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Abstract Restrictive and repetitive behavior in autism

may be related to deficits in cognitive control. Here, we

aimed to assess functional connectivity during a cognitive

control task and compare brain network activity and con-

nectivity in children with autism spectrum disorders (ASD)

and typically developing children using a multivariate data-

driven approach. 19 high-functioning boys with ASD and

19 age-matched typically developing boys were included in

this study. Functional magnetic resonance imaging was

performed at 3T during the performance of a cognitive

control task (go/no-go paradigm). Functional networks

were identified using independent component analysis.

Network activity and connectivity was compared between

groups and correlated with clinical measures of rigid

behavior using multivariate analysis of covariance. We

found no differences between the groups in task perfor-

mance or in network activity. Power analysis indicated

that, if this were a real difference, it would require nearly

800 subjects to show group differences in network activity

using this paradigm. Neither were there correlations

between network activity and rigid behavior. Our data do

not provide support for the presence of deficits in cognitive

control in children with ASD, or the functional networks

supporting this ability.
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Introduction

Autism spectrum disorders (ASD) are characterized by

three defining symptom clusters: impairments in social

interaction, communication difficulties, and restrictive,

repetitive and stereotyped patterns of behaviors (American

Psychiatric Association 2000). It has been suggested that

different aetiological processes contribute to these disor-

ders, and one useful way to study more homogeneous

subgroups may be to focus on core areas of symptoms

(Langen et al. 2011a, b). The cluster of rigid behavior may

in part reflect problems in cognitive control (Hill 2004;

Solomon et al. 2008). Cognitive control comprises a wide

range of abilities that help maintain an appropriate cogni-

tive set in working memory to achieve a later goal, such as

planning, mental flexibility, sustained attention, interfer-

ence inhibition, response suppression (or inhibitory con-

trol), outcome monitoring and the ability to deal with

novelty (Chan et al. 2008). Some behavioral manifestations

of rigidity in ASD seem particularly related to motor-

response inhibition (Mosconi et al. 2009). Rigid behavior

could then reflect the inability to inhibit pre-potent or

ongoing motor behaviors when they are no longer appro-

priate, resulting in an inability to favor the expression of

other, more adaptive responses.

Functional magnetic resonance imaging (fMRI) studies

have shown activation of a network of brain regions during

the execution of cognitive control tasks, including
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prefrontal cortex, anterior cingulate cortex, striatum and

posterior parietal cortex. This network of functionally

connected regions has been termed the cognitive control

network (Durston and Casey 2006; Cole and Schneider

2007). However, effective cognitive control is also related

to the concurrent modulation of other networks, i.e. coac-

tivation of the salience network (Menon and Uddin 2010)

and deactivation of the default mode network (Buckner

et al. 2008; Raichle et al. 2001) during cognitive control

tasks.

Several fMRI studies of cognitive control have reported

atypical activation in task-related areas in individuals with

ASD compared to controls, particularly in the frontostri-

atal circuitry (for review, see Dichter 2012). Only few

studies of functional connectivity during cognitive control

have been conducted and most of them report reduced

connectivity in the cognitive control network and related

brain regions in ASD (Just et al. 2007; Kana et al. 2007;

Solomon et al. 2009; Agam et al. 2010). This could be

taken to suggest immature functional integration or seg-

regation of networks in ASD. Furthermore, it suggests that

symptoms of ASD, such as rigid behavior, may be related

to underconnectivity of functional networks rather than to

changes in the discrete regions of the cognitive control

network. This would support the developmental discon-

nection hypothesis as an explanatory model for deficits in

executive functioning in ASD (Geschwind and Levitt

2007).

