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Abstract: Remyelination is a fundamental repair process in the central nervous system (CNS) that is
triggered by demyelinating events. In demyelinating diseases, oligodendrocytes (OLs) are targeted,
leading to myelin loss, axonal damage, and severe functional impairment. While spontaneous
remyelination often fails in the progression of demyelinating diseases, increased understanding
of the mechanisms and identification of targets that regulate myelin regeneration becomes crucial.
To date, several signaling pathways have been implicated in the remyelination process, including
the Hedgehog (Hh) signaling pathway. This review summarizes the current data concerning the
complicated roles of the Hh signaling pathway in the context of remyelination. We will highlight
the open issues that have to be clarified prior to bringing molecules targeting the Hh signaling to
demyelinating therapy.
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1. Introduction
1.1. Remyelination

Remyelination or myelin regeneration is a fundamental repair process in the central
nervous system (CNS) that is triggered by demyelinating events. Multiple sclerosis (MS) is
the most common demyelinating disease occurring in the CNS [1]. It is generally thought
that demyelination in MS patients is brought about by an autoimmune-mediated attack
on the myelin [2]. Spontaneous remyelination occurs at the onset of disease but often fails
when the disease progresses, leading to the loss of metabolic support from the myelin to
axons with subsequent axon degeneration and, finally, irreversible neurological disabilities.
MS is considered the leading cause of non-traumatic disability occurring in young adults.
Currently available treatments for MS exclusively target the immune system, relying on
multiple immunomodulators to suppress different immune cells or cytokines and reducing
inflammatory outbreaks at the early stage of MS [3-6]. However, inhibiting the recurring
inflammation does not necessarily ensure axonal remyelination in the demyelinated lesions.
There is currently no treatment available for the progressive stage of MS. Furthermore,
the development of remyelinating therapies depends on a better understanding of the
mechanisms and targets that regulate myelin regenerative processes.

The bottleneck of remyelination failure is the inability of oligodendrocyte progenitor
cells (OPCs) to differentiate into myelinating oligodendrocytes (OLs). In animal models, as
well as in humans, myelin regeneration is initiated by both resident OPCs at the site of lesion
and neural progenitor cells (NPCs) located in the ventricular-subventricular zone (V-SVZ)
of the brain [7-11]. Recently, several lines of evidence from MS patients demonstrated
that along with newly generated OPCs, spared OLs during the demyelination process also
participate in remyelination [12,13]. The recruitment of these various cell subsets at the

Cells 2022, 11, 2260. https:/ /doi.org/10.3390/ cells11142260

https:/ /www.mdpi.com/journal/cells


https://doi.org/10.3390/cells11142260
https://doi.org/10.3390/cells11142260
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0001-7910-0407
https://doi.org/10.3390/cells11142260
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11142260?type=check_update&version=1

Cells 2022, 11, 2260

20f12

site of a lesion and their respective contribution to the remyelination process remain to
be clarified.

1.2. The Hedgehog (Hh) Signaling Pathway

Several signaling pathways involved in developmental myelination have been impli-
cated in the remyelination program, including the Hh pathway [14]. Molecular and genetic
studies have revealed that the Hh signaling pathway constitutes one of the most important
pathways that regulate cell fate specification, proliferation, and differentiation during
development and tissue regeneration [15,16]. The Hh signaling pathway, which is highly
conserved during evolution, was first recognized in Drosophila, where it plays an essential
role in the segmentation and body-plan patterning of the larva [17]. Three Hh proteins
have been identified in vertebrates, including Sonic Hedgehog (Shh), Desert Hedgehog
(Dhh), and Indian Hedgehog (Ihh) [18]. Among them, Shh has marked roles during de-
velopmental oligodendrogenesis and myelination [19-23]. Ihh loss-of-function analysis
showed that Ihh is also required for OPC specification from NPCs [24]. In contrast, Dhh
primarily regulates the development of the peripheral nerve sheath and is a potential target
for treating demyelination in compression neuropathies [25,26].

