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Abstract: Lateral cephalograms provide important information regarding dental, skeletal, and soft-
tissue parameters that are critical for orthodontic diagnosis and treatment planning. Several machine
learning methods have previously been used for the automated localization of diagnostically relevant
landmarks on lateral cephalograms. In this study, we applied an ensemble of regression trees to solve
this problem. We found that despite the limited size of manually labeled images, we can improve the
performance of landmark detection by augmenting the training set using a battery of simple image
transforms. We further demonstrated the calculation of second-order features encoding the relative
locations of landmarks, which are diagnostically more important than individual landmarks.

Keywords: cephalograms; anatomical landmarks; machine learning; regression trees; orthodontics

1. Introduction

Lateral cephalometric radiographs have played a central role in the diagnosis of
malocclusions. Diagnosis proceeds by locating certain important anatomical landmarks
on the cephalograms and evaluating the higher-order features obtained from the rela-
tive placement of these points. The manual localization of landmarks is a tedious and
time-consuming task, which even in the case of experienced orthodontists can take approxi-
mately 10–15 min/radiograph [1]. In addition, significant discrepancies may arise between
different evaluators. Since orthodontic diagnosis and associated treatment procedures are
sensitive to the accurate estimation of landmarks, inconsistencies in landmark identification
can potentially have deleterious effects on diagnoses and treatment outcomes. Automated
landmark detection on lateral cephalometric radiographs using machine learning tech-
niques can help an orthodontist locate landmarks instantaneously while avoiding subjective
inconsistencies [2–6]. Previously, Lindner et al. attempted to predict landmarks in lateral
cephalograms and used them in the classification of skeletal malformations [7]. Similarly,
Wang et al. used multiscale decision tree regression voting using scale-invariant [8] patch
features for landmark detection in cephalometric X-rays to calculate certain clinical param-
eters [9]. There have also been attempts to locate cephalometric landmarks without the
application of machine learning. Grau et al. conducted landmark detection using a line
detection module followed by the application of pattern matching techniques [6]. The Au-
tomatic Cephalometric X-Ray Landmark Detection Challenge, held at the IEEE (Institute of
Electrical and Electronics Engineers) International Symposium on Biomedical Imaging 2014,
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saw two machine learning algorithms perform the best for different precision ranges [1].
Ibragimov et al. conducted landmark detection by applying a combination of game theory
and random forests that showed better performance for smaller precision ranges [10,11].
Vandaele et al., on the other hand, applied an extremely randomized tree-based approach
that performed better on a larger precision range [12]. A form of data augmentation was
applied by Oh et al. that employed a local feature perturbator on the local clues and inputs
of differently perturbed images in each epoch for the convolutional neural network while
training [13].

The aim of automatic landmark detection in cephalometric X-rays is to save the time
spent on manually labeling landmarks on a cephalogram and to improve the measurement
accuracy since both the interoperator and intraoperator variability of measurement errors
can be eliminated [14–16]. This aids in orthodontic diagnosis and treatment planning. The
performance of machine learning algorithms in multiple domains has increased substan-
tially in recent years. This progress is a result of advances in computational capacity and
associated methods that are well-suited to process larger datasets. For supervised learn-
ing tasks, such as the landmark detection of medical images, the availability of correctly
labeled data is a key resource. However, accurate and medically precise labeling can only
be performed by trained personnel. As labeled data can be considered a precious and
expensive resource, data augmentation methods can be beneficial in reducing the need for
larger amounts of labeled data.

Therefore, this study was undertaken with the objective to automate the detection of
these landmarks using machine learning and then compute diagnostic features using
the landmark locations. Furthermore, in this study, a number of data augmentation
methods and their performances were evaluated. The relevant question that this research
aimed to answer is whether we can artificially increase the size of the training data while
keeping the labeling accurate with the different data augmentation methods. Therefore, the
performance of the proposed model was calculated based on both the predicted landmarks
and the features stemming from the landmarks.

