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To date, with well over 100 different types of RNA modifications associated with various molecular functions identified on diverse
types of RNA molecules, the epitranscriptome has emerged to be an important layer for gene expression regulation. It is of
crucial importance and increasing interest to understand how the epitranscriptome is regulated to facilitate different biological
functions from a global perspective, which may be carried forward by finding biologically meaningful epitranscriptome modules
that respond to upstream epitranscriptome regulators and lead to downstream biological functions; however, due to the intrinsic
properties of RNA molecules, RNA modifications, and relevant sequencing technique, the epitranscriptome profiled from high-
throughput sequencing approaches often suffers from various artifacts, jeopardizing the effectiveness of epitranscriptome modules
identification when using conventional approaches. To solve this problem, we developed a convenient measurement weighting
strategy, which can largely tolerate the artifacts of high-throughput sequencing data. We demonstrated on real data that the
proposedmeasurement weighting strategy indeed brings improved performance in epitranscriptomemodule discovery in terms of
both module accuracy and biological significance. Although the new approach is integrated with Euclidean distance measurement
in a hierarchical clustering scenario, it has great potential to be extended to other distance measurements and algorithms as well for
addressing various tasks in epitranscriptome analysis. Additionally, we show for the first time with rigorous statistical analysis that
the epitranscriptome modules are biologically meaningful with different GO functions enriched, which established the functional
basis of epitranscriptomemodules, fulfilled a key prerequisite for functional characterization, and deciphered the epitranscriptome
and its regulation.

1. Introduction

In the exploration of epigenetic modifications of RNA that
has lasted for 5 decades, more than 100 types of posttran-
scriptional chemical RNAmodifications have been identified
[1]. Among these modifications, N6-methyladenosine (m6A)
is the most abundant type of RNA modifications that steers
or participates in various biological functions including cir-
cadian clock [2], translation [3, 4], cortical neurogenesis [5],
microRNA processing [6], Drosophila sex determination [7,
8], T cell homeostasis [9], RNA-protein interaction [10], and

RNA stability [11, 12]. It also plays an important role in DNA
damage response [13], heat shock response [14], and the res-
olution of naı̈ve pluripotency towards differentiation [15]. As
RNA methylation participates in many fundamental cellular
processes, it is closely related tomany types of disease, such as
cancer [16, 17] and virus infection [18]. It has been shown that
m6A demethylase ALKBH5 maintains the tumorigenicity of
glioblastoma stem-like cells by programming cell prolifera-
tion [19]; the m6A demethylase FTO plays as an oncogene
in Acute Myeloid Leukemia [20]; and the m6A methyltrans-
ferase METTL3 controls myeloid differentiation of normal

Hindawi
BioMed Research International
Volume 2018, Article ID 2075173, 15 pages
https://doi.org/10.1155/2018/2075173

http://orcid.org/0000-0002-6025-8957
http://orcid.org/0000-0002-5148-7651
http://orcid.org/0000-0002-7641-7684
http://orcid.org/0000-0003-3455-205X
https://doi.org/10.1155/2018/2075173


2 BioMed Research International

hematopoietic and leukemia cells [21]. Mutations of the RNA
methylation enzymes are linked to colon cancer and endome-
trial cancer [22]. Due to the importance of RNA m6A mod-
ification to biological regulation and health, it is of crucial
importance and increasing interest to study how the epitran-
scriptome is shaped to regulate relevant biological processes.

There are a large number of RNA m6A sites enriched
near stop codon, on 3’UTRs and on long exons of the
transcriptome [23]. It was originally reported in 2012 that
there exist over 12,000 m6A sites on 7676 mammalian
genes that contain m6A [24, 25]. Due to the limitation of
sequencing depth, context-specific expression, and dynamics
of RNA m6A sites, the actual number of m6A sites in the
human epitranscriptome is likely to be much larger. There
are more than 0.3∼0.4 million predicted unique m6A sites
reported in the human epitranscriptome according to two
recent bioinformatics databases RMBase [26] and MetDB
[27], which are collected by merging MeRIP-Seq data from
published studies, although many of these m6A sites may
exist under very few conditions (tissue/cell types/treatment)
or even false positive due to the way the sites are searched; i.e.,
an unmodified a residual, which conforms the RRACHmotif,
was false positively reported by theMeRIP-Seq technique due
to its proximity to real m6A sites [24, 25].

The m6A modification is directly deposited or erased by
relevant enzymes, i.e., RNA m6A methyltransferase (writer)
and demethylase (eraser), which are accountable to the
observed landscape of m6A epitranscriptome in cells. The
most well studied m6A methyltransferase is a complex [28–
30] composed of at least four proteins, including METTL3,
METTL14, WTAP, and KIAA1429 [29, 31–33]. It has been
shown that METTL3 functions catalytically, while the other
proteins mainly serve as regulatory units that mediate the
substrate specificity of the methyltransferase complex [34–
36]. The fat mass and obesity associated protein (FTO) was
identified in 2011 as the first known m6A demethylase [37].
Moreover, the protein ALKBH5, derived from the same
protein family (ALKB) of FTO, was identified as a second
m6A demethylase that impacts RNA metabolism and mouse
fertility [38]. Very recently, METTL16 is identified as another
RNA m6A writer that targets pre-mRNAs and noncoding
RNAs [39].

