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Abstract

Introduction

The Risk Identification Unit (RIU) of the US Dept. of Agriculture’s Center for Epidemiology

and Animal Health (CEAH) conducts weekly surveillance of national livestock health data

and routine coordination with agricultural stakeholders. As part of an initiative to increase

the number of species, health issues, and data sources monitored, CEAH epidemiologists

are building a surveillance system based on weekly syndromic counts of laboratory test

orders in consultation with Colorado State University laboratorians and statistical analysts

from the Johns Hopkins University Applied Physics Laboratory. Initial efforts focused on

12 years of equine test records from three state labs. Trial syndrome groups were formed

based on RIU experience and published literature. Exploratory analysis, stakeholder input,

and laboratory workflow details were needed to modify these groups and filter the corre-

sponding data to eliminate alerting bias. Customized statistical detection methods were

sought for effective monitoring based on specialized laboratory information characteristics

and on the likely presentation and animal health significance of diseases associated with

each syndrome.

Methods

Data transformation and syndrome formation focused on test battery type, test name, sub-

mitter source organization, and specimen type. We analyzed time series of weekly counts

of tests included in candidate syndrome groups and conducted an iterative process of data

analysis and veterinary consultation for syndrome refinement and record filters. This pro-

cess produced a rule set in which records were directly classified into syndromes using only

test name when possible, and otherwise, the specimen type or related body system was

used with test name to determine the syndrome. Test orders associated with government

regulatory programs, veterinary teaching hospital testing protocols, or research projects,

rather than clinical concerns, were excluded. We constructed a testbed for sets of 1000 sta-

tistical trials and applied a stochastic injection process assuming lognormally distributed

incubation periods to choose an alerting algorithm with the syndrome-required sensitivity
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and an alert rate within the specified acceptable range for each resulting syndrome. Alerting

performance of the EARS C3 algorithm traditionally used by CEAH was compared to modi-

fied C2, CuSUM, and EWMA methods, with and without outlier removal and adjustments for

the total weekly number of non-mandatory tests.

Results

The equine syndrome groups adopted for monitoring were abortion/reproductive, diarrhea/

GI, necropsy, neurological, respiratory, systemic fungal, and tickborne. Data scales, sea-

sonality, and variance differed widely among the weekly time series. Removal of mandatory

and regulatory tests reduced weekly observed counts significantly—by >80% for diarrhea/

GI syndrome. The RIU group studied outcomes associated with each syndrome and called

for detection of single-week signals for most syndromes with expected false-alert intervals

>8 and <52 weeks, 8-week signals for neurological and tickborne monitoring (requiring

enhanced sensitivity), 6-week signals for respiratory, and 4-week signals for systemic fun-

gal. From the test-bed trials, recommended methods, settings and thresholds were derived.

Conclusions

Understanding of laboratory submission sources, laboratory workflow, and of syndrome-

related outcomes are crucial to form syndrome groups for routine monitoring without artifac-

tual alerting. Choices of methods, parameters, and thresholds varied by syndrome and

depended strongly on veterinary epidemiologist-specified performance requirements.

Introduction

The global animal health stakeholder community has increasingly embraced syndromic sur-

veillance for routine situational awareness of animal population health. These efforts are

attracting attention and funding beyond the agricultural community because of the One

Health initiative and because of multiple programs aimed at integrated infrastructure surveil-

lance [1–6]. These programs enhanced interest in livestock monitoring combined with

advances in data management technologies and veterinary informatics is producing novel data

streams of varying quality and utility. The current effort was the first step in a project aimed at

identifying best practices for routine syndromic surveillance using veterinary diagnostic labo-

ratory testing orders.

Ongoing animal health monitoring activities

This paper documents the expansion of animal health surveillance activities at the United

States Department of Agriculture (USDA), Animal and Plant Health Inspection Service

(APHIS), Veterinary Services (VS), Center for Epidemiology and Animal Health (CEAH). Epi-

demiologists in the Risk Identification (RI) group of CEAH conduct regular monitoring of

animal health data with the objective to build and maintain a syndromic surveillance system

that utilizes non-traditional data (typically collected for other purposes) to augment emerging

disease surveillance and inform stakeholders about comprehensive animal health beyond pres-

ence or absence of specific diseases. Stakeholders include animal commodity organizations,

veterinarians, and State and Federal government animal health agencies. The main purpose of
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the monitoring is to identify abrupt increases in selected data indicators that may signal

emerging disease outbreaks or other health concerns. Data analyses may also identify health

trends, provide supporting evidence for freedom from disease, and support risk factor analysis

[1].

Requirements for meeting current and future monitoring needs

Strategic plans to increase the number of species, health issues, and data sources monitored

require both broadening and deepening of current capabilities. The broadening entails a)

expanded collaboration with government and private agencies with related interests, b) rou-

tine access to more extensive data sources of varying clinical specificity, and c) informatics sys-

tems to automate routine monitoring tasks and to present results promptly and clearly. The

deepening requires understanding of novel data sources and the utility of their elements for

various animal health monitoring purposes, and also effective and practical analytical tools to

extract and concisely summarize key information in these data.