2. Materials and Methods
2.1. Dataset

The dataset comprised 362 lateral cephalometric radiographs, each labeled with
26 landmarks. Based on a previous study, a sample of 300 cephalograms would be con-
sidered sufficient for data augmentation. In our study, 375 cephalometric images were
obtained to account for exclusions due to poor image quality, distortion, an incomplete
region of interest of the skull, etc. Out of the 375 images, 362 images were included in the
study. The dataset did not require institutional review board (IRB) approval since the lateral
cephalometric radiographs were anonymized and no demographic or other identifiable
information was obtained. Figure 1 shows the landmarks for a sample lateral cephalo-
metric radiograph. Table 1 describes each landmark in further detail. These landmarks
were marked on all 362 cephalometric X-rays by two trained orthodontists (KH and MU).
Together, the orthodontists had more than 20 years of orthodontic experience.

The landmarks were then used to calculate a number of angular features that are
diagnostically relevant for orthodontic treatment. Figure 2 shows the angles on a sample
cephalometric X-ray.
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Figure 1. A sample cephalometric X-ray showing the true positions of the 26 cephalometric land-

marks. 
Figure 1. A sample cephalometric X-ray showing the true positions of the 26 cephalometric land-
marks.
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Table 1. Description of the landmarks used in the study.

Landmark Description

S (Sella) The geometric center point of the pituitary fossa.
P (Porion) The most superior point on the external auditory meatus.
Go (Gonion) Most posterior and inferior point on the curvature of the angle of the mandible.
N (Nasion) The most anterior point on the frontonasal suture.
O (Orbitale) The lowest point on the inferior rim of the orbit.
A (Point A) The deepest point on the bony concavity between the ANS and supradentale.
B (Point b) The deepest point on the bony concavity between the pogonion and infradentale.
Me (Menton) The most inferior point on the hard tissue chin.
G (Glabella) The most anterior point on the forehead.
Sn (Subnasale) The junction of the nose and upper lip.
Ls (Labrale superius) The most prominent point on the upper lip.
Li (Labrale inferius) The most prominent point on the lower lip.
PgS (Soft tissue pogonion) The most prominent point on the soft tissue chin.
Ur The root tip of the upper incisor.
Uc The crown tip of the upper incisor.
Lc The crown tip of the lower incisor.
Lr The root tip of the lower incisor.
ANS (Anterior nasal spine) Anterior tip of the nasal spine.
PNS (Posterior nasal spine) Posterior tip of the nasal spine.
U6M Upper first molar mesial tip Most prominent point on the mesial cusp.
U6D Upper first molar distal tip Most prominent point on the distal cusp.
L6M Lower first molar mesial tip Most prominent point on the mesial cusp.
L6D Lower first molar distal tip Most prominent point on the distal cusp.
SEM (Sphenoethmoidal point) Intersection of the greater wing of sphenoid and the cranial floor.
Pn (Pronasale) The most anterior point on the nose.
Co (Condylion) The most superior and posterior point on the condylar head.
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2.2. Ensemble of Regression Trees

In order to solve this nontrivial problem of pinpointing the various landmarks (Table 1)
using only the X-ray image, we employed the approach of averaging over a large number
of relatively simple predictors. This is akin to computing the average opinion of a cohort
of orthodontic students rather than depending on the expertise of a single senior and
experienced orthodontist. This approach has two advantages. Firstly, a generic and
relatively simple algorithm can be used repeatedly rather than crafting a very sophisticated
algorithm. Secondly, averaging over multiple predictors avoids the idiosyncrasies that
might be introduced in a sophisticated predictor. In machine learning, this technique is
called ensemble learning and is considered a robust approach. Specifically, we employed
a large number (ensemble) of regression trees to estimate the landmark locations on the
cephalometric X-rays. Regression refers to the prediction of a numerical value (here, the
x and y coordinates of a landmark). These predictions were calculated using the image
intensity values at various points in the cephalometric X-rays. Regression trees can be
thought of as a sequence of successive yes or no questions that narrow down the range of
landmark locations after each question. Just as a tree branches, our algorithm also branches
to two nodes at each stage. After the last question, we arrive at the most likely position of
the landmark.

