can be seen that the proposed routing algorithm attempts to
make the F3 pass through visited nodes such as the edges [S1, S2], [S2, S5], [S5, S8] that are also visited
by F2. In other words, the F2 is assigned to the unused time slots on the visited edges, and those
unrouted flows which would cause the dramatic increase in the edge weight can use reserved edges.
For example, the flow F4 is able to be routed with edges [S2, S1], [S1, S4], [S4, S5], [S5, S6].

Figure 6. The timelines that flow are transmitted along the routed paths for the example shown
in Figure 5.

5. Experimental Results and Analyses

This section presents the experimental results and analyses to evaluate the performance and
complexity of the proposed algorithm. We first conduct experiments to evaluate the effects of the
threshold value that is used in the proposed algorithm. Furthermore, the experiment is conducted to
verify the proposed routing algorithm for reducing the computation time in scheduling. A comparison
with the seminal shortest path algorithm [22] is also given. Moreover, the experimental results showing
that the proposed algorithm improves the schedulability is presented in this section. It is noted that the
scheduling algorithm used in our experiments is based on the approach shown in [10] with additional
frame constraints which introduce extra limits. These limits request that frames of a frame offset.
The flow isolation is also considered in our experiment and the order of the last pair of flow isolation is
the same as one of the link constraints. The lower bound of the queue assignment is greater than or
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equal to zero. All our experiments are conducted based on a 64 bit 4-core 3.40 GHz Intel Core-i7 PC
with 16 GB memory in Windows 10 and Z3 v4.6.0-1 [23] is used as the underlying solver.

5.1. The Evaluation of the Threshold Values

Experiments are conducted to evaluate the impacts of the threshold value to the proposed
algorithm from the perspectives of offset variables, the computation time for routing and scheduling,
the overall edge weight. Our experiments are based on the network topology Orion [6] consisting of 31
end systems and 15 switches. The size for each flow is configured between 1 and 8 times MTU, whereas
the period sets are {10, 20 ms}, {5, 10, 210, 500 ms}, and {2500, 3300, 5000, 6600 µs}. These configurations
of flow sizes and period sets are referred to [10]. The source node and the destination node of each
flow are determined randomly and the scheduling optimization options are latency minimization,
queue usage minimization, and no optimization. Furthermore, as the hyperperiod of flows affects the
computation time in scheduling [10], we conduct the threshold experiment with complex period sets to
observe the effect of the large hyperperiod on the proper selection of the threshold. Figure 7 presents
frame offsets of a flow (i.e., the sending time of frames on each node along the route of the flow) with
different thresholds and different numbers of flows. Specifically, a higher offset value indicates a longer
route of the flow. It can be observed from Figure 7 that the offset value increases significantly with an
increased number of flows, whereas the value of the threshold does not have a significant impact on
the offsets.Sensors 2020, 20, x FOR PEER REVIEW 11 of 16 
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Furthermore, the average computation time in routing with different thresholds and different
numbers of flows is shown in Figure 8. It can be observed in Figure 8 that the computation time of
routing drastically increases if the threshold becomes too low. This is because the threshold value
basically determines if a flow should be re-routed and thus a lower threshold leads to more re-routing
and increases the computation time. On the other hand, it is shown in Figure 8 that the computation
time of routing increases along with the number of flows at any given threshold value. Moreover,
the average computation time in scheduling with different thresholds and different numbers of flows is
presented in Figure 9. It is shown in Figure 9 that the computation time in scheduling is generally lower
when the threshold is smaller than 20%. Based on the experimental results illustrated in Figures 8 and 9,
a trade-off between the computation time in scheduling and routing can be witnessed. Therefore,
considering the overall computation time including both scheduling and routing, the threshold value
of 10% could be a proper selection. In addition, the overall edge weights with different thresholds and
different numbers of flows are presented in Figure 10. It can be seen that the overall edge weight with
the threshold value of 20% is greater than the other threshold values when the number of flows is 50.
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Therefore, the computation time in scheduling is higher than the others when the threshold is equal to
20% with 50 flows as suggested in Figure 9.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 16 

 

 
Figure 7. The frame offsets with thresholds and different numbers of flows. 

