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Abstract: The receptor tyrosine kinase (RTK) RON is linked to an aggressive metastatic phenotype
of carcinomas. While gaining interest as a therapeutic target, RON remains unstudied in sarcomas.
In Ewing sarcoma, we identified RON among RTKs conferring resistance to insulin-like growth
factor-1 receptor (IGF1R) targeting. Therefore, we explored RON in pediatric sarcoma cell lines and
an embryonic Tg(kdrl:mCherry) zebrafish model, using an shRNA-based approach. To examine
RON–IGF1R crosstalk, we employed the clinical-grade monoclonal antibody IMC-RON8, alone and
together with the IGF1R-antibody IMC-A12. RON silencing demonstrated functions in vitro
and in vivo, particularly within micrometastatic cellular capacities. Signaling studies revealed
a unidirectional IGF1-mediated cross-activation of RON. Yet, IMC-A12 failed to sensitize cells to
IMC-RON8, suggesting additional mechanisms of RON activation. Here, RT-PCR revealed that
childhood sarcomas express short-form RON, an isoform resistant to antibody-mediated targeting.
Interestingly, in contrast to carcinomas, treatment with DNA methyltransferase inhibitor did not
diminish but increased short-form RON expression. Thus, this first report supports a role for
RON in the metastatic progression of Ewing sarcoma. While principal molecular functions appear
transferrable between carcinomas, Ewing sarcoma and possibly more common sarcoma subtypes, RON
highlights that specific regulations of cellular networks and isoforms require better understanding to
successfully transfer targeting strategies.
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1. Introduction

The receptor tyrosine kinases (RTKs) RON (also known as macrophage stimulating 1 receptor
MST1R) and MET form a two-member family of so-called scatter factor receptors, based on closely
related structure and function [1]. While MET signaling is a well-recognized oncogenic pathway in many
cancers, first findings assigned RON a role in the regulation of innate immunity, limiting macrophage
motility and inflammatory response [2,3]. Further studies demonstrated an expression in various
tumors, linking RON to tumorigenesis and progression as well [4–6]. In epithelial cancers, RON
expression has been recognized as a prognostic factor of metastasis and poor outcome [6,7]. This has
been attributed to its pro-tumorigenic activities in epithelial-to-mesenchymal transition, migration,
invasion and chemoresistance [4,8,9]. Targeted inhibition of RON reversed these features [8–10],
linking RON to both progression and maintenance of an aggressive invasive-metastatic carcinoma
phenotype. Moreover, recent studies involved RON in tumor–microenvironment interactions, such as
angiogenesis and tumor immunogenicity, and in promoting a cancer stem cell phenotype [11–13].
To mediate these diverse actions, the RON receptor recruits a multitude of downstream signaling
cascades. Here, central pathways such as RAS-ERK and PI3K-AKT [3,6,14] that are shared with MET
and several unrelated RTKs form a basis for downstream signaling interactions. Furthermore, receptor
crosstalk with RTKs, such as IGF1R [15], EGFR [16] and MET [17], has been reported, connecting RON
to the broader cellular RTK network. Indeed, besides overexpression and structural variants [4–6],
such RTK crosstalk has been implicated as a key mechanism of ligand-independent oncogenic RON
activation [6,15–17]. Still, compared to its scatter-factor relative MET, RON and its unique ligand MSP
(macrophage stimulating protein; also known as macrophage stimulating 1) [18] remain understudied
and have not been investigated in sarcomas.