This algorithm was first developed for facial alignment in 2014 [17]. Its implementation
is available in the dlib [18] library for Python [19]. Each regressor in the cascade is trained
using the gradient tree boosting algorithm with a sum of square error loss. Each tree
comprising the ensemble is limited to a certain tree depth parameter. The number of
successive ensembles specifies the cascade depth, whose combined results generally give
better accuracy than using only a single-stage ensemble. The learning parameters that we
experimented with in the present study are nu, the cascade depth, the tree depth, and the
oversampling amount. The definitions of these parameters are given in Table 2.

Table 2. Description of the model parameters.

Parameter Description

Nu Weight given to new trees being successively added to the present
ensemble.

Oversampling Amount Number of times the same image is used for different regressors.
Cascade Depth Total number of cascade stages.
Tree Depth Depth of each regression tree in the ensembles.

Of the total number of cephalograms, 70% (253 images) were used for training, and
the rest (109 images) were used as a test set. The images in the training set were shuffled to
ensure randomness in the order they were processed by the model being trained.

2.3. Transformations

Since collecting and annotating X-rays is costly, we attempted to artificially increase
the number of images by applying different transforms to the X-rays: zoom, horizontal
shift, vertical shift, shear, rotate, and elastic transform. This is a standard machine learning
method to augment the training data size for more accurate predictions. We gradually
increased the augmented training set by transforming each image up to six times. The
parameters of the transformations are given in Table 3.

Table 3. Parameters used in each type of image transformation used for data augmentation.

Zoom H-Shifted W-Shifted Shear Rotate Elastic

10% 50 pixels 50 pixels 10 deg 10 deg alpha = 100, sigma = 5,
alpha_affine = 50
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3. Results

The distance between the true and predicted positions of a landmark is the measured
error that was used to determine the accuracy of the model. This is the most apt measure of
performance, as the focus is to estimate the landmark position as close to its true position as
possible. Additionally, the model was also assessed based on the directionality of the errors.
This takes into account whether the model is prone to predicting the landmark position
equally in all directions away from the true position or if there is a bias towards a certain
direction. This error measurement is necessary to gain confidence in the predictions made
by our model.

The learning parameters of the model were nu, the tree depth (F), the oversampling
amount (R/N), and the cascade depth (T). We were able to find a set of intermediate
parameters, such as nu = 0.2, tree depth = 1, and oversampling amount = 20, with the
lowest test error (Figure 3a). The error continued to decrease with increased complexity
(Figure 3b). The training time complexity was proportional to F*R*T. This is demonstrated
in the training times in Figure 3c.
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Figure 3. Effects of learning parameters on performance. (a) Mean distance between the predicted
and labeled landmarks in pixels plotted on the y axis for the test images. (b) Mean distance between
the predicted and labeled landmarks in pixels plotted on the y axis for the train images. (c) Training
time in seconds for prediction models trained with different learning parameters.
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To arrive at the highest possible accuracy on the test set, the learning parameters
were varied over a certain range and the model was trained for each such variation of the
parameters. The resulting test set error, training set error, and training times were plotted
against the learning parameters. The errors were in pixels averaged over all 26 landmarks
over all images in the corresponding set. The experiment gave the optimal values of the
learning parameters for the currently available training data.

3.1. Novelty Introduced by Data Augmentation Methods

It was expected that increasing the number of training data samples would result
in higher accuracy on unseen images. Therefore, it was desirable to increase the size
of the training set while keeping the expert labeling costs of the X-rays to a minimum.
Artificially augmenting the training data using different transforms and feeding those
images to the model being trained may make the final trained model more robust. Figure 4a
shows the transforms (zooming, height shifting, width shifting, shearing, rotating, and
nonlinear elastic transformation) used on a sample image. We assessed the “novelty” of
each transformation from the perspective of both the training and the performance of
the models.
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images. The same training images were altered using different transforms. The performance of
the original model was evaluated on these transformed images. The errors on the transformed
images (train_untransformed) were of a similar magnitude to those on the real unseen images
(test_untransformed), thus confirming that the transformations added an appropriate amount of
novelty to the images. (c) The performance of the original model was evaluated on different transfor-
mations of new unseen (test) images. The transformations did not overly distort the images since the
performance on the transformed images was similar to the performance on untransformed images.

