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Simple Summary: In the summer, heat stress is a main factor that causes poor performance in
broilers. Broilers are more susceptible to high temperature environments than mammals due to their
lack of sweat glands and being covered in feathers. Heat stress can alter the regulation of glycolipid
metabolism, which is manifested by unstable levels of blood glucose, insulin, total cholesterol, and
triglyceride. Heat stress also affects the structure of gut microbes and gastrointestinal peptides.
However, the relationship among microbiota, gastrointestinal peptides, glycolipid metabolism, and
production performance under heat stress is still unclear. Moreover, exploring these mechanisms
can help in the development of strategies that alleviate the negative effects of performance by heat
stress. Our results suggest that the poor production performance of broilers under heat stress
may be related to short chain fatty acids fermented by intestinal microbiota involved in regulating
metabolic disorders.

Abstract: This paper investigated the effects of heat stress on gut-microbial metabolites, gastroin-
testinal peptides, glycolipid metabolism, and performance of broilers. Thus, 132 male Arbor Acres
broilers, 28-days-old, were randomly distributed to undergo two treatments: thermoneutral control
(TC, 21 ◦C) and high temperature (HT, 31 ◦C). The results showed that the average daily gain (ADG),
average daily feed intake (ADFI), and gastric inhibitory polypeptide (GIP) concentration in the
jejunum significantly decreased the core temperature, feed conversion ratio (FCR), and ghrelin of
the hypothalamus, and cholecystokinin (CCK) in jejunum, and serum significantly increased in the
HT group (p < 0.05). Exploration of the structure of cecal microbes was accomplished by sequencing
16S rRNA genes. The sequencing results showed that the proportion of Christensenellaceae and Lach-
nospiraceae decreased significantly whereas the proportion of Peptococcaceae increased at the family
level (p < 0.05). Ruminococcus and Clostridium abundances significantly increased at the genus level.
Furthermore, the content of acetate in the HT group significantly increased. Biochemical parameters
showed that the blood glucose concentration of the HT group significantly decreased, and the TG
(serum triglycerides), TC (total cholesterol), insulin concentration, and the insulin resistance index
significantly increased. Nonesterified fatty acid (NEFA) in the HT group decreased significantly.
In conclusion, the results of this paper suggest that the poor production performance of broilers
under heat stress may be related to short-chain fatty acids (SCFAs) fermented by intestinal microbiota
involved in regulating metabolic disorders.

Keywords: heat stress; microbial metabolites; gastrointestinal peptides; glycolipid metabolism

1. Introduction

Chicken meat is considered an important source of dietary protein worldwide. As
per the Food and Agriculture Organization (FAO), total global chicken production was
118.0 million tons in 2019, accounting for a large proportion of the whole meat production.

Animals 2021, 11, 1286. https://doi.org/10.3390/ani11051286 https://www.mdpi.com/journal/animals

https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://doi.org/10.3390/ani11051286
https://doi.org/10.3390/ani11051286
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ani11051286
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani11051286?type=check_update&version=1


Animals 2021, 11, 1286 2 of 13

Broilers are severely affected by heat stress; it can cause slow growth rate, low feed intake,
and decreased immunity, leading to economic losses [1,2]. Studies have shown that heat
stress leads to glucolipid metabolism disorder [3–5]. Heat stress accelerates decomposition
of glycogen and inhibits glycogen production [6]. When ambient temperature is higher than
the tolerable limit of broilers, the energy produced cannot meet the needs, resulting in in-
sulin resistance and glucolipid metabolism disorders [7]. Previous studies investigated the
impacts of heat stress on broilers, which was found to cause blood glucose instability [3,8,9],
decrease insulin sensitivity [10], serum cholesterol, and triglycerides [11], increase body fat
in the abdomen, and decrease plasma non-esterified fatty acid (NEFA) concentrations [12].
Recently, several studies have shown that heat stress affects the metabolites and structures
of the intestinal microflora [13,14] and gastrointestinal peptide [15] in broilers. However,
to date, there are no specific studies on the effects of heat stress on broiler microflora and
its metabolites, gastrointestinal peptide, glycolipid metabolism, and the association among
the three.