Although there are likely to be additional m6A-relevant
enzymes yet discovered by people, the total number of pri-
mary m6A-regulating genes is likely to be much less than the
total number ofm6A sites in the epitranscriptome. Due to the
substrate specificity of m6A-relevant enzymes, epitranscrip-
tome modules are naturally formed when a larger number of
m6A sites are regulated by a small number of regulators; i.e.,
them6A sites that share the same regulatorwill exhibit similar
methylation pattern across different experiment conditions,
reflecting the catalytic efficacy of their common regulator
under respective conditions. The concept of regulatory mod-
ule has been used extensively in the field of bioinformatics.
For example, a transcriptional module of 148 genes that are
downregulated during differentiation has been functionally
associated with self-renewal [40]. A transcriptional module

of 4382 genes is identified to be associated with cell cycle
from a time course data with 24 samples in yeast using
state space models [41]. In DNA methylation data analysis,
modules in the epigenome have been associated with ageing
effects [42] and alcohol use disorders [43]. In studies of
lncRNA, coexpression of a gene and an lncRNA is often a
strong indication for functional relevance of the two and has
been used for predicting the functions of novel lncRNAs [44,
45]. Given the aforementioned examples in transcriptomics,
epigenomics, and genomics, because the methylation sites
of the same epitranscriptome module are coregulated across
different experiment conditions, it is reasonable to speculate
that they are functionally related as well, i.e., participating in
the same or related biological processes and pathways.

Previously, the studies of epitranscriptome module are
mainly restricted to the study of substrate specificity of
the epitranscriptome enzymes. Through the perturbation of
m6A writers, Regev lab identified two distinct classes of
m6A sites based on whether they depend on WTAP, a key
regulator of the METTL13-METTL14 writer complex [33].
Liu et al. performed four different clustering approaches to
3274 preselected RNA methylation sites and identified an
epitranscriptome module that is likely to be mediated by the
m6A demethylase FTO [46]. As increasing significance and
biological functions of RNA m6A modifications are revealed
by recent studies, it is of growing necessity to understand the
epitranscriptome regulation. The study of epitranscriptome
modules provided a viable venue to achieve it.

Currently, themost popular high-throughput sequencing
approach for profiling RNA methylome is methylated RNA
immunoprecipitation sequencing (MeRIP-seq or m6A-seq)
[24, 25]. From technical perspective, m6A-seq may be con-
sidered as a marriage of RNA-seq and ChIP-seq technique,
where the methylation signal is obtained by sequencing the
immunoprecipitated RNA fragments with anti-m6A anti-
body (the IP sample), and the control background is gener-
ated using all the input RNA fragments (the input sample).
A major difficulty faced by computational biologists when
searching for the epitranscriptome modules is to deal with
the artifacts in epitranscriptome high-throughput sequenc-
ing data, which is mainly due to the context-specific gene
expression, the limitation of sequencing depth. Constrained
by the detection ability, it is always very difficult to accurately
quantify the methylation level of very lowly expressed genes.
For example, if the reads count of a specific methylation site
in the IP sample is 𝑡 and the reads count in the paired input
sample is 𝑐, without taking into account the difference in
sequencing depth, a naturalmeasurement for themethylation
level of this site𝑚 is

𝑚 = 𝑡𝑡 + 𝑐 , (1)

where 𝑚 ∈ [0, 1]. This way of quantifying methylation level
has been widely used in DNA methylation analysis in the
form of beta-value [47]. However, this approach can be prob-
lematic in RNA methylation data analysis when dealing with
very lowly expressed genes. For example, while a methylation
site with 𝑡 = 100 and 𝑐 = 0 is likely to be highly methylated
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(𝑚 = 1) a methylation site with 𝑡 = 1 and 𝑐 = 0may not (𝑚 =1). As a matter of fact, there is barely any signal for the latter
case to make any reliable estimation, although the estimated
methylation level is 1. Different from DNAmethylation data,
where the background is homogenous and the background
reads coverage is expected to be the same across the entire
genome, there exists rather prominent heterogeneity in the
reads coverage of the transcriptome and epitranscriptome
data; i.e., there are usually a small number of highly expressed
genes coupled with a very large number of lowly expressed
genes, whose methylation signal is too weak to be estimated
reliably, which severely limits the performance of computa-
tional approaches based on thismeasurements. It is necessary
to develop strategy that can take advantage of the estimated
methylation level together with its reliability.

Tounlock the full potentials of epitranscriptome sequenc-
ing data, we designed a convenient measurement weighting
strategy to incorporate the measurements together with
their reliability as the weight. Under this scheme, unreliable
measurements that are supported by relatively small number
of reads are given less weight in the computationmodel, while
measurements supported by a large number of reads are given
more weight. In this way, even if some measurements are
not accurate, because smaller weights are assigned to them,
the final computation results are still likely to be robust. We
will show in the next how to use the weighting strategy in
a hierarchical clustering approach to find epitranscriptome
modules with weighted Euclidean distance and show the
performance improvement compared with the same method
but without using the weighting scheme.

2. Method

Considering we have the methylation profile of 𝑁 methy-
lation sites obtained from 𝑆 experimental conditions and
the reads count of the 𝑛-th methylation site under 𝑠-th
condition in the IP sample is 𝑡𝑛,𝑠, the reads count of the 𝑛-
th methylation site under 𝑠-th condition in the input sample
is 𝑐𝑛,𝑠. The size factors of the IP and input samples of the𝑠-th condition are 𝑑𝑠,𝑡 and 𝑑𝑠,𝑐, respectively, which reflects
the sequencing depth (or library size) of the sample, which
may be estimated using geometric mean or other approaches.
Based on previous definition, the estimatedmethylation level
of the 𝑛-th methylation site under 𝑠-th condition is

