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Abstract: Therapeutic strategies to boost the effect of botulinum toxin may lead to some advantages,
such as long lasting effects, the injection of lower botulinum toxin dosages, fewer side effects,
and lower costs. The aim of this study is to investigate the combined effect of botulinum toxin A
(BTA) injection and extracorporeal shock wave therapy (ESWT) for the treatment of spasticity in
children with spastic cerebral palsy (CP). Fifteen patients with spastic CP were recruited through
a retrospective chart review to clarify what treatment they received. All patients received a BTA
injection on gastrocnemius muscle (GCM), and patients in group 1 underwent one ESWT session for
the GCM immediately after BTA injection and two consecutive ESWT sessions at weekly intervals.
Ankle plantar flexor and the passive range of motion (PROM) of ankle dorsiflexion were measured
by a modified Ashworth scale (MAS) before treatment and at 1 and 3 month(s) post-treatment. In
group 1, the shear wave velocity (SWV) of GCM was measured. The PROM and MAS in group 1 and
2 before treatment significantly improved at 1 and 3 month(s) after treatment. The change in PROM
was significantly different between the two groups at 1 and 3 month(s) after treatment. The SWV
before treatment significantly decreased at 1 month and 3 months after treatment in group 1. Our
study has shown that the combination of BTA injection and ESWT would be effective at controlling
spasticity in children with spastic CP, with sustained improvement at 3 months after treatment.

Keywords: cerebral palsy; spasticity; botulinum toxin; extracorporeal shock wave; shear wave ultrasound

1. Introduction

Cerebral palsy (CP), mostly caused by brain damage before, during, or after birth, is
characterised by abnormal development of posture and movement. Spasticity in children
with CP may result in various disabilities, including joint contractures, decreased muscle
strength, and a reduced ability to perform activities of daily living. A wide range of
therapeutic strategies has been applied to manage spasticity, including physical modalities,
oral medication, peripheral neuromuscular blockade, intrathecal agents, and surgical
procedures [1].

Among those, botulinum toxin A (BTA) injection has been suggested as a powerful
and safe treatment method for focal spasticity in both the upper and lower limbs of children
with CP [2–5]. The relaxation of spastic muscles resulting from BTA injection improves the
function of upper and lower limbs as well as gait, and prevents fixed contractures [6,7].
BTA works by inhibiting acetylcholine release from nerve endings in spastic muscles [8].

Extracorporeal shockwave therapy (ESWT) also reduces spasticity in adults with
stroke or children with spastic CP [9–15], although the mechanism remains unclear. How-
ever, it seems ESWT alters the chronic hypertonic muscles rheologically, and reduces the
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stiffness of intramuscular connective tissue. [16]. Even with a single application of ESWT,
furthermore, blood flow to muscle tissues may increase, and its repeated application may
prolong the effect [17]. Additionally, ESWT is a promising physical method for chemical
materials, e.g., genes, to be delivered into cells [18]. For instance, one study demonstrated
that ESWT had quickened the anaesthetic action of EMLA cream in an experiment using rat
caudal nerves, which would be presumably because the shockwave-mediated transdermal
drug was able to be delivered during ESWT [19].

Based on this background, we hypothesised that the combination of BTA and ESWT
would yield synergetic therapeutic effects, in the reduction of spasticity in CP. To date, only
one study of children with CP has looked into the combined effects of BTA and ESWT [20].
However, it was unable to verify the treatment effects in the study due to its limitations
as follows: Firstly, the follow-up period was only 1 month; hence, only short-term effects
were able to be evaluated. In clinical settings, long-term effects must be evaluated to
verify functional improvement. Secondly, muscle stiffness was evaluated using B-mode
echogenicity and compression real-time sonoelastography (RTS). B-mode ultrasound can
be performed within a short period of time in a clinical setting; however, it has downsides,
being only semiquantitative and prone to inter-observer error [21]. Compression RTS is an
ultrasound-based technique which enables the real-time evaluation of tissue elasticity. The
principle of this technique is based on the premise that tissue compression can generate
strain and cause displacement within the tissue, with the strain in soft tissue being greater
than that in firm tissue. However, the technique of compression RTS has several limitations:
the compression method yields inaccurate results, inter-operator reproducibility is limited,
and only semiquantitative evaluation methods are used [21].