The RI group currently analyzes data streams to monitor animal populations for indirect

evidence of known and unknown diseases with limited signal investigation resources and no

gold standards for signals of interest. Future analytic needs depend on the richness of available

data and prioritized monitoring goals; current and projected needs include syndromic catego-

rization of data to detect both known and unknown health threats, best-practice monitoring

of syndromic streams, space-time anomaly detection, and fusion of evidence from multiple

sources.

Near-term approach. Progress toward capability expansion must be planned within

human, informatics, and technological resource constraints. The current project explored

the feasibility and value of monitoring testing order data from the Colorado State University

(CSU) Veterinary Diagnostic Laboratories (VDL). Collaboration in this project involved veter-

inary epidemiologists and informaticists, laboratorians, horse health experts in VS and at CSU,

and statistical analysts and system developers from the Johns Hopkins University Applied

Physics Laboratory (JHU/APL).

The approach was to monitor time series of weekly counts of groups of tests correspond-

ing to syndromes, similar to the syndromic approach applied by the RI group to other

national and regional data sources. The first development tasks were to create syndrome

groups for the VDL lab data and to customize algorithms for those syndromes within

the constraints of weekly monitoring and system limitations of the analysis tools already in

use. Objectives herein are to describe how these tasks were addressed, some of the issues

faced, and how collaborators managed them, for the benefit of other groups that receive

complex surveillance-related data with similar tasking. Discussion and results are limited to

the first expansion project, restricted to surveillance of equine diseases in Colorado. We

focused on equine diseases to complement a concurrent pilot project that collected and

monitored syndromic data from equine veterinary practitioners in Colorado. In addition to

description of the syndrome development process, the syndrome classification rules and the

algorithms chosen may be useful to others, depending on their own data environment and

constraints.

Materials and methods

Source dataset

The study dataset was a collection of 12 years of equine laboratory test records from the

Veterinary Diagnostic Laboratories (VDL) of Colorado State University [7]. The dataset was

extracted from the CSU VDL Laboratory Information Management System (LIMS). The data
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fields requested were selected based on their ability to a) describe a specific animal health

event that resulted in a request for diagnostic testing, b) provide spatio-temporal information

related to the animal health event, and c) characterize the observed disease syndrome associ-

ated with the animal health event. While geographic fields such as the zip code and city of the

submitter and zip code of the owner were included, the data provided had no personally iden-

tifiable information (PII) on the testing order submitters or owners of the animals to be tested.

Each dataset row could represent one of multiple primary events including ‘lab submission

received’, ‘test order logged’, and ‘test result obtained’. The initial objective was to restructure

each dataset row into information that could be useful for identifying syndrome-specific test-

ing ordered for individual horses (cases) as early as possible.

Case definition and syndrome classification approach

Cases within each syndrome category were identified as individual horses (defined by a unique

animal ID) included in a laboratory submission (defined by a unique accession ID) comprising

of one or more test orders satisfying case definition rules. The syndrome classification proce-

dure (including application of the case definition rules) and findings are provided in the

Methods and Results sections. During case identification, a laboratory submission for a single

animal could be assigned to more than one syndrome, resulting in a single animal being repre-

sented as multiple cases in different syndromic categories. For example, “Aspergillis AGID”

testing for a horse may be classified as a case in both “Respiratory” and “Systemic Fungal” syn-

dromes. Following case identification, weekly case counts were summed over a 7-day (Sunday

to Saturday) time period based on the laboratory submission date. Case definition rules were

developed to prevent counting a case more than once within a syndrome and to avoid count-

ing test orders unrelated to sick animals.

Data content analysis and key information fields

The processes and data fields used to convert the test record data into syndrome case counts

for routine monitoring are performed using Microsoft ACCESS. Fig 1 depicts the steps in the

data formation process.

Steps in the data formation process were:

1. Accession/submission. A lab submission is most commonly generated from a veterinarian

(test order submitter) visiting a site where horses live. Submissions may also originate when

horses are transported to a private practice, a tertiary hospital, or an event such as a race or

competition. The date the submission was received by the lab is used as the date each case

was detected. The testing battery ordered is a data field sometimes provided at the accession

level and is used to identify and classify syndrome cases. Though the RI epidemiologists

consider the test battery as one of the clearest indications of the submitting veterinarian’s

concerns, the data field for test battery was completed in less than 4% of submissions for

the data available.

2. Horse: Each horse has a unique identifier (within the context of the accession ID). Multiple

horses may be included in the testing submission. The details about the horse tested are

provided including breed, sex, age, indicators for identifying horse subjects for research

or teaching hospital patients, and clinical history (if available), All animals specified as

‘Equine’, and not as research subjects, are identified as potential cases. If provided, the ani-

mal’s owner location information (i.e. zip code) is used as the primary indicator of the case

location. No additional information is provided about the animal’s owner. The submitter
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location information is provided if available (i.e. zip code, city, state), and used as an indi-

rect indicator of the horse location if the animal owner location is not provided.

3. Specimen: All specimens included in each accession are uniquely identified with the lab

assigned specimen ID. In the case definition rules described below, the type of specimen

(e.g. serum) is used to assist classifying cases if the test battery and test name are not consid-

ered sufficient.