In the current study we aimed to investigate connectivity

both within and between functional networks involved in

cognitive control in a group of high-functioning boys with

ASD and age-matched typically developing boys. We used

independent component analysis (ICA) to identify cogni-

tive control networks and investigate their activity and

connectivity. ICA is a data-driven method that decomposes

fMRI data into spatially independent, but temporally

coherent networks (Calhoun et al. 2001, 2002a, 2009;

Calhoun and Adali 2006). Decomposition into networks in

this manner greatly reduces the number of comparisons

made compared to standard GLM analyses. As such, ICA is

more sensitive to between-group differences than a tradi-

tional GLM analysis (Congdon et al. 2010; McKeown and

Sejnowski 1998). In addition, ICA allows one specific

voxel to contribute to more than one temporally coherent

network, and as such it may be involved in more than one

pattern of response. Therefore, ICA may even detect dif-

ferences that are obscured in traditional GLM analyses

(Beldzik et al. 2013; Xu et al. 2013a). Based on the

developmental disconnectivity hypothesis of ASD, we

hypothesized: (1) reduced connectivity between cognitive

control and other task-related networks in ASD; and (2)

that reduced connectivity of the cognitive control network

would be related to severity of rigid behavior in ASD.

Methods

Participants and clinical data

A total of 38 boys, 19 with a diagnosis of ASD (aged

9–14 years) and 19 age-matched typically developing

boys, were included in the study. In addition to age, par-

ticipants were matched at the group level for hand prefer-

ence and IQ. The study and its procedures were approved

by the Institutional Review Board of the University Med-

ical Centre Utrecht, The Netherlands. Written informed

consent was obtained from the parents of all subjects after

full disclosure of the study purpose and procedure. Chil-

dren provided written and/or verbal informed assent.

For participants with ASD, a qualified researcher from

the lab confirmed the clinical diagnosis by means of the

Table 1 Demographics and clinical characteristics

ASD

(N = 19)

Controls

(N = 19)

Group differences

(p values)

Age

M (SD) 11.5 (1.2) 11.1 (1.6) .367

Range 9.0–12.8 9.1–14.2

Total IQa

M (SD) 112.2

(15.3)

120.2

(15.8)

.134

Range 80–150 88–152

Handedness

N Right/

ambidextrous/left

19/0/0 17/2/0 .486

SESb

Education father

(years) M (SD)

14.5 (0.5) 13.9 (2.6) .50

ADI-R social

M (SD) 20.6 (4.3)

ADI-R communication

M (SD) 15.2 (4.3)

ADI-R repetitive

M (SD) 6.0 (2.6)

Total RBS-Rc

M (SD) 24.9

(15.5)

Medication

N Medicated/

unmedicated

7d/12 0/19 .008

ASD autism spectrum disorder, N number, M mean, SD standard

deviation, IQ intelligence quotient, SES socio-economic status, ADI-R

autism diagnostic interview revised, RBS-R repetitive behavior scale

revised
a Unavailable for two subjects with ASD; b unavailable for ten

controls and thirteen subjects with ASD; c unavailable for one subject

with ASD; dfive children on methylphenidate, three children on

risperidone
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Autism Diagnostic Interview-Revised (ADI-R) (Lord et al.

1994). The Diagnostic Interview Schedule for Children

(DISC, version 2.3 or IV), parent version (Shaffer et al.

2000), was administered to parents of the typically devel-

oping children in order to confirm the absence of any

psychiatric diagnosis in the participant. In addition, con-

trols were excluded in case of first-degree relatives with a

history of psychiatric problems. In both groups, additional

exclusion criteria were IQ below 70, any major physical or

neurological illnesses, or the presence of metal in the body

that precluded the MRI session.

The Repetitive Behavior Scale Revised (RBS-R) was

administered to provide a quantitative measure of the full

spectrum of repetitive behaviors in ASD participants

(Bodfish et al. 1999, 2000); the scale includes measures of

stereotyped, self-injurious, compulsive, and ritualistic

behavior, insistence on sameness and restricted interests.

Full scale IQ was assessed with the Wechsler intelligence

scale for children WISC-III (Wechsler 2005). Table 1 lists

the demographic and clinical characteristics of the sample;

the appropriate parametric, non-parametric, Chi-squared or

Fisher exact tests were performed to test for between-group

differences on these variables.

Seven children with ASD were on psychoactive medi-

cation at the time of study. The five children with ASD that

were on methylphenidate were instructed not to take their

medication for at least 24 h prior to the scanning session.