The activation of Hh signaling can trigger two alternative pathways: canonical and
non-canonical (Figure 1). When Hh ligands are absent, The 12-pass transmembrane protein
receptor Patched 1 (Ptchl) exerts a repressive activity on the G-protein coupled receptor,
Smoothened (Smo). In the canonical pathway, glioma-associated oncogene homolog (Gli)
transcription factors are sequestered by suppressors of fused (Sufu) and phosphorylated by
PKA, CK1, and GSK-3§3, making them for proteolytic cleavage [27]. The cleavage of the C-
terminal domain creates GIiR, the repressor form of Gli factors, which then translocates into
the nuclear and represses downstream Hh target genes (Figure 1A). Upon Hh binding to
Ptcl, the repression of Smo is relieved. Smo then accumulates in the primary cilium, inhibits
the sequestration and phosphorylation of Gli factors, and promotes their dissociation from
Sufu. Full-length Gli factors are transcriptional activators that translocate into the nucleus
and activate the transcription of Hh target genes (Figure 1B) [28,29]. Three Gli factors, Glil,
Gli2, and Gli3, are reported to be the primary transcriptional effectors involved in the Hh
signaling in vertebrates. They appear to have distinct roles in mediating the Hh signaling
of various cell types during development [30-32].

In addition to the canonical Hh signaling pathway, a number of pathways triggered
by Hh ligands, but outside the Hh-Ptch1-Smo-Gli axis and independent of the primary
cilium, have been identified and collectively called ‘non-canonical’ Hh signaling path-
ways [33-36], which have been split into two types: Type I is Smo-independent, and Type
II is Smo-dependent. The majority of non-canonical Hh signaling pathways belong to
Type 1. Moreover, the activation of Gli factors that are independent of Hh ligands is also
referred to as non-canonical. As a G protein-coupled receptor, Smo can trigger a variety of
downstream responses by interacting with the heterotrimer G proteins [37,38]. For instance,
it can activate Rac family small GTPase 1 (Racl) and Ras homologous family member
A (RhoA), leading to actin remodeling and subsequent cell migration [39,40]. Src family
kinase (SFK) is another effector of Smo that has been shown to regulate axonal growth
cones [41]. Smo activation can also trigger a rapid Ca2+ influx, followed by the activation
of Calcium/Calmodulin-dependent protein kinase kinase 2 (CaMKK2), which in turn
promotes the phosphorylation of AMPK, a sensor of cellular metabolism [42]. Of note, non-
canonical Hh signaling can promote ciliogenesis through two distinct pathways. Firstly,
Smo directly activates LKB1/AMPK, which results in autophagy and the removal of satel-
lite OFD1, which is an essential step for ciliogenesis. On the other way, the interaction
between Smo and heterotrimer G proteins activates the LGN-NuMA-Dynein protein com-
plex, which is important for the delivery of OFD1 to the basal body during ciliogenesis [36].
Since ciliogenesis is required for the canonical Hh signaling pathway, there exists crosstalk
between canonical and non-canonical Hh signaling. For detailed information about the Hh
signaling, the readers are referred to some comprehensive reviews [33,35,43,44].
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Figure 1. Schematic diagram of Smo-driven canonical and non-canonical Hh signaling pathways.
(A) In the canonical Hh signaling, when Hh ligands are absent, Ptchl exerts a repressive activity
on Smo. Gli factors are sequestered by Sufu and phosphorylated by PKA, CK1, and GSK-3, and
then cleaved by post-translational proteolytic processing. The truncated Gli factors translocate into
the nucleus and repress the transcription of downstream genes. (B) Upon Hh binding to Ptchl, the
repression of Smo is relieved and Smo accumulates in the primary cilium, inhibiting the sequestration
and phosphorylation of Gli factors. The full-length Gli factors then translocate into the nucleus and
ultimately activate the transcription of downstream genes. (C) Representative non-canonical Hh
signaling pathways dependent on Smo. Smo can activate several downstream effectors involved in
various biological processes. PM: plasma membrane. PC: primary cilium. EE: early endosome. ER:
endoplasmic reticulum.

