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Abstract

Background: Similar diseases are always caused by similar molecular origins, such as diasease-related protein-coding
genes (PCGs). And the molecular associations reflect their similarity. Therefore, current methods for calculating disease
similarity often utilized functional interactions of PCGs. Besides, the existing methods have neglected a fact that genes
could also be associated in the gene functional network (GFN) based on intermediate nodes.

Methods: Here we presented a novel method, InfDisSim, to deduce the similarity of diseases. InfDisSim utilized the
whole network based on random walk with damping to model the information flow. A benchmark set of similar
disease pairs was employed to evaluate the performance of InfDisSim.

Results: The region beneath the receiver operating characteristic curve (AUC) was calculated to assess the performance.
As a result, InfDisSim reaches a high AUC (0.9786) which indicates a very good performance. Furthermore, after
calculating the disease similarity by the InfDisSim, we reconfirmed that similar diseases tend to have common
therapeutic drugs (Pearson correlation γ2 = 0.1315, p = 2.2e-16). Finally, the disease similarity computed by infDisSim
was employed to construct a miRNA similarity network (MSN) and lncRNA similarity network (LSN), which were further
exploited to predict potential associations of lncRNA-disease pairs and miRNA-disease pairs, respectively. High AUC
(0.9893, 0.9007) based on leave-one-out cross validation shows that the LSN and MSN is very appropriate for predicting
novel disease-related lncRNAs and miRNAs, respectively.

Conclusions: The high AUC based on benchmark data indicates the method performs well. The method is valuable in
the prediction of disease-related lncRNAs and miRNAs.

Keywords: Information flow, Disease similarity, Gene functional network, lncRNA similarity network

Background
One way to indicate the associations between pair-wise
diseases in quantitatively is their similarity. In compari-
son with the associations, disease similarity can indicate
the relationships between diseases of multiple categories
more clearly and easily, for instance, cancers [1]. In the
previous studies, disease similarity was exploited to com-
pute similarities between protein-coding RNA genes

(PCGs), which can help to disclose the complex patho-
genesis of diseases [1]. Moreover, disease similarity was
also employed to calculate similarities between micro-
RNA genes (miRNAs) [2, 3], and long non-coding RNA
genes (lncRNAs) [4–8], respectively, which could be ap-
plied for constructing functional network of non-coding
RNA genes (ncRNAs). Recently, similarity between dis-
eases was even utilized to predict potential therapeutic
drugs for diseases [9–12].
Semantic associations and disease gene associations

are often considered to be quantitative for evaluating
disease similarity. Semantic associations between dis-
eases were documented in the ontology around disease
terms. The most widely used ontology for calculating
disease similarity is Disease Ontology (DO) [13], which
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is the first ontology to be established around disease
terms. DO defines a type of semantic association named
‘IS_A’ relationship, which reflects set inclusion relation-
ships between disease terms [14]. Disease terms of DO
could build a directed acyclic graph (DAG) based on the
‘IS_A’ relationship. Disease-related genes were distributed
in different sources, such as Comparative Toxicogenomics
Database (CTD) [15], Online Mendelian Inheritance in
Man (OMIM) [16], Gene Reference into Functions (Gen-
eRIFs) [17], Genetic Association Database (GAD) [18],
and so on.
Three widely used methods for computing the similar-

ity of terms of ontology were presented by Resnik [19],
Lin [20], and Wang et al. [21] repectively. All of these
three methods were utilized for computing disease simi-
larity by DOSim [1]. Resnik presented Information con-
tent (IC) of terms of ontology [19], and in this method,
IC of the most informative common ancestor (MICA) of
pair-wise diseases was served as the similarity of them.
Due to the IC of the pair-wise terms and the IC of the
MICA could contribute to the similarity of them, Lin
[20] improved Resnik’s method. By the contrast of
Resnik’s and Lin’s method, Wang et al. [21] computed
the similarity between terms fully based on semantic as-
sociations of terms in ontology.
In recent years, three methods for calculating similarity