For a model trained on original images only, Figure 4b shows the test errors obtained
when predicting the landmarks of transformed images. Obviously, the error on the untrans-
formed trained images was negligible. After transforming the training images, the model
was not able to perfectly predict the landmark positions, implying that these transformed
images appear novel to the model. We see that the rotation and shear transformations
introduced the most novelty. The errors for the elastic transformation were higher by about
one order of magnitude compared to the rest of the transforms.

A good transformation from the perspective of data augmentation would be one that
makes transformed images appear only as different as any other unseen image. Therefore,
we also compared the performance of the model on unseen images vs. the transformations
of the unseen images. Figure 4c shows the prediction errors on the transformed and
untransformed unseen images. All the transforms resulted in prediction performances
similar to those of the untransformed images, apart from the elastic transformation.

We concluded from this analysis that relatively simple transforms introduce novelty
into the images to make them appear different from the original images without distorting
the images to the extent of catastrophic performance (as seen in the elastic transformation).
Subsequent analyses in this study therefore included only zoom, shifts, rotation, and
shearing and excluded the elastic transformation.

3.2. Performance Gains from Data Augmentation

As we have seen, even though the augmented images were only slightly different
compared to the original images they were sourced from, they were still able to provide
some diversity to the model. This can be seen in Figure 5, where successively adding more
images to the training set led to a drop in error. The drop was more significant when the
added images were new original images instead of transformed versions of the 50 original
images. For each image, the transformation parameters were randomly chosen from within
a range. The range was chosen based on the transformation parameters used in Figure 4.
Therefore, the ranges were 20%, −70 to +70 pixels, and 15 degrees for zoom, shifting, and
shearing, respectively.
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(blue line) or transformations of the same starting set (red line). The test error continued to decline
with larger datasets, with higher gains from unseen images, but adding augmented images also led
to a gain of at least 50% compared to the original images.

Once the model was finalized, its accuracy was separately evaluated for each landmark.
Figure 6 shows the distribution of the prediction errors in pixels. Figure 7 shows the
directionality of these errors in degrees. The errors were symmetrically distributed for
almost all landmarks.
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Figure 7. Directionality of the prediction errors of each landmark. Each panel shows the angular
distribution of the prediction error in degrees (x-axis) for each of the 26 landmarks.

These raw landmarks provide the basis for the selection of diagnostically important
features. Seven angular features were identified and analyzed based on the identified
landmarks. The distribution of the prediction errors of these features is shown in Figure 8.
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Figure 8. Error distribution in predicting the angular features. The distribution of the magnitude
of the prediction error in degrees (x-axis) is shown for (a) SNA, (b) SNB, (c) ANB, (d) Uc-UR/S-N,
(e) Lc-Lr/Go-Me, (f) S-N/Go-Me, and (g) G-Sn-Pg’ angle.

4. Discussion

This study evaluated the use of the ensemble of regression tree method for cephalo-
metric landmark detection. This method has mostly been used for facial landmark de-
tection [20–23]. This method relies on iteratively refining the location of each landmark
using both the local pixel features and the estimates of the locations of other landmarks.
The diagnostically important landmarks are located farther apart throughout the image
compared to the clustered locations of facial landmarks as they are generally defined.
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In the current study, each cephalometric X-ray had 26 landmarks. The landmarks
represented distinct points distributed throughout the images rather than defining a contour.
The original paper and subsequent works, however, used this algorithm mainly for facial
landmark detection, where the landmarks were clustered together and formed a contour
around facial features.