Ewing sarcoma is an aggressive cancer of bone and soft tissues and the second most frequent
bone sarcoma in children and adolescents. Prognosis for patients with metastatic disease remains poor
despite most intensive therapies [19]. Therefore, the development of IGF1R-targeted therapies sparked
much excitement, given impressive responses of heavily pre-treated Ewing sarcoma patients in early
clinical trials and a broad molecular basis supporting IGF1R as a tumor-driving RTK in this sarcoma [20].
However, responses in subsequent clinical trials remained below expectations [19,21]. In this context,
we performed an RNA interference screen for RTKs that conferred resistance to IGF1R inhibitors
in vitro and here identified RON [22]. Subsequent gene expression profiling and tissue microarray
immunohistochemistry revealed RON expression in Ewing sarcoma and rhabdomyosarcoma, a second
high-risk childhood sarcoma [22]. Both sarcomas share their pathognomonic molecular feature of
specific chromosomal translocations that result in chimeric transcription factor oncogenes. Interestingly,
both these oncogenes engage IGF1R as a cooperating signaling pathway [20]. Yet, targeted inhibition
of IGF1R alone did not suffice to silence crucial downstream signaling nodes in these sarcomas in vitro.
This was, however, achieved with simultaneous siRNA-silencing of RON, indicating a RON–IGF1R
crosstalk with compensatory RON signaling input as an escape strategy from IGF1R inhibition [22].
Of note, in contrast to Ewing sarcoma, rhabdomyosarcomas express the RTKs EGFR and MET, the latter
with specific oncogene addiction [23–25], placing RON–IGF1R interactions in these sarcomas before
a distinct RTK network background.

Given the emerging role of RON in carcinoma progression and metastasis, but a lack of
data characterizing RON in (any) sarcoma, we aimed to explore RON functions and its potential
as a therapeutic target in Ewing sarcoma, alone and in its interaction with IGF1R. Indeed, our analyses
demonstrate a contribution of RON to Ewing sarcoma cell migration and xenograft sarcoma burden
in vivo. Yet at the same time, the clinical-grade therapeutic antibody IMC-RON8 failed to block this
RON-mediated migration. Here, our study provides first evidence to hypothesize that in addition to
interacting RTK networks, pediatric sarcomas express isoforms of the RON receptor that interfere with
antibody-based targeting strategies.
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2. Results

2.1. RON Expression and Activation in Ewing Sarcomas and Cell Lines

Our previous study found RON overexpressed in pediatric sarcomas compared to mesenchymal
stem cells (MSCs) as a normal tissue control [22]. To confirm this microarray-based data, we analyzed
RON transcript expression in an independent set of Ewing sarcoma tumor samples with matched
clinical data using qPCR (real-time quantitative polymerase chain reaction) [23]. Relative to MSCs, RON
was overexpressed in these tumors, and primary tumors from patients with metastatic disease showed
higher RON levels than localized tumors (Figure 1a). A broad range of RON expression levels in Ewing
sarcoma cell lines was not significantly different from the MSCs (Figure 1b). In two additional microarray
datasets available through the R2: genomics analysis and visualization platform (https://r2.amc.nl),
RON expression revealed broad distributions (Figure S1) [26,27]. All lines expressed the RON protein,
as did the rhabdomyosarcoma cell lines, which were included into this study to address potential
interaction of RON with its RTK family member MET (Figure 1c). Across this cell line panel, a relatively
high-level of RON expression and activation were observed in A673, TC-32, RH-18 and Rh-30
compared to SK-N-MC, TC-71, TTC-466 and RH-41. In contrast to the RON transcript, MET expression
of Ewing sarcomas and cell lines remained below the MSC levels (Figure S2). In keeping, MET
protein was not detected in Ewing sarcoma cell lines, but expressed and phosphorylated in the RH-30
rhabdomyosarcoma control. Interestingly, MET was expressed but not phosphorylated in a genetically
modified Ewing sarcoma cell line with shRNA-silencing of the specific Ewing sarcoma oncogene
EWS-FLI1, which links the EWS-FLI1 oncogene to distinct scatter factor RTK expression patterns of
pediatric sarcomas (Figure S2).