of terms of DO were presented. Disease-related genes
have been the focus of all these methods. In another word,
the similarity of two diseases was converted to the similar-
ity of the two gene sets of diseases. Mathur and Dinakar-
pandian first presented to utilize the figure of overlapping
genes to calculate disease similarity [22]. Even though two
gene sets have no shared genes, these two sets could also
be connected by their presence during the same or similar
biological process. Therefore, Mathur and Dinakarpandian
designed a process-similarity based (PSB) method to com-
pute disease similarity based on biological process terms
of Gene Ontology [23, 24]. Besides biological process, co-
expression [25] and protein-protein interaction [26] could
also be employed to similarity of disease-related gene sets
[27, 28]. Hence, Cheng et al. combined semantic associ-
ation and the comprehensive gene functional network to
compute disease similarity (SemFunSim) [11], which per-
forms very well.
Improved knowledge has suggested that semantic as-

sociations and disease gene associations are two types of
significant associations, which were widely exploited to
measure disease similarity. Recent studies focused on in-
corporating disease gene associations from different
views. Eventually, comprehensive gene functional net-
work (GFN) was incorporated in SemFunSim method
[11], in which functional interactions of pair-wise genes
were considered. Obviously, it is straightforward to
consider that whether the entire network could be

completely utilized to measure disease similarity. For
this purpose, we designed a novel method, called InfDis-
Sim, to figure out disease similarity by modeling the in-
formation flow in the comprehensive GFN in this study.

Methods
Date source
Disease ontology
Disease terms and semantic associations were originated
from DO [13] (Table 1), which is manually curated for
diseases names. As for now, it includes 7124 ‘IS_A’ rela-
tionships between 6920 terms.

Disease gene association network
Disease-related genes are derived from the latest version
of diversed open source sources involving CTD [15],
GAD [18], GeneRIFs [17], and OMIM [16]. Disease
terms in these databases were distributed to DO accord-
ing to SIDD [29]. After integrating all of these four
widely used sources, 130,144 associations between 3178
disease terms and 11,717 genes were obtained as disease
gene association network (Additional file 1).

Comprehensive gene functional network
Comprehensive GFN was estimated from HumanNet
[30], which is built around Homo sapiens. Multiple inter-
actions spanning human mRNA co-expression, protein-
protein interaction, protein complex, and comparative
genomics data sets, combining with alike lines of evi-
dence from orthologs in yeast, fly and worm are com-
prehensively analyzed for the network utilizing a
probabilistic method. Currently, it contains 476,399 in-
teractions among 16,243 genes [30].

Disease-related drugs
Disease-related drugs were derived from robust, publicly
accessible databases CTD [15], which elucidates the
process that chemicals affect human health. Disease
terms in CTD were distributed to DO according to
SIDD [29]. As a result, 16,639 associations between 1093
diseases and 3887 drugs were obtained.

Table 1 Data sources

Data source Web site (Date of download)

DO http://disease-ontology.org/ (Jun 2016)

CTD http://ctdbase.org/ (Jun 2016)

GeneRIF http://www.ncbi.nlm.nih.gov/gene/about-generif
(Jun 2016)

GAD https://geneticassociationdb.nih.gov/ (Jun 2016)

OMIM http://www.omim.org/ (Jun 2016)

HumanNet http://www.functionalnet.org/humannet/download.html
(Jun 2016)

LncRNADisease http://www.cuilab.cn/lncrnadisease (Jun 2016)
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Disease-related lncRNAs
Human lncRNA-disease associations [31–36] were incor-
porated into the lncRNA similarity network (LSN), which
was constructed based on disease similarity, to predict po-
tential relationships between diseases and lncRNAs. These
associations were derived from a manually curated data-
base LncRNADisease [37], which provided experimentally
supported disease-lncRNA associations. After removing
disease terminologies not in DO and deploying of dupli-
cate associations, 602 associations between 167 diseases
and 338 lncRNAs were obtained (Additional file 2).

Disease-related miRNAs
Disease-related human miRNAs were extracted from the
Human microRNA Disease Database (HMDD) v2.0 [3].
After manually mapping disease terms of HMDD to DO,
we got 5710 associations between 556 miRNAs and 265
diseases (Additional file 3).