𝑚𝑛,𝑠 = 𝑡𝑛,𝑠/𝑑𝑠,𝑡𝑡𝑛,𝑠/𝑑𝑠,𝑡 + 𝑐𝑛,𝑠/𝑑𝑠,𝑐 = 𝑡𝑛,𝑠𝑑𝑠,𝑐𝑡𝑛,𝑠𝑑𝑠,𝑐 + 𝑐𝑛,𝑠𝑑𝑠,𝑡 (2)

where 𝑛 ∈ {1, 2, ⋅ ⋅ ⋅ , 𝑁} and 𝑠 ∈ {1, 2, ⋅ ⋅ ⋅ , 𝑆}. When give
the estimated RNA methylation profiles, it is fairly easy to
apply hierarchical clustering approach to search for epitran-
scriptome modules. A typical measurement people use to
measure the similarity of two methylation profiles is the
Euclidean distance, where the distance between the 𝑖-th and𝑗-th methylation sites 𝑑(𝑖, 𝑗)may be calculated as follows:

𝑑 (𝑖, 𝑗) = √ 𝑆∑
𝑠=1

[(𝑚𝑖,𝑠 − 𝑚𝑗,𝑠)2] (3)

Smaller 𝑑(𝑖, 𝑗) suggests that the two sites share a very similar
methylation profile across different experimental conditions,
belong to the same epitranscriptome module, may be reg-
ulated by the same epitranscriptome regulator, and may be
functional relevant based on previous experience in genomics
analysis. However, the distance measurement by Euclidean
distance can be seriously affected by a few unreliable mea-
surements estimated from a small number of reads and then
may seriously jeopardize the clustering results. To fully take
advantage of the potentials of the epitranscriptome sequenc-
ing data, we consider here a weighting strategy by using
the weighted Euclidean distance. Specifically, the weighted
Euclidean distance between the 𝑖-th and 𝑗-th methylation
sites 𝑑𝑤(𝑖, 𝑗)may be calculated as follows:

𝑑𝑤 (𝑖, 𝑗) = √ 𝑆∑
𝑠=1

[𝑤𝑠,𝑖,𝑗 (𝑚𝑖,𝑠 − 𝑚𝑗,𝑠)2] (4)

where 𝑤𝑠,𝑖,𝑗 > 0 and ∑𝑆𝑠=1 𝑤𝑠,𝑖,𝑗 = 1. The weight is determined
by a function of the reads counts 𝑤𝑠,𝑖,𝑗 = 𝑓𝑤(𝑡𝑖,𝑠, 𝑐𝑖,𝑠, 𝑡𝑗,𝑠, 𝑐𝑗,𝑠).
In this formulation, the weight assigned to the 𝑠-th exper-
imental condition 𝑤𝑠,𝑖,𝑗 should reflect the reliability of this
sample. If themeasurements obtained under this samplewere
estimated from a small number of reads (𝑡𝑖,𝑠, 𝑐𝑖,𝑠, 𝑡𝑗,𝑠, 𝑐𝑗,𝑠), the
relevant part of the result may not be reliable and a smaller
weight should be assigned.

Although it is conceptually easy to depict the desired
properties of the weight function 𝑤𝑠,𝑖,𝑗 = 𝑓𝑤(𝑡𝑖,𝑠, 𝑐𝑖,𝑠, 𝑡𝑗,𝑠, 𝑐𝑗,𝑠),
there still exist different ways to define the function and it
is still an open question how to choose a proper weighting
strategy according to the data. In thismanuscript, we consider
the following 2 weighting schemes:

(i) logarithm-based approach, in which,

𝑤𝑠,𝑖,𝑗 = 𝑓𝑤 (𝑡𝑖,𝑠, 𝑐𝑖,𝑠, 𝑡𝑗,𝑠, 𝑐𝑗,𝑠)
= log (𝑡𝑖,𝑠 + 𝑐𝑖,𝑠 + 𝑡𝑗,𝑠 + 𝑐𝑗,𝑠 + 1) (5)

𝑤𝑠,𝑖,𝑗 = 𝑤𝑠,𝑖,𝑗∑∀𝑠 𝑤𝑠,𝑖,𝑗 (6)

In this approach, the weight of a sample increases log-
arithmically with the number of reads. Conceivably,
it is reasonable to assume that there exists a big dif-
ference in terms of reliability between measurements
supported by 2 and 200 reads but only very minor
difference between those supported by 1002 and 1202
reads.

(ii) threshold-based approach, in which

𝑤𝑠,𝑖,𝑗 = 𝑓𝑤 (𝑡𝑖,𝑠, 𝑐𝑖,𝑠, 𝑡𝑗,𝑠, 𝑐𝑗,𝑠)
= {{{

1 when (𝑡𝑖,𝑠 + 𝑐𝑖,𝑠 + 𝑡𝑗,𝑠 + 𝑐𝑗,𝑠) ≥ 𝛼𝛽 when (𝑡𝑖,𝑠 + 𝑐𝑖,𝑠 + 𝑡𝑗,𝑠 + 𝑐𝑗,𝑠) < 𝛼
(7)

𝑤𝑠,𝑖,𝑗 = 𝑤𝑠,𝑖,𝑗∑∀𝑠 𝑤𝑠,𝑖,𝑗 (8)
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Table 1: Datasets in the study.

Dataset ID Tissue/Cell Treatment # Sample (IP & input) Source
1 HepG2 4 & 3 [25]
2 HepG2 UV 1 & 1 [25]
3 HepG2 HS 1 & 1 [25]
4 HepG2 HGF 1 & 1 [25]
5 HepG2 IFN 1 & 1 [25]
6 Human Brain 1 & 1 [25]
7 HEK293T 3 & 3 [56]
8 U2OS 3 & 3 [2]
9 U2OS DAA 3 & 3 [2]

This approach is conceptually similar to the “thresh-
oldmethod” [52] with two parameters 𝛼 and 𝛽. When
the total number of reads mapped to the two sites in
sample 𝑠 is greater than the threshold 𝛼, we consider
they are fairly accurate measurements and assign a
normal weight 1, while a smaller weight 𝛽 is assigned
to the sample when the measurements of methylation
level are not reliable, with 0 ≤ 𝛽 ≤ 1. In practice, it
is necessary to further optimize the two parameters 𝛼
and 𝛽 ad hoc with respective to the datasets used.