1.3. Animal Models for Investigation of Demyelination and Remyelination

Since the etiology and histopathology of MS are complex, different types of ani-
mal models have been used to study the mechanisms associated with demyelinating
diseases and to evaluate the efficacy of novel therapeutic drug candidates. A comparison
of histopathological characteristics between different MS animal models is given in [45—47].
The most studied MS animal model is the experimental autoimmune encephalomyelitis
(EAE), in which inflammation and autoimmune responses are induced by the injection
of synthetic peptides derived from myelin proteins. For instance, immunization of SJL/]
mice with the immunodominant PLP peptide (PLP139.151) induces a relapsing-remitting
disease course [48], while the immunization of C57BL6/] mice with MOGss.55 peptide
induces a chronic course [49]. Even though the EAE model is an excellent tool to study the
immune response during different courses of MS, there are also limitations. For example,
remyelination is difficult to be studied in an EAE model. Instead, toxic demyelination
is more suitable for studying the de- and remyelination process. Cuprizone is a copper
chelator, which, when supplementing normal chow, induces oligodendroglial cell death
with subsequent demyelination, together with the activation of inflammatory cells. Sponta-
neous remyelination occurs when removing Cuprizone from the diet. In contrast to the
EAE model, demyelination is most pronounced in the corpus callosum and somatosensory
cortex region [50]. Similarities between the Cuprizone model and progressive MS pathol-
ogy are innately-driven myelin and axonal injury, functional activation of oxidative stress
pathway [51], and the relative preservation of blood-brain barriers. The microinjection of
lysolecithin, which is also termed lysophosphatidyl choline (LPC), into the white matter
tracts caused prompt demyelination, followed by remyelination. This model has been used
very productively to examine the cellular and molecular determinants of remyelination.
Demyelination occurs due to the primary toxic effects of detergent on myelin sheaths rather
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than the secondary effects on OLs [52]. Moreover, LPC triggers a rapid and high repro-
ducible form of demyelination in the CNS without producing much damage to adjacent
cells and axons.

In summary, there is no single animal model that can replicate all of the heterogeneous
characteristics of human MS. Each single animal model allows us to study distinct aspects
of the disease rather than its entire complexity. Consequently, investigators need to carefully
select the animal model to accurately address their specific research question and provide
outcomes that result in findings applicable to human MS. Nonetheless, animal models have
proven to be highly advantageous in developing novel drugs that are directed toward the
process of remyelination.

2. The Promotion of Remyelination by the Hh Signaling Pathway
2.1. The Contribution of the Hh Signaling Pathway in Myelination and Remyelination

There exist sequential waves of OPC generation in vertebrates, firstly localized in
the ventral progenitor domains and later in dorsal regions [53]. Although most generated
OPCs differentiate into OLs and contribute to myelination, a small fraction of OPCs remain
in a low-proliferative or quiescent state in the adult [54]. Cell-tracing experiments revealed
that most adult OPCs are dorsally-derived in the forebrain [55]. After a demyelinating
insult, these OPCs undergo activation, proliferation, migration, and differentiation until
the formation of new myelin sheaths [56]. As mentioned before, NPCs from in the V-SVZ
also can generate OLs after demyelination [8,57-59].

The contribution of the Shh signaling pathway in the context of CNS demyelination
and remyelination has been addressed by several groups. In addition to its early role
in the induction of embryonic OPCs [15], Shh signaling is also implicated in the gener-
ation of postnatal OPC populations [60,61]. Exogenous Shh is able to increase the OPC
population and premyelinating OLs in the adult forebrain [62]. Genetic cell-fate labeling
experiments revealed that neural stem cells (NSCs) in the dorsal V-SVZ respond to Shh
and generate OPCs that come to reside in the corpus callosum. These cells persist into
adulthood and contribute to remyelination after Cuprizone-induced demyelination [63].
In a model of focal demyelination induced by LPC, the major components of the Hh sig-
naling pathway (including Shh and Smo) were upregulated in the oligodendroglial cells
in the area of a lesion. Further gain- and loss-of-function experiments demonstrated that
Shh promotes the proliferation and differentiation of OPCs and decreases astrogliosis and
macrophage infiltration altogether, leading to the attenuation of the lesion extent during
myelin repair [64].

The stimulation of Smo activity is compatible with the positive influence that Shh
exerts on remyelination. For instance, the microinjection of SAG, a Smo agonist, into
the corpus callosum of LPC-induced demyelinated mouse significantly increased OPC
proliferation and enhanced remyelination [65], in accordance with the recent results in
Cuprizone-induced demyelinating models [66]. Conversely, GDC-0449 (also referred to
as Vismodegib), a specific Smo antagonist, has been reported to repress Gli-mediated
transcription in different types of cells [67], significantly aggravating disease severity and
increasing the extent of demyelination in the EAE model of demyelination [68].