Method for calculating disease similarity
In this study, we designed a novel method to compute
disease similarity by modelling the information flow in

the comprehensive GFN. In the previous study, a tool
called ITM Probe [38] was created for analyzing infor-
mation flow in the network based on random walk with
damping. Currently, three models involving absorbing,
emitting, and channel were employed in ITM Probe. Ac-
cording to these three models [39], the initial nodes
which are the starting points of the random walk and
the sink nodes which are the ending points of the ran-
dom walk are regarded as boundary nodes, and the rest
of the nodes in the network are regarded as transient
nodes. Channel model [39] was designed for directed in-
formation flow, which extends absorbing model that
specify the source of the information flow and emitting
model that distributes end of information flow.
Here, channel model was employed to the network in-

volving disease gene association network and the com-
prehensive GFN. In this network, disease terms couldn’t
be directly linked to each other, however, they could be
associated based on their related genes. According to
Fig. 1, diseases in the network were considered as
boundary nodes, and all the genes were considered as
transient nodes. To distribute a weight to each transient

Fig. 1 Workflow of InfDisSim to demonstrate the basic ideas of measuring disease similarity
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nodes for disease, a given disease was considered as both
the source node and the sink node in the information
flow, and damping factor was distributed as 0.85 based
on previous study [39]. Assuming N genes exist in the
integrative network. Each disease can be represented as
N-dimension vector based on the ITM Probe. For a give
disease t1, the weight vector can be described as:

WVt1 ¼ w1;1;w1;2;…;w1;i;…;w1;N
� �

; ð1Þ

where WVt1 indicates a weight vector of t1, and w1, i in-
dicates the weight score of t1 on the ith dimension.
Then, disease similarity based on the information flow
could be defined as the cosine of their vectors as
following:

Inf t1; t2ð Þ ¼
PN

i¼1
w1;i ⋅w2;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
w1;i

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

j¼1
w2; j

2

s : ð2Þ

Because disease similarity could be reflected by seman-
tic associations and the disease gene associations, the
disease similarity is defined as following:

InfDisSim t1; t2ð Þ ¼ Inf t1; t2ð Þ ∣G1‖G2∣

jGMICAjð Þ2 ; ð3Þ

where G1, G2 indicates gene set of t1 and t2, respectively.
GMICA is the gene set of t3, which is the most inform-
ative common ancestor of t1 and t2. And ∣.∣ represents
the number of terms in the specified set.
According to Lin’s research, the definition of similarity

between pair of terms of DO is as following:

Sim t1; t2ð Þ ¼ 2� IC tMICAð Þ
IC t1ð Þ þ IC t2ð Þ ; ð4Þ

or

Sim t1; t2ð Þ ¼
log Grootj j2

GMICAj j2

log Grootj j2
∣G1∣⋅∣G2∣

; ð5Þ

where Groot represents gene sets of the root node of the
DAG of DO. According to the eq. 5, the semantic simi-
larity between t1 and t2 is proportional to ∣G1∣ and
∣G2∣, and is inversely proportional to ∣GMICA∣. There-
fore, the proportional relation of Eq. 3 is consistent with
the proportional relation of Lin’s method.
Assuming T1 and T2 are two disease sets, which in-

cludes n, and m diseases, respectively. Similarity between
two disease sets (Fig. 2) was defined in the eq. 6 as
following:

sim T1;T2ð Þ ¼
P

1 ≤ i ≤ n
Sim t1;i −> T 2

� �þP
1 ≤ j ≤m

Sim t2;j −> T1
� �

nþm
;

ð6Þ

where t1,i, and t2,j represent the ith and jth diseases of T1

and T2, respectively. Sim(t1, i − > T2) represents similarity
from a disease term of T1 to T2. Taken t1,1 for example,
the eq. 7 gives the definition as following:

Sim t1;1−> T 2
� � ¼ max

1 ≤ j ≤m

sim t1;1; t2; j
� �

: ð7Þ

Method for predicting disease-related lncRNAs and
miRNAs
Disease-related lncRNAs and miRNAs were indicated
applying a global network ranking algorithm called ran-
dom walk with restart (RWR) [40]. The random walker
starts from one or several seed nodes and then randomly
transits to neighboring nodes considering the probabil-
ities of the edges connected the two nodes. And the
probability of returning to the seed node is supposed as
γ. Then, RWR algorithm can be defined as following:

Fig. 2 Shows an example of calculating similarity between disease sets T1 and T2
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Ptþ1 ¼ γP0 þ 1−γð ÞAPt ; ð8Þ

where P0 represents the initial probability vector, which
changes with the step t and the probability γ, Pt is a vec-
tor in which the ith element represents the probability
of finding the walker at node i and step t, A indicates
the column-normalized adjacency matrix of the network.
The algorithm was implemented until the difference be-
tween Pt and Pt + 1 falling below 10−10, which indicates
all the nodes’ status become stable.
Based on our method, researchers can predict novel

lncRNA-disease and miRNA-disease associations based
on RWR. Firstly, a LSN (MSN) could be constructed for
RWR. A lncRNA (miRNA) has associations with a set of
diseases. Hence, similarity between two lncRNAs (miR-
NAs) could be computed based on their related disease
sets, which promotes to construct a LSN (MSN). Then,
lncRNAs (miRNAs) could be scored for each disease
based on RWR, in which the known lncRNAs (miRNAs)
of a disease are considered as seed nodes. For each dis-
ease, the unknown lncRNAs (miRNAs) of it could be
scored. After ranking the lncRNAs (miRNAs) based on
the scores, disease-related lncRNAs (miRNAs) are finally
predicted.

Method for validating the performance of InfDisSim
Figure 3 shows the process of performance validation.
At the beginning, a benchmark set including 70 pairs be-
tween 47 diseases was derived from two public articles
respectively(Additional file 4). One of them is Suthram
et al.’s study [41], by which similar pairs of diseases were
recognized according to the disease-related mRNA ex-
pression data and the human protein interaction net-
work. The other is Pakhomov et al.’s study [42], in which
similar pairs of diseases were manually checked by ex-
perts in related fields. Then, a random set involving ten
times of the benchmark set was obtained from DO.
After that, the similarities of benchmark set and random
set were calculated by the state-of-art methods including

Resnik’s, Lin’s, Wang’s, PSB, SemFunSim, and InfDisSim.
Finally, the receiver operating characteristic (ROC) curve
was drew for assessing the performance of these
methods. Furthermore, the experiment was iterated 100
times, and the average of the region under the ROC
curve (AUC) for each method was obtained.

Results
Performance evaluation based on benchmark set
ROC curves of the state-of-art methods based on a
benchmark set and a random set are shown in Fig. 4a.
The figure indicates that the AUCs of Resnik’s, Lin’s,
Wang’s, PSB, SemFunSim and InfDisSim are 0.6283,
0.6586, 0.6837, 0.8807, 0.9843, and 0.9786, respectively.
Obviously, the performances of three typical methods in-
volving Resnik’s, Lin’s, and Wang’s methods are almost
the same. And all of these three methods perform gener-
ally. By the contrast, three novel methods that predicted
more disease gene associations and gene interactions
perform superior, of which the performances of Sem-
FunSim and InfDisSim are the best and nearly the same.
Resnik’s, Lin’s, and Wang’s methods concentrated on

sematic associations. Few of disease gene associations
were employed by these three methods. With more and
more disease gene associations and gene interactions
identified, it is easier to study similarity between diseases
in molecular level. Fortunately, three methods including
PSB, SemFunSim, and InfDisSim have intergrated these
associations into semantic associations. It is easy to find
the interactions between genes including mRNA co-
expression, protein-protein interaction, protein complex,
and so on. Although PSB method only applied co-
occurrenced biological process of genes, its performance
has already been improved. To enhance the perform-
ance, SemFunSim and InfDisSim methods employed
comprehensive gene functional associations from two
different views. And both of these two methods perform
excellently.

Fig. 3 The process of performance evaluation. AUC represents the area under the receiver operating characteristic curve
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Figure 4b shows the AUCs of the 100 iterators, which
are consistent with the Fig. 4a. From this figure, the
average AUCs of the 100 iterators are 0.6223, 0.6538,
0.6851, 0.8824, 0.9832, and 0.9788, respectively.