With two different measurement weighting strategies
defined as previously, we will next compare the proposed
approach on real data with conventional approach without
measurement weighting.

3. Result

3.1. RNA Methylation Sequencing Data. The datasets used
in the following analysis were from published studies and
downloaded directly fromGene Expression Omnibus (GEO)
in SRA format. The data profiles the m6A epitranscriptome
in HEK293, HepG2, U2OS, and human brain under different
treatments (see Table 1). The reads are aligned to human
reference genome assembly (hg19) with the default setting
of Tophat2 [53]. Subsequently, the epitranscriptome (all the
RNA m6A methylation sites under different conditions) was
retrieved using exomePeak [54] with UCSC gene annotation
and default settings by following a previous approach [46].
Furtherly, the reads count of every RNAmethylation site (𝑡𝑛,𝑠
and 𝑐𝑛,𝑠 for ∀𝑛 ∈ {1, 2, ⋅ ⋅ ⋅ , 𝑁} and ∀𝑠 ∈ {1, 2, ⋅ ⋅ ⋅ , 𝑆}) is
retrieved using R/Bioconductor packages [55].The biological
replicates obtained from the same condition are merged
together, and the total number of reads is used to estimate the
size factor of samples (𝑑𝑠,𝑡 and 𝑑𝑠,𝑐 for ∀𝑠 ∈ {1, 2, ⋅ ⋅ ⋅ , 𝑆}). The
methylation ratio of all sites is estimated according to (2).The
estimated methylation level is then quantile normalized to
remove possible batch effect. Only the sites that show strong
dynamics are retained for further analysis; this is achieved
by selecting the RNA methylation sites with larger variance
in methylation level. Finally, the methylation profile of each
methylation site is standardized by subtracting the mean and
divided by its standard deviation to ensure all sites contribute
equally to the analysis.

3.2. Comparing Different Weighting Schemes Using True Sam-
ple Labels. A major limitation for assessing the performance
of different weighting schemes in a clustering approach
for RNA methylation analysis is the lack of ground truth.
The epitranscriptome regulation is complicated, and it is
not clear which group of RNA methylation sites shares a
common regulator across different experimental conditions.
To this end, an alternative approach is considered by taking
advantage of the sample labels.There are 6 samples including
two triplicates profiling the m6A epitranscriptome in human
U2OS cell line with or without DAA treatment (see Table 1,
Dataset ID 8 & 9), and if a clustering approach is applied
to the 6 samples, it should retrieve two distinct groups
corresponding to the DAA and control conditions in the
experiment setting. Conceivably, when two different weight
schemes are used in the clustering analysis, the one that
returns more consistent results with experimental setting
suggests a better performance.

The sample label is used as group truth for clustering anal-
ysis in the first experiment. Specifically, a total of 916 small
datasets, each containing the methylation profiles of 6 sam-
ples and 30 RNA methylation sites adjacent with each other
in genomic coordinates, are generated by splitting the original
high-throughput dataset (Dataset ID 8 & 9 in Table 1), and
a hierarchical clustering classifier using Euclidean distance
with different weighting schemes (no weighting, logarithm-
based and threshold-based) was applied to the small datasets
to group the samples into 2 clusters, and the clustering results
are then compared to the true sample labels for assessing the
clustering performance on all the 916 small datasets. In this
analysis, the parameters of threshold-based approach (𝛼 and𝛽) were arbitrarily set to 0.03 to 0.45, respectively, without
necessary optimization. Instead of using a specific threshold
value for 𝛽, we use here a relative quantile value, where 0.45
is corresponding to the 45% quantile for reads count of all
the measurements. As is shown in Table 2, given that there
are a total of 6 samples from groups, the probability to obtain
a correct clustering result by random is only 3.2%. The RNA
methylation profile contains clustering information. Correct
clustering resultsmay be obtained formore than 26%of times
when the standard approach is applied, which assigns all
measurements with equal weight. Additionally, the clustering
performance can be further improved by taking advantage
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Table 2: Percentage of correct clustering.

Clustering Approach # Trial # Correct
Result

% Correct
Result

Random Guess

916

30 3.22%
No weighting 241 26.31%
Logarithm-based weighting 294 32.06%
Threshold-based weighting 344 37.60%

of the proposed weighting strategy (32% and 37.6%), which
shows the proposed measurement weighting scheme can
significantly improve the clustering performance. Please note
that the correct percentage is relative low because we used a
very stringent criteria; i.e., the clustering results are consid-
ered correct if and only if all the samples are clustered cor-
rectly.These performances are about ten times more accurate
than that achieved from a random classifier (3.22%), which
suggests that the clustering results are statistically meaning-
ful. Additionally, we show in Supplementary Materials that
the proposed threshold-based weighting scheme is equally
applicable when using M-value to quantify the RNA methy-
lation status (see Table S1) and it is also useful when using
squared Euclidean distance or City Block to measure the
similarity of RNAmethylation profiles (see Tables S2 and S3).