Multiple studies were conducted on the associations among bacterial metabolites,
gastrointestinal peptides, and glucose and lipid metabolism on metabolic disorders in
mice and humans. Intestinal microbiota are involved in metabolic processes and energy
homeostasis [16]. Previous studies have shown that heat stress can alter the gut microbiota
of mice [17]. The Firmicutes to Bacteroidetes ratio decreased significantly under 30 ◦C [18].
Short-chain fatty acids (SCFAs) are metabolites formed by gut microbes from complex
dietary carbohydrates. Researchers found that SCFAs stimulated mouse L cells to produce
glucagon-like peptide 1 (GLP-1), peptide YY (PYY), and other intestinal anorexia hormones,
reducing appetite [19]. GLP-1 and GIP are related to insulin secretion, and approximately
70% of β-cell insulin secretion is controlled by GIP and GLP-1 [20]. Insulin secretion
disorders lead to metabolic disorders, such as diabetes and obesity [21]. As mentioned
above, heat stress causes metabolic disorders in broilers. However, the association between
metabolic disorder and microbiota under heat stress is still unclear in mice and humans.

Thus, the purpose of this study was to investigate the effects of heat stress on the
microbiota and its metabolites, gastrointestinal peptides, and glycolipid metabolism in
broilers, and explore the relationship among them to provide a scientific basis for recon-
structing the intestinal flora, to alleviate the decline in production performance caused by
heat stress.

2. Materials and Methods
2.1. Animals and Experimental Design

A total 132 male, one day old, Arbor Acres broilers were purchased from commer-
cial hatcheries and housed in three-layer (8400 cm2 per layer) metal cages at ambient
temperatures that decreased with age. All birds had free access to feed and water (room
temperature) ad libitum. The broilers were fed on crumble diets (Table 1). Then, birds were
divided into a thermoneutral control group (TC, 21 ◦C) or a high temperature group (HT,
31 ◦C), with six biological replicates per group, 11 birds per replicate, at 21 days old. Birds
were transferred to the environmental temperature control chamber, while maintaining a
temperature of 21 ◦C, a humidity of 60%, for 7 days. The experiment started at 28 days
old. Temperature control was adjusted by an artificial environmental control chamber
developed by the Institute of Animal Science of the Chinese Academy of Agricultural
Sciences (CAAS). There was no significant difference in the initial body weight of broil-
ers in the two groups. The temperature of the two groups was constant and humidity
remained at 60% until the end of the experiment, which lasted for 21 days. The lighting
program was continuous throughout the experimental (fluorescent light, 40 W). To reduce
stress, irrelevant personnel were prohibited from entering the artificial environment control
chamber. This program was approved by the Experiment Animal Welfare and Ethical at
the Institute of Animal Science of CAAS.
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Table 1. Composition and nutrient levels of the basal diet.

Items Content (%)

Ingredients
Corn 56.51

Soybean meal 35.52
Soybean oil 4.50

Na Cl 0.30
Limestone 1.00
Ca HPO4 1.78
d L-Met 0.11

Premix (1) 0.28
Total 100.00

Nutrient levels (2)
ME/(MJ/Kg) 12.73

CP 20.07
Ca 0.90
AP 0.40
Lys 1.00
Met 0.42

Met + Cys 0.78
(1) Premix provided the following per kg of the diet: VA 10,000 IU, VD3 3400 IU, VE 16 IU, VK3 2.0 mg,
VB1 2.0 mg, VB2 6.4 mg, VB6 2.0 mg, VB12 0.012 mg, pantothenic acid calcium 10 mg, nicotinic acid 26 mg, folic
acid 1 mg, biotin 0.1 mg, choline 500 mg, Zn(ZnSO4·7H2O) 40 mg, Fe(FeSO4·7H2O) 80 mg, Cu(CuSO4·5H2O)
8 mg, Mn(MnSO4·H2O) 80 mg, I(KI) 0.35 mg, Se(Na2SeO3) 0.15 mg. (2) Calculated values.