Furthermore, the average computation time in routing with different thresholds and different 
numbers of flows is shown in Figure 8. It can be observed in Figure 8 that the computation time of 
routing drastically increases if the threshold becomes too low. This is because the threshold value 
basically determines if a flow should be re-routed and thus a lower threshold leads to more re-routing 
and increases the computation time. On the other hand, it is shown in Figure 8 that the computation 
time of routing increases along with the number of flows at any given threshold value. Moreover, the 
average computation time in scheduling with different thresholds and different numbers of flows is 
presented in Figure 9. It is shown in Figure 9 that the computation time in scheduling is generally lower 
when the threshold is smaller than 20%. Based on the experimental results illustrated in Figures 8 and 9, 
a trade-off between the computation time in scheduling and routing can be witnessed. Therefore, 
considering the overall computation time including both scheduling and routing, the threshold value 
of 10% could be a proper selection. In addition, the overall edge weights with different thresholds 
and different numbers of flows are presented in Figure 10. It can be seen that the overall edge weight 
with the threshold value of 20% is greater than the other threshold values when the number of flows 
is 50. Therefore, the computation time in scheduling is higher than the others when the threshold is 
equal to 20% with 50 flows as suggested in Figure 9. 

 
Figure 8. The computation time in routing with thresholds and numbers of flows. Figure 8. The computation time in routing with thresholds and numbers of flows.Sensors 2020, 20, x FOR PEER REVIEW 12 of 16 

 

 
Figure 9. The computation time in scheduling with thresholds and numbers of flows. 

 
Figure 10. The overall edge weight with thresholds and different numbers of flows. 

5.2. The Evaluation of Computation Time 

The computation time in routing and scheduling with different numbers of flows is investigated. 
The network topology, period sets, flow size, and scheduling optimization options are the same as 
the setup for evaluating the thresholds mentioned in Section 5.1. The source node and the destination 
node of each flow are determined randomly and the threshold is set to be 10%. Figure 11a shows the 
comparison of computation time between the proposed routing algorithm and the shortest path 
algorithm (SPA). It can be seen that the computation time for both algorithms increases linearly with 
the number of flows in the network. Furthermore, the computation of the proposed algorithm is 
higher than the SPA approach. Moreover, the computation time in scheduling when utilizing the 
proposed routing algorithm and the SPA routing algorithm is compared in Figure 11b. It can be seen 
that the proposed routing algorithm results in a much-reduced computation time in scheduling 
especially when the number of the flow is increased. Specifically, the proposed routing algorithm 
reduces the computation time in scheduling by 30% on average compared to the SPA scheme. 

Figure 9. The computation time in scheduling with thresholds and numbers of flows.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 16 

 

 
Figure 9. The computation time in scheduling with thresholds and numbers of flows. 

 
Figure 10. The overall edge weight with thresholds and different numbers of flows. 

5.2. The Evaluation of Computation Time 

The computation time in routing and scheduling with different numbers of flows is investigated. 
The network topology, period sets, flow size, and scheduling optimization options are the same as 
the setup for evaluating the thresholds mentioned in Section 5.1. The source node and the destination 
node of each flow are determined randomly and the threshold is set to be 10%. Figure 11a shows the 
comparison of computation time between the proposed routing algorithm and the shortest path 
algorithm (SPA). It can be seen that the computation time for both algorithms increases linearly with 
the number of flows in the network. Furthermore, the computation of the proposed algorithm is 
higher than the SPA approach. Moreover, the computation time in scheduling when utilizing the 
proposed routing algorithm and the SPA routing algorithm is compared in Figure 11b. It can be seen 
that the proposed routing algorithm results in a much-reduced computation time in scheduling 
especially when the number of the flow is increased. Specifically, the proposed routing algorithm 
reduces the computation time in scheduling by 30% on average compared to the SPA scheme. 

Figure 10. The overall edge weight with thresholds and different numbers of flows.



Sensors 2020, 20, 6400 12 of 15

5.2. The Evaluation of Computation Time

The computation time in routing and scheduling with different numbers of flows is investigated.
The network topology, period sets, flow size, and scheduling optimization options are the same as the
setup for evaluating the thresholds mentioned in Section 5.1. The source node and the destination
node of each flow are determined randomly and the threshold is set to be 10%. Figure 11a shows
the comparison of computation time between the proposed routing algorithm and the shortest path
algorithm (SPA). It can be seen that the computation time for both algorithms increases linearly with
the number of flows in the network. Furthermore, the computation of the proposed algorithm is higher
than the SPA approach. Moreover, the computation time in scheduling when utilizing the proposed
routing algorithm and the SPA routing algorithm is compared in Figure 11b. It can be seen that the
proposed routing algorithm results in a much-reduced computation time in scheduling especially
when the number of the flow is increased. Specifically, the proposed routing algorithm reduces the
computation time in scheduling by 30% on average compared to the SPA scheme.