In the previous result, the 916 small datasets were gener-
ated by splitting the complete high-throughput dataset, and
the RNA methylation sites of the same small dataset are
adjacent to each other on the genome, which may possess
systematic correlation that influences the clustering result.
To eliminate this bias, we consider a more random test in
the next. Specifically, 916 small datasets with 30 random
selected methylation sites are generated, to which clustering
analysis using different weighting strategies was applied and
the clustering performance was assessed again using the true
sample labels. The analysis was repeated for 100 times, and
the results are shown in Figure 1. The proposed weighting
strategies consistently improve the clustering performance.
We also tested the cases when M-value, squared Euclidean,
or City Block is used to quantify the RNA methylation status
or the similarity of RNA methylation profiles. As is shown in
Supplementary Materials Figure S1, consistent improvement
in clustering performance is observed when the proposed
weight scheme is implemented.

In the previous study, we tested a case when there
are 30 RNA methylation sites available for the clustering
analysis. We study next the influence of dimension size on
clustering performance by changing the number of sites
included in the analysis. As shown in Figure 2, the clustering
performance increases as the dimension (number of RNA
methylation sites) increases, and the clustering method using
theweighting strategies consistently outperforms the one that
does not use it. In all setting tested, threshold-based weight
strategy provides the best clustering performance and the
logarithm-based weighting strategy also outperforms the one
that does not use measurement weighting. It is now rather
clear thatmanymeasurements are not accurate andneed to be
penalized in someway in the analysis.We also tested the cases

when M-value, squared Euclidean, or City Block is used to
quantify the RNAmethylation status or the similarity of RNA
methylation profiles. As is shown in SupplementaryMaterials
Figure S2, very similar results are observed. The proposed
approach can consistently improve clustering performance
when different quantification methods or distance measure-
ments are used.

3.3. ParameterOptimization forThreshold-BasedWeight Strat-
egy. With previous results, the threshold-based measure-
ment weighting strategy has shown superior performance;
this method will be our focus in the next section. It is worth
mentioning that the parameters of this method; i.e., the
threshold 𝛼 andweight𝛽 are still not sufficiently optimized. It
is important to further fine-tune these two parameters for the
best possible performance. Till this end, we consider here a 2-
D grid search, where all combinations of 𝛼 and 𝛽 are tested,
with the threshold parameter ∈ [0, 0.05, 0.15, 0.25, 0.35, 0.45,
0.50, 0.55, 0.65, 0.75, 0.85, 0.95] and the weight parameter𝛽 ∈ [1E-4, 5E-4, 2.5E-3, 1.35E-2, 0.03, 0.045, 0.06, 0.09, 0.135,
0.15, 0.3, 0.75, 1, 1.5, 7.5]. Please note that when 𝛼 = 0 or𝛽 = 1, no measurements will be penalized and the weighting
strategy will be essentially the same as standard approach
withoutmeasurementweighting.When𝛽 > 1, a largerweight
will be assigned to the measurements that are less accurate,
which is expected to damage the clustering performance.This
setting is used in the analysis as a negative control. Similar to
before, the performance is tested on small random datasets
with different number of RNA methylation sites (𝑁 ∈ [10,
20, 30, 40, 50, 60, 70, 80, 80, 90, 100]). After repeating
the analysis 100 times, the average clustering performance
under each possible combination of setting is summarized
in Figure 3. We can see that the performance patterns
on dataset of different sizes are similar. Better clustering
performance was achieved when setting a relative small
weight parameter 𝛽 and a medium threshold parameter 𝛼.
A large weight parameter 𝛽, which assigns a larger weight to
less accuratemeasurement, always undermines the clustering
performance, just as previously expected. When comparing
the results achieved on datasets of different size, the optimal
threshold parameter 𝛼 increases as the data size increases.
This observation is reasonable, because compared with small
dataset, a larger dataset can afford to lose more unreliable
measurements in the analysis.

3.4. Quality Assessment of Epitranscriptome Modules with
Gene Ontology Analysis. We demonstrated with previous
analysis the effectiveness of measurement weighting strategy
in clustering analysis of biological samples by referring to
the sample labels as the ground truth. It is important to
test whether the proposed measurement weighting strategy
is equally useful in the search of epitranscriptome modules,
i.e., clustering theRNAmethylation sites into different groups
where the sites belong to the same group show consistent
hyper- or hypomethylation states under different experiment
conditions, suggesting the sharing of a common regulator.

There are a total of 42,758 methylation sites identified
from 9 experimental conditions in the datasets. Data pre-
processing was firstly performed, in which we aim to select
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Figure 2: Impact of dimension size. Small datasets of different
number of RNA methylation sites are generated, to which the
clustering approach was applied with or without sample weighting
strategies. The clustering performance increases as the dimension
(number of RNA methylation sites) increases, and the clustering
method using the weighting strategies consistently outperforms the
one that does not use it.

the assured RNAmethylation sites with substantial dynamics
in the methylation level across different experimental condi-
tions. We selected the top 20,000 RNAmethylation sites with
the largest average methylation level and then the top 10,000
sites with the largest variance in methylation level among the
previously selected sites.These sites show strong methylation
signal and strong dynamics in the data analyzed, which are
likely to capture the epitranscriptome modules induced by
epitranscriptome regulators.

Before applying to the threshold-based measurement
weighting strategy to the data, it is necessary to optimize
its parameters ad hoc. To do it, small random datasets of 9

dimensions, which is the dimension of the real data used in
the clustering analysis, are generated and a 2D grid search
for the optimal parameters of the threshold-based weighting
approach was performed as described previously. As shown
in Figure 4, our result suggests that the optimal clustering
result is achieved when setting 𝛼 = 0.45 and 𝛽 = 0.09, which
will be used in the following analysis. Please note that, under
this setting, around 45% of measurements are assigned with
minimal weight in the analysis, most of which are likely to
be located on very lowly expressed genes, whose methylation
status cannot be reliably estimated.This is consistent with our
knowledge that only around half of all the genes are expressed
in a specific cell type [57]. Although penalizing these RNA
methylation sites may inevitably repress some patterns, our
experiments suggest the overall effect is to enhance the
aggregation patterns of epitranscriptome modules and thus
contribute to the clustering analysis.