Recently, another crucial component of the Hh signaling pathway, the type I trans-
membrane receptor Boc, was identified as a new regulator of myelin formation and re-
pair [69]. During development, Boc forms a Shh receptor with Ptch1 and is necessary for
the Shh-mediated proliferation of cerebellar progenitor cells [70]. The Boc-null mutant mice
displayed delayed myelination, associated with a reduction in callosal axon diameter. In
the context of demyelination induced by LPC injection, Boc was significantly up-regulated
in the lesion. During myelin repair, Boc mutants exhibit aberrant OPC differentiation,
reminiscent of the phenotypes observed after blockade of the Hh signaling pathway.
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2.2. Identification of Clobetasol as a Smo agonist for Promoting Remyelination

Although the Hh/Smo signaling pathway possesses an important role in promoting
remyelination, the development of related therapeutic strategies has been impeded by
the lack of U.S. Food and Drug Administration (FDA)-approved Smo agonists. By using
high-throughput screening for cells that express the Smo receptor, four FDA-approved
drugs, clobetasol, halcinonide, fluticasone, and flucinonide, were identified as agonists
of Smo [71]. These drugs have the capacity to bind Smo, promote the internalization
of Smo, cause the activation of Gli factors, and increase the proliferation of neuronal
progenitor cells. Meanwhile, several bioactive drugs have also been selected in phenotypic
screens for their ability to promote MBP expression in different cell-based assays, including
primary OPC cultures [72-74], mouse OPC cell lines such as Oli-neuM [75], and epiblast-
derived OPCs [76]. These independent drug screens, performed with different libraries
and OPC models, support Clobetasol as one of the top-ranking drugs in promoting OPC
differentiation and myelin development.

Clobetasol is a member of the glucocorticoid family and is commonly used to treat a
number of skin disorders [77]. It is a potential remyelinating agent that has been demon-
strated to promote the differentiation of OPCs in vitro, as well as remyelination in vivo [1].
Najm et al. reported that Clobetasol, as a modulator of the glucocorticoid receptor, specifi-
cally promotes rapid myelination in organotypic cerebellar slice cultures, as well as in the
CNS of postnatal mouse pups [76]. Systematic administration of Clobetasol resulted in a
significant increase in newly differentiated OLs and enhanced myelin regeneration in the
LPC-induced mouse models of focal demyelination. In an EAE mouse model of chronic
progressive MS, an impressive reversal in disease severity was observed when Clobetasol
was administrated at the peak of the disease. Furthermore, an assessment of the immune
response demonstrated that Clobetasol was able to serve as a robust immunosuppressant in
addition to inducing remyelination [76]. In addition, Clobetasol enhanced OL production
from human OPCs in vitro [76]. Neuromyelitis optica (NMO) is a CNS disorder that in-
volves inflammation and demyelination of the spinal cord and optic nerve [78]. In a mouse
model of NMO produced by an injection of an anti-AQ4 antibody, an intraperitoneal ad-
ministration of Clobetasol significantly reduced the myelin loss and increased the number
of myelinating OLs within the lesions [79]. Recent studies further demonstrated that Clobe-
tasol significantly improved NSC survival and prompted the differentiation of NSCs into
neurons and OLs while inhibiting astrocyte differentiation, providing a potentially novel
mechanism underlying the therapeutic effect of Clobetasol in CNS-related disease [80].

Altogether, the identified Smo agonist Clobetasol might function in multiple cell types
and act via a range of targets to promote myelin repair. Importantly, Clobetasol is able to
pass through the blood-brain barrier, raising the exciting possibility that Clobetasol could
advance to clinical trials for the currently unavailable chronic progressive phase of MS.