Relationship between disease similarity by InfDisSim and
co-occurrence drugs
Previous studies have indicated that similar diseases could
have common therapeutic drugs [9, 10]. Therefore, it is
possible that similar diseases tend to have more co-
occurrence drugs. To prove this, we discuss the relation-
ship of disease similarity by InfDisSim with co-occurrence
drugs. In this study, we employed the Jaccard index as the
measure for disease similarity by drugs. As a consequence,
InfDisSim disease similarity showed significant positively
correlated with the co-occurrence drugs (Pearson correl-
ation γ2 = 0.1315, p = 2.2e-16; Fig. 5). Results demonstrate
that disease similarity detected by our method is corre-
lated with co-occurrence drugs, which have a very strong
correlation with disease similarity.

Application of disease similarity to the prediction of
disease-related lncRNAs
For the sake of showing the usefulness of disease similar-
ity computed by our InfDisSim, we firstly constructed a

lncRNA similarity network (LSN) based on disease simi-
larity, and then identified disease-related lncRNAs based
on LSN. The similarity of each pair of 111 lncRNAs was
computed using the eq. 6. After that, the z-score of each
pair of lncRNAs was computed based on these scores.
Then, each similarity score gained a one-sided P-value.
Finally, all of these lncRNA similarity scores were
appiled to construct LSN (Additional file 5).
LSN was further employed to predict disease-related

lncRNAs employing RWR algorithm. According to the
known 331 associations between 125 diseases and 111
lncRNAs, the performance of the LSN was assessed by
leave-one-out cross validation. Finally, an AUC of 0.9893
was obtained (Fig. 6).

Application of disease similarity to the prediction of
disease-related miRNAs
We also utilized the disease similarity to construct a
MSN and predict disease-related miRNAs based on the
network. Here, we calculated similarity of each pair of
265 miRNAs and corresponding one-sided P-value. All
of these miRNA similarity scores were employed to con-
struct MSN (Additional file 6) for predicting disease-

Fig. 4 AUC analysis based on the benchmark set. a ROC curves of the state-of-art methods. b AUCs of 100 iterators

Fig. 5 The relationship between disease similarity based on InfDisSim
and co-occurrence drugs

Fig. 6 The ROC curve of our method based on leave-one-out cross
validation on experimentally verified lncRNA-disease associations
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related miRNAs. The performance of the MSN was
assessed by leave-one-out cross validation. As a result,
we got an AUC of 0.9007.

Discussion
To identify the disease-related ncRNAs, including
lncRNAs and miRNAs, we presented a novel method
based on disease similarity using a random walk. With the
high AUC performance of predicting disease-related miR-
NAs and lncRNAs (0.9893, 0.9007), the proposed methods
in this paper may also be applied to predict other disease-
related modules, e.g. SNP and risk pathways [43, 44].

Conclusions
In this study, we presented a novel method, InfDisSim,
to figure out disease similarity by semantic association
and disease-related genes. In time of computing similar-
ity based on genes, information flow was modelled into
a comprehensive GFN, which is constructed by integrat-
ing multiple interactions involving mRNA co-expression,
protein-protein interaction, protein complex, and so on.
In the precious study, SemFunSim has introduced the
interactions of pair-wise genes between different gene
set. Here, the whole network was fully employed based
on information flow. It introduced a novel view to com-
pute disease similarity.
The performance of InfDisSim was validated employing

the benchmark set. The high AUC (0.9786) indicates its
excellent performance. Then, we assessed the observation
that similar diseases could have common therapeutic
drugs. Finally, InfDisSim disease similarity was significant
positively correlated with the co-occurrence drugs (Pear-
son correlation γ2 = 0.1315, p = 2.2e-16; Fig. 5). Therefore,
InfDisSim disease similarity could be utilized to predict
potential associations between diseases and drugs.
lncRNA similarity and miRNA similarity could be

computed based on InfDisSim disease similarity. Here,
for all the pairs of lncRNAs (miRNAs), which was ap-
plied to construct a LSN (MSN), we calculated their
similarities. The network was further used to predicate
disease-related lncRNAs (miRNAs). As a result, the high
AUC (0.9893, 0.9007) illustrates that the LSN (MSN) is
very appropriate for predicting potential associations be-
tween diseases and lncRNAs (miRNAs) based on RWR.
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