Figure 11. Computation time in (a) Routing and (b) Scheduling.

In addition, it can be observed from Figure 11 that the proposed routing algorithm reduces the
computation time in scheduling at the cost of greater computation time in routing. To shed more
light on the overall computation time for network planning, it is essential to evaluate the computation
time by jointly considering routing and scheduling. Figure 12 compares the computation time in joint
routing and scheduling between the proposed routing algorithm and the SPA approach. In other words,
the computation time shown in Figure 12 is by adding the computation time shown in Figure 11a with
that shown in Figure 11b. It can be observed from this figure that the proposed algorithm can reduce
the overall computation time through the tested numbers of flows. Moreover, as the complexity and
computation time in scheduling increases significantly with the number of flows, the advantage of the
proposed routing algorithm enhances with a greater network.
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Figure 12. The overall computation time including routing and scheduling.

5.3. The Evaluation of Schedulability and Discussion

We also investigate the schedulability of the proposed routing algorithm. In this experiment,
the network topology is Orion and Mesh network where each consists of 12 end systems and
14 switches [6] and the threshold is set to be 10%. Furthermore, the period set is {100, 150, 200, 500 µs}
and the size of each flow is 1500 bytes. The source node and the destination node of each flow are
determined randomly. We evaluate and compare the schedulability between the proposed algorithm
and the shortest path routing algorithm (SPA) approach based on the Orion and Mesh network for
the number of flows equal to 50, 60, 70, 80, 90, and 100. The results of schedulability experiments
are summarized in Table 3. It can be seen from this table that for the Orion network the proposed
algorithm is schedulable throughout all tested numbers of flows while the SPA approach cannot be
scheduled when the number of flows is larger than 70. In other words, the schedulability for the
proposed algorithm is 100% and that for the SPA approach is approximately 33% out of the tested cases
for the Orion network. Moreover, it is observed from Table 3 that for the Mesh network the proposed
algorithm is schedulable also throughout all tested numbers of flows (i.e., 100% schedulability) while
the SPA approach cannot be scheduled when the number of flows is larger than 90 (i.e., approximately
67% schedulability). The experiment shows that the SPA results in the bottleneck edge and leads the
unschedulable result. On the contrary, the routes of flows computed by the proposed routing algorithm
in both topologies are still schedulable. This is attributed to the fact that the design of edge weight
makes flows avoid the bottleneck edge. Therefore, the schedulability can be greatly improved by the
proposed routing algorithm.

Table 3. Results of schedulability experiments.

Orion Topology Mesh Topology

Flows Proposed SPA Proposed SPA

50 Yes Yes Yes Yes
60 Yes Yes Yes Yes
70 Yes No Yes Yes
80 Yes No Yes Yes
90 Yes No Yes No

100 Yes No Yes No
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According to the experimental results shown in Sections 5.2 and 5.3 that the proposed routing
algorithm successfully reduces the computation time in scheduling and improves the schedulability.
We believe the effectiveness of the proposed algorithm mainly lies in the fact that the hyperperiod
is considered in the routing process. Specifically, it is shown in Figure 1 that the hyperperiod of the
flow determines the number of times that to be examined and thus affects the computation time.
Thus, the proposed algorithm is designed to avoid a drastic increment of an edge weight measured by
the hyperperiod and the number of examinations. As a result, the computation time of scheduling
can be minimized. On the other hand, it can be suggested that the proposed algorithm will be less
effective for the flows where the scheduling time is inherently short due to the friendlier hyperperiod.
Furthermore, the number of disjoint edge path could also affect the performance of the proposed
algorithm. In particular, a network topology with less disjoint edge path could degrade the performance
of the algorithm since it is more difficult to identify another path. In addition, the flows with the
same source and destination nodes are more challenging for the proposed routing algorithm since
overlapped edges need to be routed.

6. Conclusions

A novel scheduling-aware routing algorithm is presented in this paper aiming to reduce the
computation time of network scheduling. The proposed routing algorithm determines the path for
each time-triggered flow with the consideration of the period of the flow. The detailed outline of the
proposed algorithm is illustrated in this paper and extensive experiments evaluating the performance
and computation time of the algorithm are given. The experimental results show that, compared to the
conventional routing algorithm, the computation time for network scheduling is reduced by up to
30%, and the schedulability is significantly improved.
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