2.2. Sample and Data Collection

During the experiment, we used an 0.01 g sensitive electronic body weight scale
(manufacturer: Mettler Toledo, PL2002) to record the initial feed weight, final feed weight,
and body weight of the bird replicates, then calculated the average feed intake, average
body weight, average daily weight gain, and feed efficiency for each replicate. This
experiment used a rectal probe thermometer to measure the body core temperature of one
bird replicate, which was randomly selected from each replicate, and measured four times
a day during the experiment. At the end of the experiment, one bird, after 12 h fasting, was
randomly selected from each replicate for insulin and blood glucose determination. Feed
then continued for two hours, and one bird was randomly selected from each replicate
to collect samples. The blood was immediately collected through the wing vein into
heparinized tubes and centrifuged at 10,000× g for 4 min at 4 ◦C. Then the plasma was
collected and stored at −20 ◦C until the analysis of the concentrations of PYY, ghrelin,
CCK, GIP, and GLP-1. Immediately after the blood samples were obtained, the birds were
humanely sacrificed, and the tissues of the cecum contents, intestinal mucosa, pancreas,
and hypothalamus were collected. The samples were placed in a cryopreservation tube
and stored in a −80 ◦C refrigerator.

2.3. Determination of Gastrointestinal Peptides

The concentrations of CCK, Ghrelin, GLP-1, GIP, and PYY in the intestinal mucosa
and serum were determined by the enzyme-linked immunosorbent assay (ELISA). The
intestinal mucosa needed to be grinded, weighed, diluted with PBS buffer at 1:9, and
centrifuged for 20 min (2000–3000 rpm). The supernatant was then carefully taken for
testing. The standard wells were set up, the samples added (diluent and enzyme label
reagent in sequence), and were incubated for 60 min. The ELISA plate was washed with a
washing solution for more than five times, and the color reagent and stop solution were
added. Finally, an enzyme-labeled instrument was used to measure the absorbance of each
well (OD value). The contents of each peptide in the sample were calculated through the
standard curve.
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2.4. DNA Extraction and PCR Amplification

Microbial community genomic DNA was extracted from cecal content samples us-
ing the E.Z.N.A.® soil DNA Kit (Omega BioTek, Norcross, GA, USA) according to the
manufacturer’s instructions. The DNA extract was checked on 1% agarose gel, and DNA
concentration and purity were determined with NanoDrop 2000 UV-vis spectrophotometer
(Thermo Scientific, Wilmington, DE, USA). The hypervariable region V3-V4 of the bacterial
16S rRNA gene was amplified with primer pairs 338F (5′-ACTCCTACGGGAGG-CAGCAG-
3′) and 806R (5′-GGACTACHVGGGTWTCTAAT -3′) by an ABI GeneAmp® 9700 PCR
thermocycler (Applied Biosystems, Carlsbad, CA, USA). The PCR amplification of 16S
rRNA gene was performed as follows: initial denaturation at 95 ◦C for 3 min, followed
by 27 cycles of denaturing at 95 ◦C for 30 s, annealing at 55 ◦C for 30 s and extension at
72 ◦C for 45 s, and single extension at 72 ◦C for 10 min, and end at 10 ◦C. The PCR mixtures
contain 5 × TransStart FastPfu buffer 4 µL, 2.5 mM dNTPs 2 µL, forward primer (5 µM)
0.8 µL, reverse primer (5 µM) 0.8 µL, TransStart FastPfu DNA Polymerase 0.4 µL, template
DNA 10 ng, and finally ddH2O up to 20 µL. PCR reactions were performed in triplicate.
The PCR product was extracted from 2% agarose gel and purified using the AxyPrep DNA
Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA), according to manufacturer’s
instructions, and quantified using Quantus™ Fluorometer (Promega, Madison, WI, USA).

2.5. Illumina MiSeq Sequencing

Purified amplicons were pooled in equimolar and paired-end sequences on an Illumina
MiSeq PE300 platform/NovaSeq PE250 platform (Illumina, San Diego, CA, USA), accord-
ing to the standard protocols by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China).