To overcome the limitations of compression RTS, an alternate technique called shear-
wave sonoelastography (SWS) which utilizes the acoustic radiation force impulse (ARFI)
imaging was introduced. ARFI is a quantitative and objective method of imaging for
analysing tissue stiffness. In this technique, the degree of tissue displacement is directly
associated with the intensity of forces applied, and inversely related to tissue stiffness.
Previous studies reported that SWS can detect the minimal change of tissue stiffness in
spastic muscle [22–26].

Taking into account the importance of synergistic, effective, and long-lasting spasticity
treatment as well as the issues described above, we aimed to explore the combined effect
of BTA injection and ESWT to control spasticity in patients with spastic CP using SWS.
To the best of our knowledge, the present preliminary study is the first to report such an
expedient treatment and evaluation method in patients with spastic CP.

2. Materials and Methods
2.1. Participants

This was a retrospective study. Twenty-five potential participants were identified in
a retrospective chart review, and fifteen of them were selected as research participants.
Clinical information was assessed and evaluated. The Institutional Review Board (IRB)
and Independent Ethics Committee (IEC) of the University Medical Center approved the
study protocol (IRB No. CR-18-046). Because all the participants were 17 years of age or
younger, informed consent was obtained from their parents. A total of 15 patients with
spastic CP were evaluated based on specific inclusion/exclusion criteria for injections
into tender points of the gastrocnemius muscle (GCM) identified through a chart review.
The inclusion criteria were as follows: (1) definite diagnosis of spastic CP by a physiatrist
specialising in paediatric rehabilitation, (2) able to independently ambulate with or without
walking aid, (3) spasticity while walking with ankle equinus, and (4) dynamic contracture
in the ankle. Dynamic ankle contracture was determined in cases where ankle equinus was
observed during gait. Passive ankle dorsiflexion was measured with the knee extension.
The exclusion criteria were as follows: (1) >13 years or <2 years of age, (2) previous
BTA injection in the GCM in the past 6 months, (3) fixed contracture in the ankle, and
(4) experience of surgery on the lower limbs or serial casting of the ankle within 12 months.
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Through the retrospective chart review, we assessed which kind of treatment the
children received. The children were divided into two groups according to the treatment
they received. Randomization was not performed because it was a retrospective study.

2.2. Intervention

Children in groups 1 and 2 received a BTA (Meditoxin; Medytox Inc., Seoul, Korea)
injection at the gastrocnemius (GCM) muscle under sonographic guidance (Figure 1A). The
dose of BTA for hemiplegic CP was 4 U/kg and that for diplegic CP was 6 U/kg. Children
in group 1 received the combination treatment with one ESWT session (BTL-5000-unit radial
type, Columbia, USA; using the following parameters: energy intensity, 0.06 mJ/mm2;
total shot dose, 1500 shocks; and frequency, 4 Hz) for the GCM immediately after BTA
injection and 2 consecutive ESWT sessions at weekly intervals (Figure 1B). Children in
group 2 did not receive ESWT. All children received the same outpatient rehabilitation
program during and after combined treatment. In all of the children, the frequency for
outpatient rehabilitation treatment was undertaken twice a week for three months. The
BTA injection and ESWT was performed by one physiatrist. The intervention group was
not blinded because this was a retrospective study, and sham ESWT was not available.
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Figure 1. (A) Botulinum toxin A injection at the gastrocnemius (GCM) muscle under sonographic
guidance (white arrow: needle). (B) Application of radial extracorporeal shock wave therapy (ESWT)
on the GCM of an 87-month-old child with spastic cerebral palsy.

2.3. Clinical Assessment

Clinical assessments, including of the spasticity of the ankle plantar flexor and passive
range of motion (PROM) of ankle dorsiflexion, were performed before the combined
treatment and at 1 and 3 months after the treatment. The PROM of ankle dorsiflexion was
measured in the supine position while extending the knee using a two-arm goniometer.
The spasticity of the ankle plantar flexor was measured using the modified Ashworth scale
(MAS), which is a 6-point scale that rates limb resistance when relaxed to rapid passive
stretch (zero point refers to muscle tones that are not increased) [27,28].