3. Negative Regulation of Myelination and Remyelination by the Hh Signaling Pathway
3.1. Inhibitory Effect on Myelination by the Hedgehog Signaling

In the transgenic mice that ectopically expressed Shh in the dorsal neural tube, spinal
precursor cells were arrested in an undifferentiated state and exhibited elevated levels of
proliferation [81]. Recently, our team discovered a stage-specific activity of Hh signaling
in OL development and showed that persistent activation of Smo in OPCs inhibited their
differentiation [82]. Thus, Smo-mediated Hh signaling appeared to robustly promote NPC
or OPC proliferation and resulted in the inhibition of OPC differentiation and subsequent
myelination during early developmental stages. This observation is in agreement with the
blockade of myelin development by the Smo agonist, SAG [65]. Moreover, the fact that
appropriate myelination during development requires down-regulation of Hh is consis-
tent with the thin corpus callosum observed in patients with Gorlin syndrome [83]. This
syndrome is associated with a mutation in the Hh receptor, Ptch1, that blocks the repres-
sion of Smo activity, allowing for the increased activation of Hh signaling. In summary,
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Smo-mediated Hh signaling has an apparent inhibitory effect on OPC differentiation and
developmental myelination.

3.2. Down-Regulation of Glil during Myelination and Remyelination

In fact, Glil, originally considered to be a reliable readout of Hh signaling activity, has
proven to be detrimental during myelination and remyelination. During development, the
genetic ablation of Glil in NPCs appeared to lead to precocious myelination [11]. Specifi-
cally, the inhibition of Glil through specific-inhibitor GANT61 in human iPSCs-derived
neural stem cells (NSCs) resulted in the increased generation of OPCs. These GANT61-
induced OPCs are more migratory, in agreement with the single-cell RNA sequencing that
show up-regulated cytoskeletal reorganization pathways. The differentiated OLs were
proven to be functional and able to generate compact myelin both in vitro and in vivo [84].
Thus, the inhibition of Glil in NSCs facilitates OPC generation and OL maturation dur-
ing development.

In addition, the negative regulation of myelin regeneration by Glil was also reported
recently. During the demyelination and remyelination processes, the expression of Glil
appeared to be variable depending on the animal models that were used. When demyeli-
nation was induced in the corpus callosum by an injection of LPC, a relatively moderate
transcription of Glil was seen in OPCs within the lesions [64]. In the EAE model, Glil
transcription was up-regulated in OPCs and neurons immediately before EAE onset but
down-regulated while the demyelination stage [85]. Concerning the Cuprizone model,
it was noted that little to no up-regulation of Glil was observed in the demyelinated
corpus callosum, primarily in the reactive astrocytes [66]. Importantly, fate-mapping exper-
iments following Cuprizone-induced demyelination showed that a subset of SVZ-derived
Glil-expressing NPCs down-regulated Glil expression upon arrival to the lesion site [11].
Moreover, the inhibition of Glil expression in the Cuprizone model was found to amplify
the recruitment of NPCs, promote the migration of OPCs to the demyelinated axons, and
enhance remyelination [84,86]. Concomitantly, the pharmacological inhibition of Glil activ-
ity directly or indirectly improved the functional outcomes in the EAE model by promoting
remyelination and neuroprotection in the spinal cord [11]. It is noteworthy that this role
appeared to be specific to the inhibition of Glil independent of the canonical Hh signal-
ing, based on the observation that remyelination was unaltered when the canonical Hh
signaling was inhibited.

4. The Complex Involvement of Canonical and Non-Canonical Hedgehog Signaling
Pathways in Remyelination

As described above, the use of several small molecules able to activate Smo-mediated
Hh signaling or to block its key effector Glil led to improved remyelination in several animal
models (Table 1), which might reflect not only the potential involvement of canonical and
non-canonical Hh signaling pathways, but also the targeting of different cell types (NSCs
or resident OPCs), and probably the differential activation of local inflammatory cells.
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Table 1. Summary of the effects of reported pro-remyelinating Hh modulators.

Name Hh Modulation Pro-remyelination Effects References
SAG
Smo agonist, activates canonical and non-canonical Stimulates OPC proliferation and differentiation during
. .. . [65,66]
Hh pathway myelin repair in LPC and cuprizone models
Up-regulates Gli2 expression;
Smo agonist; activates non-canonical Hh pathway Promotes the recruitment and differentiation of OPCs in [87]
LPC models
Up-regulates MBP expression in Oli-neuM cell line;
Increases NSC viability and promotes NSC and OPC
. differentiation;
Smo agonist Promotes OL maturation up to axon engagement; [75,76,79,80]
Reverses the disease severity in EAE models;
Promotes remyelination in NMO models
Smo agonist Up-regulates MBP expression in Oli-neuM cell line [75]
Gant61
N Increases the generation of OPCs from iPSC-derived NSCs;
Glil antagonist Enhances the migration of OPCs; [11,84]