2.6. Processing of Sequencing Data

The raw 16S rRNA gene sequencing reads were demultiplexed, quality-filtered by
fastp version 0.20.0 [22] and merged by FLASH version 1.2.7 [23] with the following criteria:
(i) the 300 bp reads were truncated at any site receiving an average quality score of <20
over a 50 bp sliding window, and the truncated reads shorter than 50 bp were discarded.
Reads containing ambiguous characters were also discarded. (ii) Only overlapping se-
quences longer than 10 bp were assembled according to their overlapped sequences. The
maximum mismatch ratio of overlap region was 0.2. Reads that could not be assembled
were discarded. (iii) Samples were distinguished according to the barcode and primers,
and the sequence direction was adjusted, exact barcode matched, and two nucleotides
mismatched in the primer matching. Operational taxonomic units (OTUs) with 97% simi-
larity cutoff [24,25] were clustered using UPARSE version 7.1 [24], and chimeric sequences
were identified and removed. The taxonomy of each OTU representative sequence was
analyzed by RDP Classifier version 2.2 [26] against the 16S rRNA database using confidence
threshold of 0.7.

2.7. Determination of SCFAs

We accurately weighed 1 g of cecal content, added 5 mL of ultra-pure water, shook,
and mixed for 30 min, overnight at 4 ◦C, then centrifuged at 10,000 rpm for 10 min, and
transferred the supernatant to a 10 mL cuvette. We added 4 mL of ultra-pure water to
the precipitation, shook and mixed for 30 min, then centrifuged at 10,000 rpm to transfer
the supernatant into a 10 mL cuvette for constant volume. We transferred the liquid in
the colorimetric tube to a 10 mL centrifuge tube, centrifuged at 12,000 rpm for 15 min,
and then transferred the supernatant to a 2 mL centrifuge tube, according to V:V = 9:1
(900 µL supernatant + 100 µL 25% metaphosphoric acid), mixed well, and let it stand at
room temperature for 3–4 h centrifugation, 45 um microporous membrane (nylon series)
filtration. We added the machine bottle (more than 600 µL) to be tested. Chromatographic
conditions: db-ffap column, 30 m * 250 µm * 0.25 µm; carrier gas: high purity nitrogen
(99.999%), flow rate: 0.8 mL/min; auxiliary gas: high purity hydrogen (99.999%), detector
FID temperature: 280 ◦C, injection port temperature: 250 ◦C, split ratio: 50:1, injection
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volume: 1 µL; temperature programming: initial temperature: 60 ◦C, the temperature rose
to 220 ◦C at the rate of 20 ◦C/min, and held for 1 min.

2.8. Determination of Serum Biochemical Parameters

The concentrations of blood glucose, serum insulin, triglycerides, total cholesterol,
and NEFA were measured using the kits provided by Nanjing Jiancheng Bioengineering
Institute (Jiangsu, China). The insulin resistance index was calculated using a formula as
previously described: insulin resistance index = insulin/(22.5e-lnglucose) [27].

2.9. Statistical Analysis

All statistical analyses were conducted using GraphPad Prism 8 software (GraphPad
Software, Inc. La Jolla, CA, USA). An independent sample t-test (unpaired Student’s t test
and Mann–Whitney test) was used for the comparison of the two treatments. Replicate
served as the experimental unit. The confidence interval was 95%, and p < 0.05 indicated a
significant difference in the treatment effect; values were expressed as the mean ± SEM.

3. Results
3.1. Effect of High Temperature on Performance

The effect of heat stress on performance is shown in Table 2. Compared with the
TC group, ADG and ADFI in the HT group decreased significantly (p < 0.05). Compared
with the TC group, the core temperature of birds and FCR in the HT group significantly
increased (p < 0.05).

Table 2. Effects of thermal environment on performance indices of broilers during experiment period.