As this is not possible for risperidone due to a longer

washout period, the use of risperidone was permitted for

three subjects with ASD. All other participants were

medication-naı̈ve. Prior to the MRI scanning, children

under 13 years of age were acclimated to the MRI proce-

dure in a practice session using a mock scanner as

described by Durston et al. (2009); subjects aged 13 years

or over were also offered the opportunity to do a practice

session. Participants were scanned only in case of a suc-

cessful practice session.

Task design

All subjects participated in an fMRI-session, during which

they performed a go/no-go task, as described previously

(Durston et al. 2002a, b, 2003, 2006), in short: participants

were instructed to focus on a centrally presented fixation

point, and to respond as fast as possible to visually pre-

sented go stimuli with a button press, and to withhold

responding when a rare non-target was presented (no-go).

In order to make the task interesting for children, Pokémon

characters were used as stimuli. The task consisted of four

sessions of equal length (3 min 56 s). Each run contained a

total of 57 trials, with 25 % no-go trials. No-go trials were

preceded by 1, 3 or 5 go trials in pseudo-randomized order.

Each stimulus was displayed for 500 ms, followed by an

interval of 3,500 ms. Stimuli were projected using a

through-projection screen and slide projector. Behavioral

responses were collected using a magnet-compatible air

pressure button device.

Statistical analysis of task performance

SPSS Statistics version 20.0.0 for Mac OS X (SPSS Inc.,

Chicago, IL) was used for the analyses of the behavioral

measures from the task. Accuracy on go-trials and accuracy

on no-go trials (mean accuracy and following 1, 3 or 5

preceding go-trials) were calculated. Mean reaction time

on successful go-trials was measured.

Developmental effects were investigated by calculating

Pearson’s correlations (r) between age and behavioral

measures. In the ASD group only, r coefficients were

calculated to investigate the correlation between symptoms

of rigidity (RBS-R total score) and performance parame-

ters. Group differences in task performance were investi-

gated using a univariate general linear model, with age at

scan and age-by-diagnosis interaction entered as covari-

ates. An uncorrected alpha level of 0.05 was used for these

analyses.

fMRI acquisition

Data were acquired using a 3.0 T Philips Allegra MRI

scanner (Philips Medical Systems, Best, The Netherlands).

Task-related functional images were collected in 4 runs of

119 frames with a 2D-EPI SENSE sequence (TR/TE 2,000/

35 ms, flip angle 70�, matrix 68 9 66, FOV 24 cm, voxel

size 3 9 3 9 3.5 mm3). A high-resolution T1-weighted

image was acquired for spatial normalization and visuali-

zation purposes (TR/TE 10/4.6 ms, flip angle 8�, matrix

304 9 299, FOV 24 cm, voxel size 0.75 9 0.75 9

0.8 mm3). Independent clinical neuroradiologists evaluated

all T1 scans and no gross morphological or signal abnor-

malities were reported for any of the participants.

fMRI pre-processing

fMRI data were preprocessed using the Statistical Para-

metric Mapping 8 (SPM8) software (Wellcome Dept. of

Cognitive Neurology, http://www.fil.ion.ucl.ac.uk) running

under the MATLAB R2012a programming and run-time

environment (The Mathworks, Sherborn, MA, USA). First,

functional images were realigned using rigid body trans-

formations, followed by unwarping to remove residual

distortions induced by movement and field inhomogeneity.

None of the sessions contained images with a total linear

displacement more than 3 mm in any direction. Average

translation head motion was 1.05 mm, did not correlate

with age (r = .047, p = .781) and was not significantly
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different between groups (p = .153). In addition, we cal-

culated mean framewise displacement (FD) and the root

mean square (RMS) of motion as reported by Power et al.

(2012) and Van Dijk et al. (2012), respectively. Both were

within acceptable limits [FD Power et al. = 0.210 (SD

0.097); RMS Van Dijk et al. = 0.048 (SD 0.022)] and did

not differ between diagnostic groups (p = .210 and

p = .241, respectively).