A major difficulty for assessing the quality of the iden-
tified epitranscriptome module is the lack of ground truth.
Although there exists bioinformatics database MetDB [58]
supporting the query about epitranscriptome regulation of
RNA methylation sites by enzymes, this evidence has not
been properly integrated and a specific regulation may
be supported by only a single study, lacking consistency
between different experiments. Additionally, the known
enzyme genes, including RNA methyltransferases METTL3,
METTL14, WTAP and demethylase FTO, and ALKBH5,
although have the potential may not actually play a leading
regulatory role or induce an epitranscriptome module and
it is very likely that there exist additionally still unknown
regulators of the m6A epitranscriptome, such as the newly
identified RNA m6A methyltransferase METTL16 [39, 59].
For the aforementioned reasons, it is difficult to provide a
ground truth to assess the identified epitranscriptome mod-
ules; we thus consider an alternative approach by using gene
ontology (GO) as a guidance; i.e., for two epitranscriptome
modules that consist of the same number of genes, the one
that has more GO terms more significantly enriched is more
biologically meaningful and thus more likely to represent a
true epitranscriptome module than the other one [60]. It is
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Figure 3: Continued.
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Figure 3: Parameter optimization for the threshold-based method. Small datasets are generated by sampling randomly from real RNA
methylation dataset, to which clustering analysis used the threshold-based weighting strategy with different parameters and the clustering
performance was evaluated by comparing to true sample labels. Better clustering performance was achieved when setting a relative small
value for weight parameter 𝛽 and a medium value for threshold parameter 𝛼.
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Figure 4: Parameter optimization for the threshold-based
method on real data. Small datasets of the same dimension size
as real dataset were generated, to which clustering analysis used
the threshold-based weighting strategy with different parameters.
Optimal clustering result on a dataset of 9measurements is achieved
when setting 𝛼 = 0.45 and 𝛽 = 0.09, which will be adopted in the
following clustering analysis on real data.

important to note that the two modules in comparison need
to be of the same size, because a larger group is a lot more

likely to have more GO terms enriched in it compared with
a smaller group. Additionally, because the epitranscriptome
modules identified from different approaches are likely to
be of different size, in practice it is still difficult to compare
the results from different methods under the aforementioned
scheme. To solve this problem, we proposed an alternative
indirect approach, in which the epitranscriptome modules
identified from clustering analysis are directly comparedwith
randommodules of the size usingGOanalysis. If themodules
identified from one approach are a lot more likely to be more
biological meaningful than the random modules, while that
identified from a different approach is less likely to be more
biological meaningful than the random modules, then the
former approach, which generated more biological meaning-
ful results, may be considered superior to the latter one.

Specifically, 3,000 out of the total of 10000 RNA methy-
lation sites after preprocessing are randomly selected, to
which hierarchical clustering analysis was applied with or
without measurement weighting strategy. The gene ontology
enrichment analysis was conducted based on human gene
ontology annotation database downloaded from R package
org.Hs.eg.db [61] on Bioconductor. All of the three GO cate-
gories (BP, CC, andMF)were used in the enrichment analysis
with the 3,000 random selected methylation sites set as the
background. When calculating the biological significance of
a specific epitranscriptome module, the GO terms with more
than 1,000 counts in the background are considered too
general and thus discarded from the analysis. The p values
were calculated from one sided hypergeometric test for each
GO term using customized R script, and the top 20 GO terms
with the most significant p values were treated with negative
logarithm and added together as the measurement of the
biological significance of a specific module. As previously
described, the clustering results (epitranscriptome modules
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Figure 5:Comparing epitranscriptome module detection based on biological significance.The epitranscriptomemodules identified from
clustering analysis are always more likely to be biologically meaningful than the randommodules, and this is true for clustering analysis using
the measurement weighting strategy (66.2%, 59.8%, and 59.8% when 𝑘 = 2, 5, and 10, respectively). The results obtained with measurement
weighting scheme consistently outperform those obtained without measurement weighting (69.5% vs 66.2 when 𝑘 = 2, 63.9% vs 59.8%
when 𝑘 = 5, and 60.7% vs 59.8% when 𝑘 = 10), suggesting the proposed threshold-based measurement weighting strategy is helpful to
improve clustering result and find more biological meaningful epitranscriptome modules. Clustering analysis with or without measurement
weighting strategy was applied to 3000 random selected RNA methylation sites, and the epitranscriptome modules identified are compared
with random group of genes of the same size in terms of biological significance using gene ontology enrichment analysis. Using bootstrap
sampling approach, the analysis was repeated for 100 times and the results are summarized in this figure.

identified) of different approaches are then compared indi-
rectly via random gene set of the same size. Please note that
we used in this analysis only a fraction (3000 sites) rather
than all the 10000 RNA methylation site, which is essentially
the bootstrap sampling strategy for achieving a more robust
results. The previous analysis was repeated 100 times to rule
out the possible impact of randomness. Because the optimal
number of clusters is not available, we tested 3 different
settings, i.e., the number of clusters 𝑘 = 2, 5, and 10.