4. Testing Order: All testing orders placed for each specimen are uniquely identified with a

standardized test name assigned by the lab receiving staff. New and updated testing orders

arriving each week for inclusion in the database are used to update the testing information

associated with each specimen.

5. Test Result: All results associated with each testing order are uniquely identified with the

‘analyte measured’ and the result value. New and updated test results arriving each week are

used to update the result information associated with each testing order.

Formation and refinement of case definition rules

The syndrome categories were intended to classify horses displaying clinical signs associated

with a body system, with a focus on infectious diseases. Because the submitting veterinarian’s

original intent for each lab testing order was rarely submitted for inclusion in the LIMS, the

case definition rules were based on likely clinical signs suggested by the testing ordered. The

approach conducted for developing the case definition rules is shown in Fig 2, illustrating the

iterative collaboration among APHIS epidemiologists and veterinarians, CSU VDL laborator-

ians, and JHU/APL statistician analysts.

Trial case definitions were formed based on consultation with VS horse health experts,

investigation of test use, and published literature. We formed time series using weekly case

counts assigned to these syndromes and analysed them considering mean and variance of

syndrome count levels, year-to-year trend consistency, frequency of data spikes, and outliers

related to certain test/specimen types and a few health events known from RI group experience

or published literature. The analysis led to further consultations with CSU laboratorians

regarding the data field usage, lab work flow, and CSU veterinary hospital protocol. Based on

these consultations, we revised the case definition rules, formed new time series, and repeated

the analysis. Ultimately, we converged on the case definition rules explained in the Results sec-

tion and listed in S1 and S2 Tables.

Fig 1. Formation of veterinary laboratory information.

https://doi.org/10.1371/journal.pone.0211335.g001
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Algorithm test and evaluation

Algorithms selected. We originally intended to perform spatial cluster detection, but the

quality of the spatial data precluded this effort. The only location fields available in the test

order records were submitter and owner zip codes. Owner zip codes were present in only a

minority of the test orders, and when provided, many submitter zip codes were located far

from these owners (the owner’s zip codes are assumed to match the majority of residence

zip codes of the horses). Anomalous clusters would have been biased and unrepresentative

of spatial groups of sick animals, so we restricted candidate alerting algorithms to temporal

methods.

Using the syndromic time series from the historical dataset, a set of temporal algorithms

were compared to the method adopted by the RI group in 2010 for slaughter condemnation

syndrome monitoring. This traditional method was the CDC EARS C3 algorithm with param-

eters and thresholds chosen to fit syndromes for weekly monitoring [7]. The additional meth-

ods were introduced to seek customized alerting performance relative to the newly developed

lab-based syndromes. Candidate methods tested were adaptations of control charts and simple

models previously published for prospective health surveillance. These candidates include the

modified C2 method [8], adaptive versions of the cumulative summation (CuSUM) and expo-

nentially weighted moving average (EWMA) charts [9], the temporal scan statistic Gscan of

Naus and Wallenstein [10], and the CDC Historical Limits method [11]. These methods were

Fig 2. Schematic depicting the case definition refinement process.

https://doi.org/10.1371/journal.pone.0211335.g002
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tested with and without features for outlier removal and for denominator adjustment to the

total weekly number of tests.

Algorithm evaluation. Practical performance evaluation of alerting algorithms requires

results of the algorithms applied to authentic data labelled with outbreak and non-outbreak

intervals. Such data are needed for computation of sensitivity, positive predictive value, timeli-

ness, and other detection metrics. However, literature, institutional, and other searches yielded

only a few equine outbreaks of common diseases that were represented in available data, and

no outbreaks of rare diseases. Furthermore, APHIS monitors animal populations for known

and unknown, seasonal and nonseasonal diseases. Rather than extrapolate from sparse pub-

lished guidance, we adopted a simulation approach informed by the scientific knowledge and

animal health monitoring experience of the RI group epidemiologists that would be using the

algorithms each week.

We measured algorithm detection performance with many repeated trials, each adding a

plausible set of syndrome counts to the historical data. We then compared how well the candi-

date algorithms detected the simulated signals. For this purpose, we adopted an outbreak effect

simulation scheme used in other analytic development efforts based on randomized but realis-

tic injected target signals [12–14]. We constructed a Matlab testbed for sets of 1000 statistical

trials and applied a stochastic injection process assuming lognormally distributed incubation

periods to choose an alerting algorithm with desired values of sensitivity and alert rate [12].

For each chosen syndrome, the RI group provided incubation period distributions for simu-

lated target signals based on published information.

For algorithm performance metrics, they also provided maximum background alerting

rates and minimum sensitivity values. Needing a quantitative basis to compare how well algo-

rithms detect target signals, we chose to use requirements from the experienced RI group staff

that must live with the surveillance system rather than employ estimates based on limited liter-

ature or derived by analysts lacking domain knowledge.

The performance requirements derived from operational experience and judgment were:

90% sensitivity for most syndromes, elevated to 95% for neurological and tickborne syn-

dromes, while maintaining alert rates of at least one but at most eight weekly signals per year.