Next, slice-timing correction was performed to com-

pensate for slice acquisition delays by temporally aligning

all slices to the same reference time point (middle slice);

given the interaction between timing shifts and motion, we

chose performing realignment first to minimize the effect

of inter-slice movement (Sladky et al. 2011). This step was

followed by co-registration of the functional and structural

images. T1-weighted images were segmented into grey and

white matter. Then, functional and anatomical images were

normalized to Montreal Neurological Institute (MNI)

template (Friston et al. 1995). Finally, images were spa-

tially smoothed with a Gaussian kernel of 6 mm at full

width at half maximum.

fMRI independent component analysis

Preprocessed time series were analyzed using the Group

ICA of fMRI Toolbox (GIFT, http://icatb.sourcefourge.net,

version 2.e) to identify spatially independent and tempo-

rally coherent networks (Calhoun et al. 2001, 2009). To

minimize the impact of artifacts, we first ran ICA on each

subject individually. After inspecting all images on the

individual subject level, cleaned images of all 38 subjects

were included in a Group ICA. The method is detailed in

the following sections.

Single subject analysis

Independent component (IC) estimation was performed

using the Infomax algorithm (Bell and Sejnowski 1995),

which was repeated 20 times in ICASSO in order to

maximize the stability of the derived components (Him-

berg et al. 2004). The dimensionality of the data (number

of networks) was estimated per subject using minimum

description length (MDL) criteria tool built into GIFT.

Images were back-reconstructed using GICA3, (Erhardt

et al. 2011), which is a back-reconstruction method in

which individual subject maps are reconstructed from the

raw data using the ICA mixing matrix. Time series were

then converted for visualization to reflect percent signal

change. After single subject ICA, both the spatial pattern

and the frequency spectrum of each component were

inspected for the presence of possible image artifacts.

Components containing obvious artifacts (e.g. edges, ven-

tricles) were discarded.

Group analysis

The cleaned data of all 38 subjects were carried forward to

the group analysis. Group ICA was performed using the

Infomax algorithm, which was repeated 20 times with

ICASSO. All components showed high stability as indi-

cated by the cluster quality index, Iq [ 0.9. The number of

components estimated through MDL was 44. Individual

subject component maps were back-reconstructed using

GICA3, and finally timecourses and spatial maps were

normalized into z-scores (Beckmann et al. 2005).

Selection of networks

We selected those components out of the initial 44 that

reflected neuronal networks, based on the level of statistical

significance and visual inspection for artifacts (McKeown

et al. 1998; Calhoun et al. 2002b, 2004a, b; Kim et al.

2009; Meda et al. 2009a; Zhang and Li 2012). Five com-

ponents were discarded as they showed a high spatial

correlation with the probabilistic map of white matter or

cerebrospinal fluid (r2 [ .025) provided in SPM8 while

also showing low correlations with the cerebral grey matter

map (r2 \ .05). Identification of the remaining components

was performed through spatial multiple linear regression

with established templates (Allen et al. 2011; Segall et al.

2012). Components with a spatial correlation greater than

r2 [ .05 with template networks were carried forward to

the final selection. Visual inspection of the 11 discarded

components suggested that they represented eye move-

ments, head motion or cardiac-induced pulsatile artifacts at

the base of the brain.

To compute the degree of task-relatedness of the

remaining 28 components, we regressed the corresponding

timecourses against the design matrix (go and no-go stimuli

together, along with their first temporal derivative) using the

temporal multiple linear regression implemented in GIFT.

The resulting beta weights (b) reflect the degree to which a

component was modulated by the task events of interest.

Beta weights of each IC for each task condition across the

four runs were averaged per subject, and the group means of

averaged b for each task condition were tested against zero

using one-sample t tests (Zhang and Li 2012; Xu et al.

2013b). Eleven components were selected for the final

analyses, with correlations significant at p \ .001 with either

go or no-go events. They were named according to the

template they were spatially correlated with or based on

visual inspection of the corresponding spatial map.