Treatments

Item TC HT SEM p Value

IABW (g) 1427.31 1432.10 19.35 >0.05

FABW (g) 2840.22 a 2567.78 b 24.32 <0.05

ADG (g/d) 80.58 a 70.70 b 5.03 <0.05

ADFI (g/d) 157.51 a 148.95 b 7.16 <0.05

FCR (g/g) 1.95 b 2.11b a 0.11 <0.05

CT (◦C) 41.49 b 42.66 a 1.28 <0.05
Values are means ± SEM. TC, thermoneutral control group; HT, high temperature group; IABW, initial average
body weight (29 d); FABW, final average body weight (43 d); ADG, average daily gain; ADFI, average daily feed
intake; FCR, feed conversion rate; CT, core temperature. a,b Means within the same line with different superscript
differ significantly.(p < 0.05).

3.2. Effects of High Temperature on Gastrointestinal Peptide

The effects of heat stress on the neuropeptides of gut and hypothalamus concentra-
tions in six-week-old chickens were examined and the results are presented in Figures 1–3.
Compared with the TC group, GIP concentration in the jejunum of the HT group signif-
icantly decreased (p < 0.05). The concentration of CCK in the jejunum and serum and
ghrelin of the hypothalamus in the HT group was significantly higher than that in the TC
group (p < 0.05). The GLP-1 in the ileum, PYY in the pancreas, and ghrelin in the jejunum
in the HT group were not significantly different from that of the TC group.
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indicates significant differences (p < 0.05).
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Figure 3. Effects of high temperature on concentration of CCK, ghrelin, GLP-1, GIP and PYY in serum.
(A), cholecystokinin; (B), ghrelin; (C), glucagon-like peptide-1; (D), glucose-dependent insulinotropic
polypeptide; (E), peptide YY. a,b Means with different letters within columns indicates significant
differences (p < 0.05).

3.3. Effects of High Temperature on Cecal Microbial Composition

The intestinal microbial community of broilers is mainly concentrated in the cecum; it
is the main place where microorganisms participate in the regulation of body metabolism.
Therefore, we analyzed the composition of the caecal flora of two groups of broilers at
the levels of phylum, family, and genus. The compositions of cecal microbiota at phylum,
family, and genus levels are provided in Table 3. At the phylum level, the two groups of
flora were mainly composed of Firmicutes, Bacteroides, and Actinomycetes; however, there
was no significant difference in abundance. At the family level, the dominant bacteria
were mainly Ruminococcaceae; the proportion of Christensenellaceae and Lachnospiraceae de-
creased significantly, and increased the proportion of Peptostreptococcaceae (p < 0.05). It may
show that heat stress significantly affects the dominant intestinal flora at the family level.
At the genus level, the dominant bacteria were mainly Faecalibacterium, Romboutsia. Ru-
minococcus and Clostridium abundances significantly increased, indicating that the thermal
environment significantly increased the proportion of them.
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Table 3. Effects of the thermal environment on cecum digesta microbiota composition.

Level Species Name
Treatments

SEM p Value
TC HT

Firmicutes (%) 89.33 87.49 2.18 >0.05

phylum Bacteroides (%) 5.69 5.18 0.74 >0.05

Actinomycetes (%) 3.78 6.50 1.12 >0.05

family
Ruminococcaceae (%) 51.32 51.14 1.25 >0.05

Lachnospiraceae (%) 18.68 a 10.15 b 0.80 <0.05

Christensenellaceae (%) 1.20 a 0.51 b 0.07 <0.05

Peptococcaceae (%) 0.21 b 0.54 a 0.05 <0.05

Faecalibacterium (%) 28.32 31.63 1.18 >0.05

genus

Romboutsia (%) 6.91 11.29 0.45 >0.05

Ruminococcus (%) 0.08 b 0.15 a 0.02 <0.05

Clostridium (%) 2.55 b 5.16 a 0.40 <0.05

Faecalibacterium (%) 28.32 31.63 1.18 >0.05

Values are means ± SEM. TC, thermoneutral control group; HT, high temperature group. a,b Means within the
same line with different superscript differ significantly (p < 0.05).