2.4. Shear-Wave Sonoelastography

Shear-wave velocity (SWV, measured in m/s) of the medial GCM was measured using
SWS. A physiatrist with 12 years’ experience in ultrasound and 7 years in sonoelastography
implemented B-mode ultrasound and SWS using an ultrasound system commercially
available in the 4–9 MHz frequency range with a linear probe (Siemens ACUSON S2000;
Siemens Healthcare, Erlangen, Germany). B-mode ultrasound and SWS were performed
on the longitudinal view of the medial GCM, and only minimal compression was applied
with the transducer weight. While being scanned, the participants were asked to lie
prone with their feet sticking out from the examination table. Scanning was discontinued
when reflexive or voluntary contraction occurred in the lower limb muscles. Both ends
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of the tendons, the musculotendinous junction, and the belly of the medial GCM were
sequentially identified by scanning the legs from proximally to distally, and the medial
GCM was clearly distinguished from the other muscles on ultrasound (Figure 2A). SWS
was performed by the same physiatrist in the whole study.
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Figure 2. Representative longitudinal acoustic radiation force impulse (ARFI) image of the medial
gastrocnemius muscle. (A) B-mode ultrasonography. (B) “Quality map” indicates the quality and
reliability of the shear wave measurements. These correspond to the areas where the shear waves
with sufficient quality for quantification are shown in green. (C) The shear-wave velocity (2.84 m/s)
was measured in the region of interest of the medial gastrocnemius muscle using ARFI imaging.

Quality mapping software is utilised due to its usefulness in determining whether an
adequate shear wave has occurred [29]. Before measuring SWV, a quality map image was
automatically generated by the software (Figure 2B). Subsequently, SWS was measured
at a fixed point on the medial GCM, i.e., midway between two reference points, A and B,
where point A was located one-third along a longitudinal line from the midpoint between
the medial and lateral malleoli to the midpoint between the medial and lateral epicondyles,
and point B was located at the medial end of a transversal line that was perpendicular to
that longitudinal line (Figure 2C).

2.5. Statistical Analysis

Statistical analysis was performed using SPSS version 22.0 (SPSS, Chicago, IL, USA),
with the level of significance set at <0.05. Changes in the PROM of ankle dorsiflexion, SWV
of the GCM were assessed using repeated-measures analysis of variance (RM-ANOVA)
from baseline to 1 and 3 month(s) after BTA injection. The MAS of ankle plantar flexors
was assessed with the Friedman test from baseline to 1 and 3 months after BTA injection.
Comparison between group 1 and 2 was performed by a Mann–Whitney U test. Post hoc
power analysis was performed and the value was >95.

3. Results

Of the 25 patients with spastic CP identified through retrospective review, only fifteen
were selected as our study participants (Figure 3) The participants were divided into
group 1 (seven patients; four boys and three girls; seven right legs, six left legs; mean age:
76.46 ± 24.69 months; and mean body weight: 20.16 ± 8.70 kg) and group 2 (eight patients;
four boys and four girls; seven right legs and seven left legs, mean age 109.2 ± 20.4 months;
and mean body weight 27.5 ± 10.3 kg). The level of their mean gross motor function
classification system (GMFCS) was 3.2 ± 1.2 in group 1 and 2.9 ± 0.8 in group 2.
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The mean PROM of ankle dorsiflexion while the knee was extended in groups 1 and
2 before treatment (−14.1◦ and 5.7◦, respectively) was significantly increased at 1 month
(6.2◦ and 15.3◦, respectively) and 3 months (0.2◦ and 12.0◦, respectively) after treatment
(Table 1, p < 0.01). The mean MAS score of the ankle plantar flexor in groups 1 and 2
before treatment (3.2 and 3.2, respectively, median: 3 and 3, IQR: 1 and 2, respectively)
was significantly decreased at 1 month (1.4 and 2.0, respectively, median: 1 and 2, IQR: 1
and 1, respectively) and 3 months (1.8 and 2.5, respectively, median: 2 and 2, IQR: 1 and 1,
respectively) after treatment (p < 0.01). The change in the PROM of ankle dorsiflexion was
significantly different between the two groups before treatment and at 1 and 3 months after
treatment (p < 0.01). The change in MAS score was not significantly different between the
two groups (p > 0.05). The mean SWV of the GCM before treatment (2.7 m/s) significantly
decreased at 1 month (1.8 m/s) and 3 months (2.1 m/s) after treatment in group 1 (p < 0.01).

Table 1. Comparison of changes in range of motion and modified Ashworth scale post injection
between group 1 and 2.