Figure 1. RON is expressed in Ewing sarcomas and cell lines. (a) Relative RON transcript expression
in Ewing sarcoma primary tumors from patients with localized (non-met) or metastatic (met) disease
in comparison to MSC cultures, as determined by qPCR. (b) Respective RON expression in Ewing
sarcoma cell lines (EwS) compared to MSC cultures. (c) RON protein is expressed and phosphorylated
in Ewing sarcoma and rhabdomyosarcoma (RMS) cell lines. Cells were grown in standard tissue culture
conditions. Following analysis of phospho-RON, blots were stripped and re-probed for total RON
expression; 10% gel; numbers indicate densitometry readings relative to respective actin loading control.

https://r2.amc.nl
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2.2. Functional Effects of RON Silencing

To investigate the functional contribution of RON to Ewing sarcoma cell proliferation and
metastatic capacities, we implemented RON shRNA knockdown in the A673 and TC-32 cell lines
(Figure 2a). Interestingly, RON silencing did not affect monolayer cell proliferation in vitro, neither
for the A673 nor TC-32 cells (Figure 2b). Addressing cellular migration as one critical step of
the metastatic process, decreased RON expression delayed wound healing of the A673 cells (Figure 2c)
and significantly impaired trans-well migration in four Ewing sarcoma cell lines (Figure 2d), indicating
a role for RON in vitro in cellular migration rather than in monolayer proliferation.

Figure 2. RON silencing impairs Ewing sarcoma cell migration in vitro. (a) RON protein knockdown
11 days after transduction with shRNAs targeting RON (shRON) or the non-silencing control (shCtrl).
Numbers indicate densitometry readings relative to the respective actin loading control. (b) Proliferation
remains unaffected by RON silencing. Cells from (a) were seeded into a 24-well plate at low density
and one well was counted at each time point indicated (the 144 h time-point was omitted for A673
because cells were overgrown). (c) RON silencing delays wound healing of a confluent A673 monolayer
in standard culture conditions, documented by bright-field microscopy at 40×magnification. Numbers
indicate percent wound gap. Images are representative of two independent experiments. (d) RON
silencing impairs Ewing sarcoma cell migration. Cells were cultured in serum-free medium and
trans-membrane migration to serum (10%) was analyzed after 48 h. Graphs (b) and (d) represent
the mean± standard deviation (SD) of three independent shRNA transduction experiments. Significance
is indicated as p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***), while ns indicates a non-significant p-value.
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To pursue RON’s contribution to pro-metastatic features in vivo, we chose embryonic zebrafish to
model xenograft Ewing sarcoma primary tumors and micrometastases. Many cellular and molecular
components of mammalian tumorigenesis and tumor suppression are conserved in zebrafish and
their cancer histologies are highly similar to human cancers [28]. Following injection of tumor cells
into the zebrafish blood circulation at the duct of Cuvier, the transparency of the embryonic zebrafish
permits simultaneous evaluation of non-disseminated tumor cell accumulations close to the injection
site that correspond to localized tumor burden and of tumor cells disseminated throughout the embryo
that represent (micro-) metastases [29]. At the same time, genetically engineered zebrafish lines
with tissue-specific reporters enable high-resolution in vivo analysis of tumor cell interactions with
the host microenvironment during tumor progression [28,30]. Employing a previously established
model [29,31], we injected A673 cells expressing shRNA silencing RON or non-silencing control
together with green-fluorescent reporter protein (GFP) into a transgenic zebrafish line with red
fluorescently traced endothelium (Figure 3). Analysis of total tumor burden was performed at 4 days
post implantation (dpi) on whole embryos (Figure 3a) and revealed that reduced RON expression
significantly reduced total tumor burden (Figure 3b). As previously described [29], disseminated
tumor cells were found predominantly at the posterior ventral end of the caudal hematopoietic tissue
(CHT) in the zebrafish tail (Figure 3a,c). Interestingly, extravasation of implanted cells from the host
vasculature has been reported as a phenomenon independent of cellular tumorigenic properties.
However, such cells disappeared before 4 dpi and only perivascular cells with moderate or high
metastatic potential were capable of invading the neighboring tail fin tissue to subsequently develop
micrometastasis [29,32]. While we did not observe formation of multi-cellular micrometastases by
our time point of analysis at 4 dpi, CHT areas showed A673 cells harboring non-silencing shRNA
that persisted outside the vasculature (Figure 3c). Moreover, single invasive cells that had lost contact
with the endothelium and entered into the tail fin tissue were observed (Figure 3c). Although these
dissemination and invasion capacities could not be conclusively quantified, they appeared reduced with
RON silencing, suggesting that RON contributes to tumor burden in vivo and to the micrometastatic
potential of Ewing sarcoma cells.