Group differences in functional connectivity

Group differences in functional connectivity within the 11

selected components (intra-network connectivity) and
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among them (inter-network connectivity) were tested using

the Mancovan toolbox (Allen et al. 2011) implemented in

GIFT. We examined three connectivity measures: compo-

nent spatial maps, component time course spectra, and

between component functional network connectivity (Jafri

et al. 2008). The voxel intensity in spatial map dictates the

correspondence between a voxel time course and an IC

time course (Balsters et al. 2013a); therefore, provides a

measure of coactivation/synchronization (strength of con-

nectivity) in a region within a given network. The spectra

of time course reflect the degree of fluctuation in amplitude

of the intrinsic activity captured by fMRI data within the

network (Calhoun et al. 2012). Although ICs generated by

ICA are maximally independent of each other (Calhoun

and Adali 2006), their timecourses can still exhibit tem-

poral dependencies (Arbabshirani et al. 2013): functional

network connectivity evaluates the extent to which tem-

poral coherence between networks is related to the vari-

ables of interest. A multivariate selection strategy was first

performed in order to identify potential significant rela-

tionships between components measures and variables of

interest: the initial design matrix included diagnosis and

age as covariate, as well as an age-by-diagnosis interaction.

In addition we included a head movement estimate as

nuisance regressor (Allen et al. 2011; Balsters et al. 2013a,

b), defined as the average of translation parameters, log-

transformed for data normalization. Univariate analyses

were performed within the reduced model to test for spe-

cific relationships between covariates of interest and con-

nectivity properties. An alpha level of 0.05 was used for all

analyses. Results were corrected for multiple comparisons

using false discovery rate (FDR) (Genovese et al. 2002).

Cohen’s d standardized effect sizes were calculated from

corrected p values.

Functional connectivity and clinical data correlations

In the sample of subjects with ASD, we analyzed the

relationship between behavioral rigidity as measured by the

RBS-R and functional connectivity measures (spatial maps,

time course spectra, and functional network connectivity)

of the 11 networks of interest selected for the group ana-

lysis. For this purpose, we ran a separate MANCOVA

model with RBS-R total score and age as covariates,

p = .05 FDR corrected for univariate testing.

Results

Task performance

All participants were able to successfully perform the task:

mean accuracy on go trials was 99 % for both subjects with

ASD and controls, and did not significantly differ between

groups. Mean accuracy on no-go trials was 76 % (SD 0.15)

for participants with ASD and 82 % (SD 0.12) for controls,

did not differ between groups (t = 1.46, p = .153) and did

not correlate with age. In line with findings from earlier

studies using the same paradigm (Van Belle et al. sub-

mitted; Durston et al. 2002a), no-go accuracy decreased

with the number of preceding go-trials (1, 3 or 5) for both

children with ASD (83, 74, 72 %) and controls (87, 81,

78 %). Mean accuracy on no-go trials after 1, 3 or 5 go

trials did not correlate with age and did not differ between

ASD subjects and controls. Mean reaction time decreased

with age (r = -.374, p = .022) and did not differ between

groups (ASD 633 ± 104 ms, controls 620 ± 51 ms;

mean ± SD). In the ASD group, RBS-R total score was not

correlated with age or with any of the measures of task

performance.

Networks

From the 28 IC containing neural networks (Fig. 1), 11

correlated with the task and were therefore identified as of

interest for further analysis. These networks included

frontal/attentional networks (IC 30, 33, 34), default mode

networks (ICs 12 and 28), visual networks (ICs 9, 15, 26), a

hippocampus network (IC 41), an auditory network (IC 44)

and a temporal network (IC 29) (Fig. 2).

We assessed b-values to ascertain the degree of

engagement of networks during go or no-go events (Meda

et al. 2009b). The analyses showed that activity in IC 30

and IC 34 (frontal/attentional network) were related to no-

go events, while the default mode network components

were anti-correlated with both go and no-go events (Online

Resource 1).

Functional connectivity

Multivariate and univariate tests showed no effect of

diagnosis on the spatial map of components, the timecourse

spectra or between-network connectivity, with only small

effect sizes (ranging from d = 0.17 to 0.23). As there was

no significant main effect of diagnosis or age, we reran the

MANCOVAN analysis without the interaction term. The

results remained non-significant. Spatial maps of the net-

works of interest are depicted in Fig. 3, illustrating the

similarities between groups.