3.4. Effects of High Temperature on SCFAs Concentration

The concentration of short chain fatty acids in cecal contents of the two treatment
groups is shown in Table 4. Compared with the TC group, the content of acetate in the HT
group significantly increased, but there was no significant difference in propionic acids
and butyric acids.

Table 4. Effects of thermal environment on the content of SCFAs in the cecum.

Item
Treatments

SEM p Value
TC HT

acetate (µg/mL) 572.9 b 741.1 a 16.79 <0.05
propionic acids (µg/mL) 56.45 63.96 5.89 >0.05

butyric acids (µg/mL) 262.9 252.7 29.71 >0.05
Values are means ± SEM. SCFAs, short chain fatty acids; TC, thermoneutral control group; HT, high temperature
group. a,b Means within the same line with different superscript differ significantly. (p < 0.05).

3.5. Effects of High Temperatures on Serum Parameters

The blood glucose, insulin, insulin resistance index, TG, TC, and NEFA concentrations
are shown in Figure 4. Compared with the TC group, the blood glucose and NEFA con-
centrations in the HT group significantly reduced, the insulin, TC, and TG concentrations
significantly increased. Compared with the TC group, the insulin resistance index of
broilers under heat stress increased significantly, resulting in severe insulin resistance.
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4. Discussion

Thermal environment severely impairs the performance [28,29], changes the composi-
tion of gut microbiota [30], and affects glycolipid metabolism [31] of broilers. However,
previous studies have not been able to account for the associations among them. The
present study clearly established a significant outcome of a thermal environment on perfor-
mance, gut microbiota, gastrointestinal peptides, and glycolipid metabolism in broilers,
and developed a preliminary understanding of the relationship among them.

Significant elevations were detected in the core temperatures of the birds, meaning
that heat stress was produced. Previous literature demonstrated that heat stress could
negatively impact ADFI, ADG, and FCR in broilers [2,29,32–34]. The present study showed
that ADFI, ADG, and FCR were seriously affected by high temperatures of 31 ◦C compared
with the 21 ◦C group, which agreed with the results of previous studies [2,35]. These results
are widely accepted, they imply that heat exposure will directly impair productive perfor-
mance of birds. In general, the reason for the decline in productive performance is largely
due to the lower feed intake; birds reduce feed intake to minimize excess metabolic energy
production to keep themselves cool [36]. Another important reason for the weight gain re-
duction observed in birds experiencing heat stress would be metabolism disorder. Previous
studies have shown that thermal environment can disrupt metabolic homeostasis, accel-
erating protein catabolism [37], increasing abdominal fat deposition [38], changing blood
glucose levels, decreasing insulin sensitivity, and causing a negative energy balance [39].
Birds suffering from heat stress may choose to use more energy to resist the damage caused
by high temperatures rather than to grow or reproduce. Therefore, the underlying cause of
poultry production performance degradation may be metabolic disorder. The current study
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observed that heat stress led to elevated levels of insulin, serum triglycerides, and total
cholesterol, and a reduction in serum blood glucose and NEFA. Changes in blood glucose
in broilers exposed to high temperatures showed mixed results, as there was evidence for
it to increase [3], decrease, or remain unchanged [9]. Numerous factors influence blood
glucose and the reasons for the differences include different physiological statuses and ex-
perimental designs. The results of elevated levels of insulin [40], serum triglycerides, total
cholesterol, and reduced NEFA [41] in this study are consistent with previously reported
studies. It is possible that insulin levels were elevated due to compensatory secretions
to maintain glucose tolerance. The increased basal insulin levels may explain the lack of
an increase in basal NEFA levels because insulin is a potent antilipolytic hormone. We
also calculated that the insulin resistance index increased significantly, meaning insulin
resistance occurs under heat stress. In summary, these observations imply that heat stress
alters carbohydrate and lipid metabolism, leading to metabolic disorder.