L O
o8 “%““@

Promotes myelin repair in Cuprizone models
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4.1. The Promotion of Remyelination via the Non-Canonical Pathway

As mentioned above, Smo is able to transduce Hh signaling via both canonical and
non-canonical pathways [33-36,87,88]. In agreement with the findings that Glil inhibition
by GANT61 improves remyelination [11], the non-canonical Smo agonist GSA-10 has been
recently reported to promote remyelination (Table 1) [87]. GSA-10 was first identified
through a Smo pharmacophore-based screen [89,90], and it belongs to a new family of
Smo agonists that activate the non-canonical pathways associated with Glil inhibition [91].
In the Oli-neuM cell line, GSA-10 was a potent activator of OPC differentiation. Upon
demyelination induced by LPC, it prompted the OPC recruitment toward the lesion area
without enhancing their proliferation. Notably, GSA-10 displayed the ability to promote OL
maturation up to the stage of engaging artificial axons [87]. In conclusion, non-canonical
Hh signaling is able to promote remyelination until axon engagement, representing a novel
potential therapeutic target. Thus, together with the remyelinating effects described for
the other small molecules binding Smo, the conspicuous remyelinating effects of GSA-
10 support the idea that different Smo agonists can activate distinct signaling pathways
presumably by activating Smo at different sites [36,89,90]. Interestingly, Smo activation
by GSA-10 led to Gli2 upregulation, which is consistent with the recent report that ab-
lation of Glil increased the expression of Gli2 in NPCs following Cuprizone-induced
demyelination [86]. In the same line, Sox17 has also been found to induce OL regener-
ation in demyelinated areas through an increase in Shh/Smo/Gli2 activity [92], further
supporting the importance of Gli2 upregulation for the differentiation program under
Glil downregulation.

4.2. Hh Signaling Modulation Controls Local Inflammatory Cells

Under repairing conditions, inflammatory cells in the affected regions, including
astrocytes and microglia, are endowed with beneficial or deleterious properties, promoting
or impairing the endogenous capacity of OPCs to induce spontaneous remyelination after
myelin loss [3,93]. Therefore, astrocytes and microglia are becoming additional targets
for assessing remyelinating properties afforded by small molecules. The observation that
SAG was able to promote OPC differentiation in the context of demyelinated lesions was
unexpected given its ability to also promote OPC proliferation [65,66]. During spontaneous
remyelination occurring after LPC-induced demyelination, the Smo receptor is up-regulated
in OLs and microglia but at a reduced level in astrocytes. Upon demyelination, SAG might
promote the differentiation of OPCs indirectly by influencing microglia, inducing the
expression of anti-inflammatory markers. This potential mechanism is supported by the
previous report that microglia were shifted to an anti-inflammatory phenotype that could
direct OL differentiation during remyelination [94]. Consistently, the conditional removal
of Smo from microglia resulted in a dramatic decline of differentiated OLs, suggesting
that Smo is cell-autonomously required for the response of microglia to a demyelinating
event and that the pro-differentiating activity of SAG is related to its influence on microglia.
Although GFAP expression did not appear to be regulated by SAG, the selective up-
regulation of Smo in astrocytes in the LPC models also raises the possibility that its pro-
differentiating activity might be mediated by specific subsets of astrocytes.

5. Conclusions

Given that the process of remyelination is extensive and complicated, boosting remyeli-
nation is a current challenge in the field of CNS demyelinated disease. Current approaches
for discovering regenerative therapies in MS are mostly based on the assumption of enhanc-
ing the differentiation of resident OPCs to OLs. However, a recent single-cell analysis of the
white matter in MS patients identified oligodendrogial heterogeneity in MS and proposed
that strategies to restore healthy OL heterogeneity should be a major focus in the future
treatment of MS [12,13]. Therefore, in addition to the generation of new OLs, spared OLs
during the demyelinating process might also be the target of remyelinating therapies. The
data accumulated over the years regarding the remyelinating properties of Hh signaling
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modulators have uncovered multiple roles that target several steps of the regeneration
process as well as several cell types. Both canonical and non-canonical Smo-mediated
activities likely contribute to tissue regeneration in an intricate manner opening the way to
new perspectives in the therapeutic of CNS demyelination diseases.
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