Even though the number of images for both training and testing the model were just
about sufficient for machine learning purposes, we obtained satisfactory performance with
our method. This could be owing to the use of data transforms that augmented our dataset,
artificially increasing the training set. This study demonstrates the usefulness of image
transformations in terms of the novelty introduced by transformed images compared to
real unseen images. The trained model’s performance was satisfactory, not just in terms
of how close the predicted landmarks were to the true landmarks but also in how the
predicted landmarks were distributed around the true landmarks for different images.

For applications in clinical orthodontics, the direction of the landmark prediction is
important for the outcome assessment. It was observed that the prediction made by the
current method for the landmark glabella did not sway outward or inward from the skull
periphery, as shown in Figure 7. This is intuitively consistent with the expectation of a
human orthodontist. Consistent identification of the glabella ensures higher accuracy when
measuring the soft-tissue convexity of the profile, which is measured by the lines joining
the three landmarks glabella, subnasale, and soft tissue pogonion [24]. The current model
not only predicted the individual landmarks with appreciable accuracy but also preserved
the angular relationships between these landmarks, which is crucial for a correct diagnosis
(Figure 8). Specifically, the standard deviation of the errors for the angle ANB [A point]-
[Nasion]-[B point] were within 4 degrees. This is similar to the research findings of Hunag
et al. on the analysis of cephalometric measurements using artificial-intelligence-based
algorithms [25].

The current study also shows how the identification of landmarks affects the different
angles used for orthodontic diagnosis. SNA relates the maxilla to the cranial base. SNB
measures the relation of the mandible to the cranial base [26,27]. ANB measures the differ-
ence between SNA and SNB. The prediction of SNA, SNB, and ANB showed some error as
per the current model (Figure 8). However, interestingly, the angle ANB demonstrated a
smaller error than both SNA and SNB. ANB is the net output obtained by the difference
between SNA and SNB. The smaller difference of ANB may show the error of each SNA
and SNB in each sample. This could be due to the directionality of the errors in SNA and
SNB such that the errors lined up antagonistically with each other and not synergistically,
resulting in a lower net ANB error.

In recent years, a number of artificial-intelligence-based algorithms have been studied
to evaluate the performance of machine learning on cephalometric radiographs. In this
study, augmentation methods were used to identify similar cephalometric landmarks that
were used in previously published artificial intelligence studies [28–30]. When training a
machine learning algorithm, increasing the number of training data samples results in a
higher accuracy on unseen images [31]. However, increasing the amount of labeled data
is a challenge in orthodontics, as labeling cephalometric radiographs requires input from
orthodontists. This results in increased expert labeling costs and requires substantial expert
time. Both these factors can limit the amount of labeled data available. Therefore, it is
desirable to increase the size of the training set while keeping the expert labeling costs to
a minimum. This study showed that augmentation methods can be successfully used to
increase the training data sample by utilizing an ensemble regression tree method for the
analysis of cephalometric radiographs.

There were certain limitations to the study such as the sample size used in the AI
algorithm. However, even with that limitation, the ensemble regression tree algorithm
performed well in the identification of cephalometric landmarks when used with augmen-
tation methods. This study demonstrates that the different types of image transformations,
such as original, zoom, H-shift, W-shift, shear, and rotation, are useful for improving
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the accuracy of the artificial intelligence model for the prediction of landmarks used for
orthodontic diagnosis in lateral cephalograms. The elastic transform, despite being more
complicated, did not fare so well. One possible reason may be the unrealistic nature of the
images generated by the elastic transform.

5. Conclusions

• Ensemble of regression tree proved to be a reliable approach for the automated identi-
fication of cephalometric landmarks.

• Augmentation methods could be used to artificially increase the training set size and
consequently improve the performance of the machine learning model.

• Simple image transformations such as original, zoom, H-shift, W-shift, shear, and
rotation worked well to introduce novelty to the model.

• The elastic transformation did not perform well as a method of augmentation for
introducing novelty to the sample.

6. Patents

Upadhyay et al. Artificial Intelligence (AI) based Decision-Making Model for Or-
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