As is shown in Figure 5, the epitranscriptome modules
identified from clustering analysis are always more likely to
be biologically meaningful than the random modules and
this is true for clustering analysis using the measurement

weighting strategy (66.2%, 59.8%, and 59.8% when 𝑘 =
2, 5, and 10, respectively) or not using the measurement
weighting strategy (69.5%, 63.9%, and 60.7% when 𝑘 = 2,
5, and 10, respectively), suggesting that the epitranscriptome
module not only contains a number of RNA methylation
sites whosemethylation states are coregulated but also carries
some biological significance that can be captured using gene
ontology analysis. It is the first time to be proved true on real
RNA methylation data with rigorous statistical analysis that
the regulatory functions are enriched in epitranscriptome
modules. The results obtained with measurement weighting
scheme consistently outperform those obtainedwithoutmea-
surement weighting (69.5% vs 66.2 when 𝑘 = 2, 63.9% vs
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Figure 6: Silhouette coefficient on the epitranscriptome data.The
Silhouette coefficient was used to assess the quality of clustering
result when a different number of clusters are used (𝑘). However,
the largest value obtained is only 0.15, suggesting there is no clear
evidence to support a specific model.

59.8%when 𝑘 = 5, and 60.7%vs 59.8%when 𝑘 = 10), suggest-
ing the proposed threshold-based measurement weighting
strategy enhanced the clustering result and helped to find
more biological meaningful epitranscriptome modules.

3.5. The Biological Functions of Epitranscriptome Modules.
We, next, seek to explore the biological meanings of true
epitranscriptome modules using the proposed measurement
weighting strategy. Before clustering analysis is applied,
we firstly try to use Silhouette approach [62] on all the
preprocessed RNAmethylation data to determine an optimal
number of clusters. As shown in Figure 6, the largest Silhou-
ette coefficient value obtained is only 0.15, suggesting there
is no clear evidence to support a specific model (number of
clusters).This is reasonable because that the epitranscriptome
regulation is complex with multiple regulators and a single
RNAmethylation site can be regulated by multiple regulators
simultaneously. Additionally, the epitranscriptome data is
highly noisy due to the impact of transcriptome regulation
and bias in sequencing. Even with the proposed approach,
we may still miss true epitranscriptome modules or capture
false positive patterns. Because an optimal number of clusters
could not be determined, we set arbitrarily 𝑘 = 5.Thenumber
was chosen to be not too small or too large for downstream
functional analysis of the epitranscriptome modules identi-
fied.

We then applied hierarchical clustering (𝑘 = 5) with
threshold-based measurement weighting strategy (𝛼 = 0.45
and 𝛽 = 0.09) to the entire preprocessed data to search for
epitranscriptome modules. As shown in Figure 7, clustering
analysis identified 5 epitranscriptome modules with 4492,
2538, 1386, 467, and 572 sites, respectively, which are located
on 4044, 2090, 1247, 452, and 539 genes. It is possible that

4044
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2090452

539

#Site

#Gene

4992
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572
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Figure 7: Epitranscriptome modules identified from hierarchical
clustering analysis. Hierarchical clustering analysis of the RNA
methylome identified 5 epitranscriptome modules with 4492, 2538,
1386, 467, and 572 sites, respectively, which are located on 4044,
2090, 1247, 452, and 539 genes.

multiple RNA methylation sites located on the same gene
belong to the same or different epitranscriptome modules.

The five identified epitranscriptome modules (M1-M5)
are then functionally annotated using DAVID website [51]
to explore their biological relevance (the complete results are
available in Supplement Materials Table S4.). Distinct KEGG
pathways are enriched in the modules. Notably, Huntington’s
disease, Parkinson’s disease, Alzheimer’s disease, and synaptic
vesicle cycle are all enriched in the identified epitranscrip-
tomemoduleM2,which is consistent with our understanding
of the role of RNA methylation in neurological diseases [5,
63]. The circadian rhythm pathway, which has been shown
to be regulated via the epitranscriptome [2], is enriched in
epitranscriptome module M2. Many cancer related path-
ways are also overrepresented in different epitranscriptome
modules, including, transcriptional misregulation in cancer,
signaling pathways regulating pluripotency of stem cells,
basal cell carcinoma and microRNAs in cancer enriched in
M1, pathways in cancer, and small cell lung cancer enriched
in M5. Besides, pathways related to obesity, such as insulin
signaling pathway and nonalcoholic fatty liver disease, are
also enriched in epitranscriptome module M2, suggesting a
possible relationship with FTO, which is the first obesity-
related gene identified from GWAs analysis [48] and the first
known RNAm6A demethylase [49]. Figure 8 shows the most
enriched KEGG pathways of each epitranscriptome module.

Besides the pathway-based enriched analysis, DAVID
also reveals the association between gene ontology (GO)
terms and the identified epitranscriptome modules (the
complete results are available in Supplement Materials Table
S4.). Figure 9 shows the top 10 mostly enriched GO functions
related to biological process. Interestingly, epitranscriptome
moduleM1 is enrichedwith functions related to transcription
(positive regulation of transcription); and M2 is enriched
with positive regulation of apoptotic process, cell cycle arrest,
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Figure 8: KEGG pathways enriched in epitranscriptome modules. Distinct pathways are enriched in different epitranscriptome modules.
Interestingly and consistent with our understanding, insulin signaling pathway and nonalcoholic fatty liver disease are both enriched in
epitranscriptome module M2 [48, 49] and axon guidance is enriched in module M1 [50]. Figure shows the top 10 most statistically enriched
KEGG pathways in the identified epitranscriptome modules from DAVID [51]. Less terms are shown if there are less pathways enriched with
significance level 0.05 using default setting of DAVID.

regulation of defense response to virus, and viral process;
M3 is enriched with mRNA/rRNA processing, RNA splicing,
DNA methylation, and translation.