PROM MAS

Group 1 Group 2 Group 1 Group 2

Baseline −14.1 ± 20.4 5.7 ± 1.5 3.2 ± 0.4 3.2 ± 0.8
1MPT 6.2 ± 7.2 (a) 15.3 ± 4.4 (a) 1.4 ± 0.6 (c) 2.0 ± 0.7 (c)

∆ 20.2 ± 17.0 (b) 9.6 ± 4.6 (b) −1.8 ± 0.3 −1.2 ± 0.6
3MPT 0.2 ± 10.5 (a) 12.0 ± 4.1 (a) 1.8 ± 0.5 (c) 2.5 ± 0.6 (c)

∆ 14.1 ± 20.4 (b) 6.2 ± 3.6 (b) −1.4 ± 0.7 −0.8 ± 0.4
Values are presented as mean ± standard deviation. Group 1: BTA with ESWT, Group 2: BTA without ESWT,
BTA, botulinum toxin injection, EWST, extracorporeal shock wave therapy, MPT, month post-treatment time;
PROM, passive range of motion; MAS, Modified Ashworth Scale; ∆, difference in the mean PROM and MAS
between baseline and at each month post-treatment. (a) p < 0.01, derived from repeated measures of ANOVA for
assessment time. (b) p < 0.01, derived from Mann–Whitney U test between group 1 and 2. (c) p < 0.01, derived
from Friedman test for assessment time.

4. Discussion

The key results of this study revealed that combined BTA injection with ESWT was
effective at controlling spasticity in the children with CP, and that the effect was maintained
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for 3 months or longer. The mean MAS, PROM of dorsiflexion, and SWV significantly
decreased at 1 and 3 months after injection. The minimal clinically important difference
of MAS was reported as 0.73; therefore, there was clinically significant improvement of
MAS in both groups [30]. To our knowledge, prior to our study, the quantification of the
treatment effect of combined BTA injection with ESWT using SWS has not been attempted.

BTA injection combined with ESWT had an anti-spastic effect in patients with CP.
Importantly, the age of the participants may have affected the outcomes. Spasticity is
determined by two major components, i.e., neural and biomechanical components. The
neural component confers resistance to passive movement and is a velocity-dependent
phenomenon, whereas the biomechanical component involves a high collagen content
in the spastic muscle. In the spastic muscles of children with CP, the collagen content
increases and muscle stiffness is significantly correlated with the amount of collagen in
the muscle [31]. A previous study demonstrated that the biomechanical component of the
spastic muscle and the non-reducible collagen content may be much higher in children
aged 5 years and older than in ones under 5 years of age [5]. In the present study, most
of the participants were 5 years of age and older; therefore, it appears that the ESWT
influenced biomechanical components more than neural components.

ESWT-mediated intramuscular drug delivery has another beneficial effect. One previ-
ous study indicated that ESWT would accelerate the anaesthetic effects of EMLA cream
based on the study result of rat caudal nerves showing shock wave-mediated transdermal
drug delivery occurred during ESWT [19]. These results are consistent with our study
results, indicating a synergetic therapeutic effect of BTA injection combined with ESWT on
spasticity. The blocking effect of BTA injection on the neuronal component of spasticity
decreased with time, suggesting that ESWT conferred shockwave-induced poration and
had a therapeutic effect for up to 3 months.

Moreover, ESWT contributes to specific cellular metabolic effects, enhancing enzymatic
and non-enzymatic nitric oxide (NO) synthesis [32]. NO plays a role in neuromuscular
junction formation in the peripheral nervous system, as well as in essential physiological
functions of the central nervous system, including neurotransmission, memory, and synap-
tic plasticity [8,9]. In addition, NO-induced angiogenesis results in muscle and tendon
neovascularization, thereby reducing muscle stiffness. Previous studies have reported that
inhibition of the stretch reflex may induce ESWT to work [9,16,33].

However, BTA has several drawbacks. In some patients, responses to BTA injections
were observed to have stopped over time, presumably because intramuscular connective
tissue and fat content in the spastic muscle had increased after BTA injection [34–36]. This
destruction of the normal muscle structure may result in fibrosis, muscle atrophy and
increased muscle stiffness. Furthermore, in children with CP who have severe spasticity,
BTA alone is often insufficient [9]. For this reason, other physical (i.e., non-pharmacological)
modalities, such as ESWT, have been suggested for the treatment of spasticity.

Application of ESWT to treat spasticity of various aetiologies has been investigated
in various studies. An article related to it was first published in 1997, which showed the
safety and effectiveness of ESWT applied in the hypertonic muscles of young people [37].
A minimum of 500 impulses would be required to produce cellular stimulation, while
2500 impulses can generate necrosis [38]. Hence, we selected 1500 impulses to be delivered
in each of three sessions, referring to the method used in a previous study [11].