Along with the Matlab testbed, we constructed an EXCEL analytic visualization tool for collab-

orative evaluation, similar to the tool used in the RI group since 2010. In practice, algorithms

are implemented in Visual Basic code in the ACCESS database, and Tableau software is used

to display algorithm results.

Results

The overall monitoring goal is to detect periods of abnormally high numbers of cases within

each syndrome. The technical approach had three principal components: development of case

definitions for syndromes, applying the definitions to identify cases, and derivation of a repre-

sentative set of algorithms and associated parameters and thresholds for routine statistical

alerting practice (i.e. development of monitoring algorithms). Each component required itera-

tive collaboration. Exploratory analysis, stakeholder input, and the discovery of laboratory

data management and workflow details were needed to modify the case definitions, excluding

the testing for reasons other than current observed illness (e.g. regulatory testing, import/

export testing) to avoid irrelevant/excessive alerting and masking of signals of genuine interest.

Customized statistical detection methods were sought for effective monitoring based on spe-

cialized laboratory information characteristics and on the likely presentation and animal

health significance of diseases associated with each syndrome. The collaboration to develop

the syndromes and select the algorithms required nine months, with weekly or biweekly calls

Equine syndromic surveillance based on laboratory test data
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among the authors to formulate and revise syndrome groups and several meetings of the

APHIS RI team with CSU laboratorians.

Syndrome categories selected for monitoring

Eight syndrome categories were chosen for routine monitoring. The most common type is

represented as a syndrome of clinically observable signs, often associated with a body system:

1. Abortion/Reproductive (Abortion/Repro)

2. Diarrhea/Gastrointestinal (Diarrhea/GI)

3. Neurologic

4. Respiratory

5. Sudden Death

Some outcomes of concern were considered better classified by disease type as suggested by

the testing ordered:

6. Tickborne (e.g. Lyme disease, anaplasmosis)

7. Systemic Fungal (e.g. aspergillosis, coccidioidomycosis)

Lastly, counts of necropsy procedures, excluding those for fatal racetrack injuries, are moni-

tored to enable detection of rare or novel conditions that may be missed by other surveillance

categories:

8. Necropsies

Case definition rules

Most criteria in the case definitions rules were derived from the test order name and specimen

type data fields. We analyzed time series of weekly counts of cases included in candidate syn-

drome groups and conducted an iterative process of data analysis and veterinary consultation

for case definition rule refinement. Throughout the iterative process, we identified test order

names that should be routinely excluded so that derived syndromes would include only tests

that would be ordered for animals suspected of having infectious diseases. Some tests that are

routinely associated with clinical signs unrelated to diseases of concern were similarly excluded.

Some examples of these tests include organ function tests, endocrine tests and many types of

histopathology. Tests representing national or state surveillance programs (e.g., tests for Equine

Infectious Anemia) were not included because they are not usually performed on animals for

diagnostic purposes, and tests representing the CSU Veterinary Teaching Hospital policies were

excluded, such as mandatory fecal testing of hospitalized animals. Some test names were created

by the lab to represent specialized billing, and orders with these test names were also excluded.

This iterative development of case definitions produced a rule set in which lab testing infor-

mation is classified into syndromes using only test order name when possible; but many situa-

tions required further information. For example, a pathogen that may cause several syndromic

presentations may be categorized based upon the specimen type or related body system of

the specimen tested in addition to the test name. One hundred ninety-four unique test order

names were identified for horses in the data set. The rules for syndrome categorization fol-

lowed five general guidelines described below.

Testing Batteries: A submitter may specify a battery of tests when placing a laboratory sub-

mission. This battery name is a selection from a fixed list and is stored at the accession level in

Equine syndromic surveillance based on laboratory test data
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the CSU LIMS. It is associated with all animals and animal groups included in the submission.

Though supplied in only 4% of recent data, this name, when available, is the most direct indi-

cation of the submitter’s clinical concerns. In the available data, each non-blank battery name

contained either the term “diarrhea” or “abortion”, and the test was assigned accordingly to

the Diarrhea/GI or the Abortion/Repro syndrome without consideration of other data fields.

Test Order Name: In the absence of a battery name, the test name alone is often sufficient

for syndrome assignment. Some test names refer to a specific infectious disease or pathogen,

and a further subset of these diseases typically present with clinical signs associated with one

syndrome. The Test Name field is a standardized fixed field. The rule in this situation is to

assign the syndrome based on S1 and S2 Tables.

Test Order Name and Specimen: Some tests are ordered for suspected diseases with multi-

ple syndromic presentations. Other tests represent broad infectious disease categories, such as

bacterial culture. To resolve the syndromic classification of test names that cannot be mapped

directly, we used the semi-standardized ‘Specimen’ data field. For this field, the data entry staff

is instructed to use pre-defined types as much as possible. The pre-defined fields do not all

directly correspond to sample types given on the CSU VDL website. If an appropriate speci-

men type cannot be found in the existing list, the data entry person will type it in (free text).