To test whether the identified epitranscriptome module
is potentially induced by the activity of RNA methylation
enzymes, we firstly identified theWTAP-dependentmethyla-
tion sites in 3 different cell lines (A549, Hela, and HEK293T)
using exomePeak R/Bioconductor package by performing
differential RNA methylation analysis on MeRIP-seq data
obtained from WTAP knockdown and wild type conditions
[31, 33]. We then compared the identified WTAP target sites
and the 5 identified epitranscriptome modules. Interestingly,
we found that epitranscriptome module 1 is significantly
enriched in WTAP preferential target sites under all 3 con-
ditions (A549 cell line: Odds Ratio= 3.1910, p value = 5.87E-
45; HeLa cell line: Odds Ratio= 3.7395, p value = 3.94E-28;
and HEK293T cell line: Odds Ratio= 2.3401, p value = 8.22E-
23), suggesting it is very likely to be mediated by WTAP, a
very important component of m6A RNA methyltransferase
protein complex [33].

4. Conclusion

Due to the impact of context-specific gene expression and
limitation of sequencing depth, the epitranscriptome data is
highly noise and it is usually difficult to accurately quantify
themethylation level of very lowly expressed genes using con-
ventional approaches developed for ChIP-seq or RNA-seq. In
order to more accurately capture the epitranscriptome mod-
ules, which reflects the regulation imposed via epitranscrip-
tome layer, we propose to use measurement weighting strat-
egy to penalize the measurements that are less accurate due
to weak signal in sequencing data. In this study, two different
types of weighted schemes (logarithm-based & threshold-
based) are developed. A 2D grid search was performed to fur-
ther optimize the parameters of threshold-based approach.
When the proposed measurement weighting strategy is
applied under a hierarchical clustering approach, we show in
real data that compared with conventional approach without
a measurement weighting scheme, the proposed approach
can indeed help to improve the classification performance
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Figure 9: Biological processes enriched in epitranscriptome modules. Distinct biological processes are enriched in different epitranscrip-
tome modules. Figure shows the top 10 most statistically enriched biological processes in the identified epitranscriptome modules from
DAVID [51].

and identify more biologically meaningful epitranscriptome
modules. When applied to the real dataset using the optimal
parameters determined from a training process, 5 epitran-
scriptome modules are identified from real data with distinct
biological functions linked to recent studies in the field,
suggesting the potential usage of the proposed method.

The proposed method is the first approach developed
for dealing with RNA m6A epitranscriptome sites with low
reads coverage in a clustering analysis. Although demon-
strated under a hierarchical clustering analysis framework
with Euclidean distance, the proposed measurement weigh-
ing strategy is conceptually easy and can be conveniently
extended to another computational analysis related to dis-
tance measurement concerning the epitranscriptome and
RNA methylation, such as, K-means, K-nearest neighbor

methods, and Pearson correlation, related to RNA m5C
methylome. For example, we show in the Supplemen-
tary Materials that the proposed threshold-based weighting
scheme is equally applicable when using squared Euclidean
distance or City Block to measure the similarity of RNA
methylation profiles. The approach clearly pointed out that
many measurements from high-throughput sequencing data
may not be accurate and need to be handled carefully to keep
as much information as possible and at the same time avoid
possible contamination in signal.

It is worth mentioning that using 100 repeated experi-
ments in a bootstrap sampling analysis, we show that the
epitranscriptome modules are more likely to be biologically
meaningful than a random group of genes of the same size
in terms of gene ontology analysis. As far as we know, this
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is the first time to show with robust statistical analysis (rather
than in a single isolated example) that the biological functions
are enriched in epitranscriptome modules. Previously, epi-
transcriptome modules are considered the induced pattern
of epitranscriptome regulators and are expected to emerge
when a large number of RNA methylation sites are regulated
by a small number of regulators [46], which explains the
generation mechanism of epitranscriptome modules. Our
results suggest that, besides the generation mechanism, the
epitranscriptome modules also directly regulate correspond-
ing biological functions, which justifies the regulatory aims
of epitranscriptome modules. Our work established the
functional basis of epitranscriptomemodules, which fulfilled
a key prerequisite for further functional characterization and
deciphered the epitranscriptome and its regulation.

The study still has a number of limitations that may be
improved. Firstly, the proposed threshold-based approach
relies on two parameters that need to be optimized in data
analysis. In practice, the most suitable values of the two
parameters are likely to vary on different datasets, which
may not be easy to determine in lack of appropriate training
dataset. It would be nice to develop an easy-to-use parame-
ter optimizing procedure for the proposed threshold-based
approach or propose a nonparametric method. Secondly, due
to the data availability and the lack of clear evidence for
the optimal number of clusters, we explored the biological
functions of epitranscriptome modules using only 9 samples
and set the number of clusters 𝑘 = 5; additionally, the
clustering structure used assumes that the clusters identified
are mutually exclusive; i.e., a methylation site can only belong
to a single cluster. In practice, it is important to include more
samples, using different number of clusters and different
clustering structures such as biclustering to capture other
potentially interesting epitranscriptome patterns. Thirdly,
this study takes advantage of only the numeric patterns
embedded in m6A-seq data [24, 25] but not data from other
techniques such as CLIP-based approach [64] that may cap-
ture the direct target substrate of RNA methylation-related
enzymes. An integrative analysis of multiple data types that
address both the generation mechanism and the regulatory
aims of the epitranscriptome modules is highly desired to
paint a global picture of the epitranscriptome. It would
be very interesting to see how a specific epitranscriptome
enzyme, e.g., FTO, regulates a specific biological function via
modulating the methylation status of thousands of substrate
genes.

Abbreviation

m6A: N6-methyladenosine
MeRIP-Seq: Methylated RNA immunoprecipitation

sequencing
IP: Immunoprecipitation
GO: Gene ontology
BP: Biological process.
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