We ran a power analysis to estimate the sample size that

would be needed to show between-group differences if

there was in fact a meaningful difference (pFDR \0.05,

2-sided). This told us that a sample of N = 788 would be

required to reach a power level of 0.80 and confirmed our

conclusion that any differences were minimal and more

likely related to noise.
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Fig. 1 Overview of all independent components showing neural activity. The MNI coordinates refer to the slice intersections that are shown
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In addition, we performed a standard GLM analysis of

the fMRI task, which further confirmed that there were no

differences between groups in brain activation during

performance of the task (details are provided in Online

Resource 2).

We found no significant correlation between the RBS-R

total score of subjects with ASD and functional connec-

tivity measures of the components of interest. Average

activity from the networks of interest was plotted against

total RBS-R scores to illustrate the lack of relation (Fig. 4).

Discussion

In this study, we examined functional connectivity during

the performance of a cognitive control task (go/no-go) in a

population of high-functioning boys with ASD and age-

matched typically developing boys using a multivariate

data-driven approach (ICA). We found no evidence for

changes in functional connectivity in ASD. This is con-

sistent with ROI-based research in children performing a

similar paradigm (Lee et al. 2009), but contrasts with

studies of adolescents and adults with ASD that have

reported decreased functional connectivity in cognitive

control networks (Just et al. 2007; Kana et al. 2007; Agam

et al. 2010; Solomon et al. 2009).

The findings of dysfunctional connectivity in adults, but

not in children, with ASD suggests that changes in con-

nectivity patterns related to cognitive control may appear

relatively late in the disorder. This is in keeping with

research showing that immature brain activity may be

characterized by less structured and more diffuse patterns

than in adults (Durston et al. 2006; Supekar et al. 2009). It

also implies that detecting subtle differences in the func-

tional connectivity of cognitive control network between

children with ASD and typically developing controls may

be a particularly difficult challenge. Perhaps it is therefore

not entirely surprising that the present study converges

with an increasing body of literature reporting only limited

changes in functional connectivity in children with ASD,

both during rest (Bos et al. under revision) and cognitive

control (Lee et al. 2009). Furthermore, we found no evi-

dence for an association between the severity of rigid

behavior in our subjects and either functional connectivity

or task performance.

There are some strong points to our study, but also some

limitations that need to be taken into consideration. One

strong point is that we standardized our data analysis as

much as possible to limit the number of arbitrary decisions.

We did this by using a data-driven approach (ICA) and a

hypothesis-free procedure for network selection. A weak

point is the limited sensitivity of the RBS-R questionnaire

Fig. 2 Networks of interest: frontal/attentional networks (ICs 30, 33,

34), default mode networks (ICs 12 and 28), visual networks (ICs 9,

15, 26), hippocampus network (IC 41), auditory network (IC 44) and

temporal network (IC 29). The MNI coordinates refer to the slices

shown, component labeling follows Allen conventions (Allen et al.

2011)
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to detect symptoms of rigidity in typically developing

subjects. Therefore, correlations between rigidity and

functional connectivity measures could only be assessed in

children with ASD. A possible further limitation was our

relatively small sample size. However, the two groups were

well matched and similar to samples in other reports on

Fig. 3 Networks of interest in

subjects with ASD and typically

developing controls.

Component spatial maps of the

networks of interest are shown

in both groups separately to

illustrate the between-group

similarities. For each network,

the first row of images belongs

to the ASD group and the

second row to the control group.

The MNI coordinates refer to

the slices shown
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functional connectivity (Just et al. 2007; Kana et al. 2007;

Agam et al. 2010; Solomon et al. 2009). Furthermore, a

post hoc power analysis showed that we would need an

enormous number of subjects (788) to show between-group

differences in connectivity on this task if there is indeed a

true difference. This further supports our interpretation that

differences in functional connectivity of cognitive control

networks between typically developing children and chil-

dren with ASD are minimal. In conclusion, we assessed

functional connectivity in a well-characterized cohort of

children with and without ASD during the performance of

a cognitive control task, using a data-driven multivariate

approach. We confirmed previous findings of no differ-

ences in connectivity in children with ASD. These findings

do not support hypotheses that there are changes in cog-

nitive control and the networks underlying it in children

with ASD.
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