The specimen type entered may be generic (e.g. biopsy, swab) if not provided on the lab sub-

mission form. We grouped the specimen types of interest into one or more categories and/or

body system groups. The specimen categories included are serum, blood, nasal swab, csf (cere-

brospinal fluid), fetal tissue, and fungal skin. Specimen body systems included are Digestive,

Nervous, Reproductive, and Respiratory. We considered mapping these specimen groupings

directly to syndromes regardless of the test name but rejected such mappings as too coarse

because they would ignore details and conventional application of individual tests. Instead, we

formed rules based on combinations of test name and either specimen body system (i.e., body

system most represented by specimen submitted for testing) or specimen category (i.e., tissue

type of specimen submitted for testing), including rules of exclusion for some tests. S2 Table

lists these combinations and exclusions and was the prescriptive basis for syndrome assign-

ment when the test battery name or test name alone was inconclusive. The tables are imple-

mented as three rule types:

Test Name and Specimen Body System ¼> Syndrome

Test Name and Specimen Category ¼> Syndrome

Test Name and ðNOTðSpecimen Body SystemðsÞÞ and=or NOTðSpecimen CategoryðsÞÞÞ ¼> Syndrome

During rule formation and refinement, assumptions were made on the use of the different

available tests for the same pathogen, samples that would typically be submitted, and typical

disease presentation. Some of these assumptions will require further validation through real-

time monitoring of the data.

Summary of case definition rules

The final detailed rule set we adopted for syndrome classification is presented in two supple-

mentary tables. S1 Table contains the general syndrome mapping table with columns for

syndrome, test name, specimen body system, and specimen category. For rows where the spec-

imen type or category is not blank, both test name and specimen were used to determine a syn-

drome. S2 Table is provided for determination of the specimen type or category from the text

Equine syndromic surveillance based on laboratory test data
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in the Specimen field. We used the rule set defined by these tables to identify cases that were

classified into one or more of the eight selected syndromes.

One third (65/194) of the equine tests in the dataset were categorized into one or more

syndromes. Remaining tests were excluded because they did not reflect diseases readily

transmitted among animal populations, mainly including cultures without indicative speci-

men types, blood chemistry and hematology panels, antibiotic sensitivity, cytology, fluid

analysis, histopathology, and other general test types. Three-fourths (49) of these 65 tests

were assigned to a syndrome based on the test name alone. The remaining 16 tests required

more complex rules based on the submitted specimen type. Accuracy of these rules is limited

by the information available in the test records. Some cases will be erroneously classified as

syndrome cases when tests are requested for reasons other than clinical illness, such as for a

research study not indicated by the appropriate data flag, or when a clinician is checking

titres prior to vaccination. Other cases may not be correctly assigned to syndromes if the

specimen type is not specific enough. The qualification of records for indication of likely

clinical illness and the subsequent case definition rules proved essential in obtaining syn-

drome counts representative of current equine population health. Inclusion of the >80% of

tests deemed unrelated to current illness trends would likely bias routine health monitoring.

Among 45,568 equine tests in the years 2012–2014, only 7,031 (15.5%) were classified into

syndromes, with syndromic totals of 2065 (12.7%) in 2012, 2934 (17.6%) in 2013, and 2032

(16.1%) in 2014. Table 1 below describes the two most common tests contributing to each

syndromic classification in the years 2012–2014. From this table, the Abortion/Reproductive

and relatively rare Sudden Death, Tickborne, and Systemic Fungal syndromes are dominated

by one or two tests with at least 80% representation, while the more common syndromes

have more variety among categorized tests. ‘

Algorithm evaluation results

Table 2 presents recommended alerting algorithms, baseline lengths, and algorithm thresholds

for each requested combination of syndromes and signal types. An alert is issued when an

algorithm value exceeds the threshold. These results were derived from repeated comparative

simulation runs. Algorithms, baselines, and thresholds were jointly varied in these runs, and

the tabulated values are combinations that best met the required sensitivity and recurrence cri-

teria under typical syndrome incidence patterns.

The table contains three sections for syndromic time series description, details of preferred

alerting methods, and detection performance for each syndrome and each signal type indi-

cated by the epidemiologists. The Detectable Total Inject Count column gives the weakest, i.e.

most challenging, injected signal size for which the criteria were satisfied.

The time series description section shows the 50th, 75th, and 99th percentiles and standard

deviations of each series of 610 weekly syndrome counts—nearly 12 years of data. The com-

plete time series are available in S3 Table. Note that data scales range from medians of zero

and one count per week for the systemic fungal and sudden death syndromes, to over five per

week for the abortion/repro and respiratory syndromes.

Table 2 gives the preferred algorithm for each combination of syndrome and signal type

with the number of baseline weeks and the alerting threshold that gave the best detection per-

formance relative to the RI group-provided sensitivity and alert rate requirements. We used

the recurrence interval, or expected number of weeks between alerts, to express the trade-off

between sensitivity and the burden of alert investigation. We avoided explicit specificity claims

because specificity calculations require the number of true negatives TN, i.e. the true number

of weeks with no outbreak. Published specificity values using authentic background data are

Equine syndromic surveillance based on laboratory test data

PLOS ONE | https://doi.org/10.1371/journal.pone.0211335 March 1, 2019 10 / 18

https://doi.org/10.1371/journal.pone.0211335


exaggeratedly high in the surveillance context because most outbreaks are unreported, so TN

is inflated.