Among previous studies, the combination of BTA and ESWT for spasticity treatment
has been applied only in two studies. One of them compared ESWT administered after BTA
injection to electrical stimulation given after BTA injection for the management of spasticity
in patients who had suffered stroke [39]. The results showed that ESWT enhanced the
effect of BTA to a greater extent than electrical stimulation, assumably because ESWT and
electrical stimulation may act on different sites. Electrical stimulation improved the BTA
effect by facilitating diffusion of BTA, while ESWT acts independently of BTA; that is,
ESWT acts mechanically by reducing muscle hypertonicity and trophically by conferring
neovascular effects on spastic muscles. The other study compared ESWT performed after
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BTA injection to BTA injection administered alone to treat spasticity in children with CP [20].
That study showed significant differences in MAS score between groups, but not in Tardieu
scale. Unlike the Tardieu scale, the MAS score can assess the sum of rheological factors
either related or unrelated to the nervous system due to the fact that increased resistance to
passive movement depends on both the stretch reflex and increased muscle stiffness [40].
The authors concluded that the synergistic effect of ESWT and BTA would attribute to
BTA-induced inhibition of acetylcholine release at the neuromuscular junction combined
with rheological and non-neural effects of ESWT on muscle stiffness. In the current study,
the MAS score decreased significantly over time, as did the SWV. This corresponds with
the results of previous studies.

In the current study, the PROM and MAS score decreased significantly over time.
However, the change in MAS score was not significantly different between the two groups.
This is because the neural component is greater than the non-neural component in the MAS.
MAS is a method to check velocity-dependent resistance. The neural component is evoked
by the velocity-dependent phenomenon [4]. The velocity-dependent increase in muscle
resistance arises from the chronic loss of supraspinal inhibitory inputs into alpha motor
neurons and is accompanied by exaggerated spinal H-reflexes [41]. The neural component
can be inhibited by the administration of BTA but not ESWT. Therefore, the MAS score was
not different between the two groups.

This was the first study to use SWS to assess the combined treatment effect of BTA and
ESWT in children with CP. Conventional compression RTS tends to be operator-dependent
and requires a long learning curve. Moreover, it is difficult to reproduce images because
the operator would need to apply pressure using the freehand technique, which would
lead to unreliable results [4]. Both previous studies involving combined treatment using
BTA and ESWT concluded that the treatment would act through the rheological effect of
ESWT [20,39]. To justify such a conclusion, an objective tool to evaluate muscle stiffness
would be essential. However, one study did not use any imaging modality [39], while
the other used only compression RTS [20]. Therefore, the results of both studies were
inconclusive and based on weak evidence.

The present study has several limitations. Firstly, its design was retrospective; there-
fore, we may not have collected comprehensive records of the participants. Secondly, in this
pilot study, there were a limited number of subjects; therefore, further validation through
large-scale studies would be required. Thirdly, the study was conducted in a single group
of patients because most parents of the participants wanted to receive both BTA and ESWT
in our clinic. Although similar comparisons have been performed in other studies of BTA
and ESWT, it would be more informative if comparing the efficacy and adverse effects
of combined treatments in patients with spastic CP to ones in previous studies. Fourthly,
the study results cannot be generalised to all patients with CP because the subjects were
limited to patients with spastic CP. Fifthly, the age and weight were different between two
groups; we cannot eliminate this confounder because our study was a retrospective study,
and the sample size was small. Sixthly, the follow-up period after treatment was relatively
short. The participants were only evaluated for 3 months; therefore, longer follow-up
studies would be needed to determine the natural course after combined treatment of
BTA and ESWT in children with spastic CP. Lastly, we did not evaluate the intra- and
inter-rater reliability of SWV because most of the participants and their parents did not
agree to the study protocol. Fortunately, however, the high reliability of SWV had already
been reported in our previous study [21]. In the future, we will conduct another study
without these limitations.

5. Conclusions

This study showed that BTA injection combined with ESWT may be effective in
controlling spasticity in children with spastic CP by demonstrating that clinical and imaging
parameters were improved and maintained 3 months after treatment. Therefore, the
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appropriate combination of BTA injection and ESWT may be an effective treatment to
reduce spasticity in children with spastic CP.
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