Gut microbes have previously been susceptible to heat stress in both mice and livestock.
The present study found that heat stress changed the colony composition at the family
level, reduced the proportions of Christensenellaceae and Lachnospiraceae, and increased the
proportion of Peptococcaceae. It was reported that Christensenellaceae is related to healthy
glucose metabolism and reduces the risk of obesity [42]. A previous study reported
gut dysbiosis in mice that underwent chronic water avoidance stress; in particular, the
abundance of Lachnospiraceae declined [43]. Similar results were obtained in this paper.
The increase of Peptococcaceae was mainly related to histopathological infection, indicating
that heat stress increased the threat factors of gut health. At the genus level, heat stress
increased the proportion of Ruminococcus and Clostridium. In addition, our results showed
that heat stress increased the content of acetate in cecal contents. Since Ruminococcus and
Clostridium are the main acetate-producing microorganisms, the increase of acetate content
in cecal contents may be associated to the increase of Ruminococcus and Clostridium.

Gastrointestinal peptides are mainly secreted by intestinal endocrine cells, including
ghrelin, CCK, GIP, PYY, GLP-1, which are directly involved in the regulation of gastroin-
testinal peristalsis, sensation, and secretion. They have the dual functions of promoting the
secretion of neurotransmitters and hormones, and regulating feeding behavior, nutrient
absorption, energy metabolism, intestinal peristalsis, and emptying [44]. The results we
obtained show that heat stress significantly increased CCK concentration in the jejunum
and circulation—similar to the results obtained by a previous study [45]. CCK proved to be
an anorexic hormone in various poultry studies, which can gather short-term post-eating
satiety signals and inhibit broiler feeding [46]. It was reported that exogenous injection of
CCK could significantly reduce the feed intake of poultry [47]. Therefore, the significant
decrease in feed intake of broilers in the HT group may be due to the large amount of CCK
secreted by the intestines. Several studies have shown that a certain dose of ghrelin is
injected into the cerebral ventricle of chicks, and the results are found to strongly inhibit
the feed intake of chicks [48,49]. In the HT group, a significant increase in hypothalamic
ghrelin levels was observed, which is consistent with the results of a previous study [36].
There were no significant changes in other peptides except for ghrelin in the hypothalamus;
no significant changes in PYY, ghrelin, and GLP-1 were observed in the intestinal tract and
circulation. This is consistent with previous research [50]. It was found that heat stress
significantly reduced the plasma GIP concentration of poultry and pigs [51]. The present
study found that heat stress significantly reduced the GIP concentration in the jejunum
of broilers, and the serum GIP concentration had a decreasing trend. This is supported
by previous results. The decreased GIP concentration may be caused by the decreased
number of intestinal K cells or the decreased GIP expression in K cells. Another possible
explanation for this is that blood glucose was significantly reduced because GIP secretion
is glucose-dependent [52].

The gut microbiota participating in host metabolism is frequently reported on [53–55].
According to various studies, such a process is associated with bacterial metabolites, such
as SCFAs [56,57]. In the current study, the proportion of acetate-producing bacteria, such
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as Ruminococcus and Clostridium, increased, leading to an increase in acetate production.
Studies have found that oral prebiotics may affect the secretion of related gastrointestinal
hormones, such as GLP-1 and ghrelin, through the short-chain fatty acids produced by
microbiota fermentation [55]. SCFAs have also been shown to cross the blood–brain barrier,
directly into the brain, to control feed intake [58]. Furthermore, it was reported that SCFAs
can stimulate mouse intestinal L cells to secrete PYY, CCK, and ghrelin, by activating
G protein coupled receptors, such as Gpr41 [59]. A recent study suggested that SCFAs
inhibit the secretion of GIP by activating the FFAR3 receptor of K cells [60]. This evidence
implies that the increased CCK and decreased GIP relate to the SCFAs in the current study.
Therefore, it is not surprising that the increase in CCK secretion by L cells and the decrease
in GIP secretion by K cells may be due to the increased acetate content in the cecal contents.

5. Conclusions

This paper argues that the poor production performance of broilers under heat stress
may be related to SCFAs fermented by gut microbiota involvement in regulating metabolic
disorders. Our data will provide valuable insight for future studies on humans in tropical
environments who suffer from metabolic disorders, such as diabetes and obesity.
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