In consideration of these results, it is important to keep in mind that for the goal of choos-

ing the relatively best algorithm, we kept increasing the strength of the injected signal until

one of the algorithms met the performance criteria. For several of the syndromes, this process

required injection of more than 20 tests orders, especially for detection of the gradual signals.

Table 1. Percentages of each syndrome among syndromic test orders (in parentheses), and percentages of orders of top two tests among all orders mapped to each

syndrome.

Syndrome

(with % of 23,478 syndromic test orders)

Test Percentage within syndrome

Abortion/Reproductive

(21.6%)

Aerobic Culture (reproductive specimen types) 56%

Endometrial Biopsy 24%

Diarrhea/Gastrointestinal

(28.7%)

Clostridium Fecal Culture 42%

Rotavirus ELISA 13%

Neurologic

(9.1%)

Equine West Nile Virus IgM ELISA 36%

Rabies fluorescent antibody test 27%

Respiratory

(28.4%)

Aerobic Culture (respiratory specimen types) 16%

Streptococcus equi—PCR 15%

Sudden Death

(2.6%)

Selenium (Hydride FAAS) 96%

Bacillus anthracis (Anthrax) real-time PCR 4%

Tickborne

(0.1%)

Ehrlichia spp/Anaplasma/Neorickettsia/Wolbachia—PCR 50%

Tick Panel-Ehrlichia Anaplasma Lyme ELISA 50%

Systemic Fungal

(0.2%)

Grocott’s methenamine silver (GMS) stain 67%

Fungal Culture (not on skin specimen types) 24%

Necropsies

(9.4%)

Necropsy & Histopathology (at the CSU Vet Teaching Hospital) 46%

Necropsy Gross Examination Only 20%

https://doi.org/10.1371/journal.pone.0211335.t001

Table 2. ummary of algorithm recommendations for each syndrome and each signal type of concern.

Data and Weekly Count Percentiles and

Standard Deviations

Method Details Detection Performance

Syndrome 50% 75% 99% Std.

Dev.

Signal Type Algorithm Baseline

(weeks)

Threshold Detectable Total Inject

Count

Sensitivity Recurrence

(wks)

Abortion/

Repro

7.0 15.0 38.9 9.6 1-week

spike

modified

C2

8 2.5 30 0.93 17.47

Diarrhea/GI 2.0 3.0 11.0 2.4 1-week

spike

modified

C2

16 2.0 10 0.93 17.76

Necropsy 4.0 5.0 11.0 2.4 1-week

spike

modified

C2

16 2.5 10 0.93 53.27

Neurological 1.0 4.0 59.9 8.5 1-week

spike

modified

C2

8 3.0 20 0.93 15.23

Neurological 90% in 8

wks

CuSUM 8 3.5 30 0.90 8.39

Respiratory 8.0 12.8 79.5 14.6 1-week

spike

modified

C2

8 2.0 30 0.83 14.49

Respiratory 90% in 6

wks

CuSUM 16 2.5 100 0.90 10.98

Sudden Death 1.0 1.0 6.0 1.4 1-week

spike

Gscan 8 3.0 10 1.00 21.54

Systemic

Fungal

0.0 0.0 3.0 0.7 90% in 4

wks

Gscan 8 2.5 10 0.93 60.30

https://doi.org/10.1371/journal.pone.0211335.t002

Equine syndromic surveillance based on laboratory test data

PLOS ONE | https://doi.org/10.1371/journal.pone.0211335 March 1, 2019 11 / 18

https://doi.org/10.1371/journal.pone.0211335.t001
https://doi.org/10.1371/journal.pone.0211335.t002
https://doi.org/10.1371/journal.pone.0211335


The Detection Performance columns of Table 2 provide sensitivity and recurrence metrics

for each selected algorithm, with details for each syndrome and signal type. For each syn-

drome/signal type combination, we conducted sets of 1000 simulation trials using injected sig-

nals calculated for a fixed number of added cases in each trial. From the tabulated algorithm

outputs, we calculated sensitivity for each candidate alerting threshold as the number of

detected events (algorithm value > threshold) divided by the number of trials (= 1000). We

calculated recurrence as the mean number of weeks between alerts. Beginning with total injec-

tion counts of only 5 cases, we repeated these sets of trials with higher case counts (i.e. stronger

injected signals) until at least one candidate algorithm achieved the required 90% sensitivity

and minimum 8-week recurrence. Table 2 shows the minimal injection case counts and the

algorithm thresholds needed to meet these requirements for the selected algorithms.

The reader should not infer from Table 2 that the selected algorithms would give 95% sensi-

tivity to any outbreak affecting the chosen syndrome groups, even when restricted to horses in

Colorado. Outbreak sizes and durations cannot be predicted, and few are documented with

population-level data in the literature. Our injected signals were based on the advice of APHIS

veterinary epidemiologists and those they consulted, and we compared algorithms by increas-

ing the injected signal strength until the desired sensitivity and alert burden were met. Separate

studies are required to determine the expected sensitivity and alert rates for outbreaks of speci-

fied size and temporal progression.

For visual context, Figs 3 and 4 present weekly time series covering nearly 11 years for six

syndromes. Seasonal behavior is evident in the Abortion/Repro syndrome and less clearly

in the Diarrhea/GI and Neurological syndromes. However, the seasonal behavior lacks the

Fig 3. Time series plots of weekly counts of Abortion/Reproductive, Diarrhea/GI, and respiratory syndromes.

https://doi.org/10.1371/journal.pone.0211335.g003
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consistency that might be evident for other species and for larger animal populations, and this

inconsistency likely explains why the historical limits method did not give superior perfor-

mance when 1000 outbreak signals were injected randomly over the data interval in repeated

trials. For nation-level datasets or for bovine or other species, the relative performance of sea-

sonally adjusted methods may improve on richer, more structured time series, and regression

methods may be applicable and provide more improvement. For the syndromes such as the

neurological and sudden death, with median counts below two orders per week, performance

improvements beyond the adaptive control chart-type methods used here will be difficult to

achieve with sophisticated models.

For four of the syndromes, note that only ten injected cases were required to achieve this

detection capability for the most efficient algorithms. However, for the respiratory syndrome

with a standard deviation of over 14 test orders per week and target signals spread over six

weeks, a total of 100 injected cases were required to attain 90% sensitivity with a manageable

alert burden. In summary, the table recommendations are determined by large sets of simu-

lated runs constrained by the historical syndrome incidence patterns, by the signal types of

interest, and by the sensitivity and alert rate requirements.

Discussion

This manuscript provides a detailed example of the process of understanding and transform-

ing complex laboratory data into quantified relevant animal health indicators that can be

Fig 4. Time series plots of weekly counts of Neurologic, necropsy, and sudden death syndromes.

https://doi.org/10.1371/journal.pone.0211335.g004

Equine syndromic surveillance based on laboratory test data

PLOS ONE | https://doi.org/10.1371/journal.pone.0211335 March 1, 2019 13 / 18

https://doi.org/10.1371/journal.pone.0211335.g004
https://doi.org/10.1371/journal.pone.0211335


routinely monitored for situational awareness and for early notification of potential health

threats. Central questions are:

1. What is the case unit of interest?

Deduplication procedures may be nontrivial, such as determining whether it is possible

to consider each animal as a separate case. Counting each horse as a case depends on the

ability to uniquely identify each horse with reasonable confidence. The horse’s name speci-

fied within each submission was used to detect each unique case. The breed, age, sex, and

other individual attributes were not used. The alternative option is to consider all animals

included in the entire submission as an animal health event, or case, representing one or

more horses. This decision is essential to determining surveillance time series and baseline

values that yield useful, unbiased trends reflecting current infectious disease processes.

2. Which of the tests are relevant to case identification, and which represent mandatory test-

ing programs or other types of testing not reflective of animal disease syndromes of con-

cern?

Generally, information systems used for passive surveillance were not designed for that pur-

pose. The system that is the source of CSU VDL test orders includes orders not only for

testing of currently sick animals, but also for national, state, or local surveillance programs

or other types of testing not reflective of transmissible animal disease syndromes of con-

cern. Some examples include Coggins testing in horses or weekly fecal testing in all hospi-

talized equine patients. Including this testing may result in alerts reflecting batches of tests

that are regulatory, seasonal, routine, or otherwise not indicative of a veterinarian’s concern

for sick horses. Such alerts are of no epidemiological interest and may mask trends that do

indicate such concerns. If working with data collected in a LIMS that does not explicitly

represent testing performed for mandatory reasons or for routine animal health manage-

ment, it may be necessary to explore unexpected testing frequencies and work with subject

matter experts in order to identify testing not relevant to case identification. Identifying

mandatory or routine tests was not trivial in the current project and required multiple dis-

cussions with laboratorians.

3. Given the concerns and resources of the monitoring agency, which data fields are useful for

case definition rules?

For practical classification of complex lab data, we sought the simplest possible criteria suf-

ficient to distinguish disease threats of interest. The test battery name alone was sufficient

when available, though the battery field was completed in only 4% of the dataset accessions.

As explained above, the test order name was sufficient for most orders without a battery

name, and for the remaining 25% of orders, we considered the combination of test order

name and specimen type sufficient for classification. As discussed, these rules were not per-

fect, and with no efficient way to validate precisely, final decisions were based on veterinary

and laboratory experience.

The fields chosen should be checked for completeness and uniform usage. In our applica-

tion, multiple representations of the same specimen type and misspellings required pre-

processing steps and repeated inspection. The use of free-text and pick lists may not be uni-

form among all data providers or over time, and such issues must be taken into account.

Based upon further experience with laboratory findings for additional animal taxonomy

groups (e.g. cattle, swine, poultry), along with testing data provided across multiple labora-

tories, it has become apparent that the use of terminology standards would improve the effi-

ciency of the design of new lab-based syndromic surveillance systems (both for animal and

human health monitoring). The formation and refinement of case definition rules based on
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testing orders and specimen types can be supported by following suggested guidance on the

usage of terminology standards [15] (especially with syndrome mapping efforts across labo-

ratories) along with sharing standardized case definition rules across animal health surveil-

lance agencies.

4. What syndrome categories are most useful for routine monitoring?

The veterinary epidemiologists that defined the syndromes in this project mainly sought

logical categories based on body systems (abortion/reproductive, respiratory, gastrointesti-

nal, neurological). Separate syndromes were also defined for diseases not exclusively associ-

ated with distinct body systems (systemic fungal, tickborne) and for unanticipated threat

types that could be missed because of unknown causes and multiple clinical signs (sudden

death, necropsy).

The number of syndromes to monitor is a practical decision depending on the specificity

of the data, disease threats of interest, and monitoring resources of the users. In the current

application, additional data fields and more investigation capability may have made more

and sharper syndrome categories practical.

5. How should diagnostic laboratory tests be applied in case definitions for operational sur-

veillance?

The rules used to identify syndrome cases directly affect the sensitivity and specificity of

threat detection. In the equine surveillance application, test orders mapped to a syndrome

were those likely performed for a horse with a current illness affecting the corresponding

body system. The intent was to maximize the “signal” covered by included tests without los-

ing it in the “noise” of regulatory and routine testing. The hierarchical rules were intended

to capture these orders as efficiently as possible given the information in each order, and

plausible causes of misclassification were discussed along with the rules.

Formation of these case definition rules was mainly driven by veterinary epidemiologist

knowledge in consultation with the CSU laboratorians. The data analysis was employed not

to derive the classifications, but for testing and confirmation using the few known outbreak

signals in the data.

The syndromic surveillance system placed in operation over a period of 3 years (2016–2018)

provided experience and further insight into the usefulness of the lab tests selected for detect-

ing syndromes of interest. The tests identified as the top two most commonly performed for

each syndrome (Table 1) accounted for the detection of cases that contributed to 66% of the

alerts reported (29/44) over this 3 year period. Knowledge about the tests most frequently

performed along with specialized insight into the frequency of endemic disease agents con-

tributed to the level of effort dedicated to alert follow-up. Additionally, following two years

of operation, it was determined that the occurrence of testing for selenium did not serve as

a useful indicator prompting investigation into the frequency of sudden death in horses.

Therefore, this test was removed from the detection of sudden death syndromic cases.

Other researchers have applied machine learning techniques to develop lab testing [2] and

necropsy findings case definitions [4] for surveillance in the animal health monitoring con-

text. Some researchers have applied similar techniques more generally in monitoring human

care-seeking behavior [16–18]. Developers of future systems, including for broader applica-

tions envisioned within USDA CEAH, may consider these techniques. In a published com-

parison testing several machine learning methods, Dorea et al. achieved best performance

with a rule-based approach [2].

6. Once the syndromes are chosen, what alerting method(s) should be used to automate the

recognition of potential problems for investigation or tracking?

Equine syndromic surveillance based on laboratory test data

PLOS ONE | https://doi.org/10.1371/journal.pone.0211335 March 1, 2019 15 / 18

https://doi.org/10.1371/journal.pone.0211335


The importance of automated alerting algorithms is that data inspection is tedious and

time-consuming, especially in view of the rapidly increasing set of data sources, and algo-

rithms can filter out systematic data behavior such as annual or weekly cyclic patterns

and issue alerts to draw attention to potential outbreak signals. The candidate algorithms,

influenced by the data history and varied behaviors of the weekly syndromic time series,

were chosen to provide high sensitivity and manageable alert burden for the RI group in

extending their weekly monitoring to equine laboratory test orders. Discussions of target

diseases and the specification of target signal types by the epidemiologists for the separate

syndromes enabled the sets of Monte Carlo trials used to derive the preferred methods

and settings. The approach for determining these preferences could be useful for develop-

ing similar systems, but resulting preferences will depend on monitoring needs and avail-

able data.

Conclusions

The development of robust and relevant automated systems using veterinary laboratory data

for monitoring animal health requires multiple tasks involving surveillance requirements

assessment, operations and data analysis, adaptation of statistical alerting algorithms, and sus-

tainable and reliable technology for acquiring and processing data and displaying the results.

The information available electronically supports tracking of a limited number of health

threat types. Understanding of laboratory submission sources, laboratory workflow, data man-

agement and of syndrome-related outcomes are crucial to form syndrome groups for routine

monitoring without artifactual alerting. This combined insight requires consultation among

epidemiologists, laboratorians, veterinarians, and statistical analysts. For example, discovery

of the set of testing batteries available for ordering would need to be performed separately for

each laboratory. This would include learning the names used, naming standards, along with

the set of tests triggered for each battery. It is hoped that the principal components and tasks

used for building the lab order syndromic surveillance system described in this document pro-

vide a general framework for developing other similar systems.

In the current application involving equine health surveillance, effective and efficient

choices for alerting methods and settings varied by syndrome and depended strongly on epi-

demiologist-specified performance requirements. Validation of the syndromes and method

decisions was based on analysis of historical data and requires prospective experience for

evaluation and adjustment.
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