Figure 3. RON silencing reduces Ewing sarcoma xenograft burden in embryonic zebrafish in vivo.
A673 cells expressing shRNA and concomitant GFP reporter were injected into the duct of Cuvier of
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transgenic zebrafish embryos with red fluorescently traced vasculature (mCherry). Zebrafish
were imaged by fluorescence microscopy at 4 dpi (4× magnification): (a) Representative image
of a xenograft-bearing zebrafish. The main tumor burden is localized in proximity to the injection site
(*). Arrowheads indicate tumor cells disseminated throughout the embryo; (b) RON silencing reduces
total tumor burden as analyzed based on GFP-fluorescent objects per zebrafish area. Bars indicate
mean tumor burden ± SD of zebrafish larvae analyzed; and (c) representative image of Ewing sarcoma
cells persisting outside the vasculature (arrowheads) and of single invasive cells no longer in contact
with the endothelium (arrows).

2.3. Activity of the Therapeutic Antibody IMC-RON8 In Vitro

To explore RON as a therapeutic target, we utilized the monoclonal antibody IMC-RON8
(narnatumab) that had reached phase I clinical investigation [33]. IMC-RON8 blocks MSP–RON binding
and thus ligand-induced receptor activation and signaling. However, IMC-RON8 did not significantly
affect monolayer cell viability in vitro in any of the nine pediatric sarcoma cell lines analyzed (Figure 4a),
independent of their baseline RON expression and activation (Figure 1c). Colon (HT-29, HCT-116) and
pancreatic (CAPAN-1) adenocarcinoma cell lines, examined as controls with well-characterized
oncogenic RON function, remained similarly unaffected (Figure S3). Yet, concordantly with
shRNA-based findings, IMC-RON8 significantly impaired migration of Ewing sarcoma cell lines
(Figure 4b), while interestingly promoting migration of RH-18 rhabdomyosarcoma cells.

Because our previous study had shown that RON provided compensatory signaling for loss of
IGF1R input [22], we speculated whether here in turn IGF1R signaling attenuated IMC-RON8 efficacy
and whether this may then be restored through simultaneous targeting of IGF1R. Evaluating both RTKs
for co-activations (Figure 4c), RON showed little constitutive activation in the absence of serum and
a surprisingly weak response to stimulation with its specific ligand MSP. Somewhat more prominent
activation was observed with serum stimulation, whereas strongest activation occurred following IGF1
treatment. In contrast, substantial IGF1R activation was restricted to its specific ligand. These findings
indicate a unidirectional cross-activation of RON by IGF1–IGF1R signaling.

To target this cross-activation, we employed the monoclonal antibody IMC-A12
(cixutumumab) [34], which had reached phase II clinical studies. In a mechanism of action similar to
IMC-RON8, IMC-A12 blocks IGF1 ligand–IGF1R receptor binding and signaling activation. Evaluating
the effect of IMC-A12 on cell viability (Figure 4d), Ewing sarcoma cell lines revealed an overall
intermediate response. Here, the TC-32 and TTC-466 (half-maximal inhibitory concentrations
(IC50) < 10 µg/mL), 5838 and TC-71 (IC50 < 20 µg/mL) cell lines were more sensitive compared
to more resistant A673 and SK-N-MC cells (IC50 > 100 µg/mL). Rhabdomyosarcoma cell lines presented
a broader spectrum of sensitive (RH-41; IC50 < 0.1 µg/mL), intermediate (RH-30; IC50 < 20 µg/mL)
and resistant lines (RH-18; IC50 undetermined). However in contrast to our hypothesis based on
prior co-targeting of RON with siRNA and IGF1R tyrosine kinase inhibitor [22], combined treatment
with IMC-RON8 and IMC-A12 did not overcome resistance or enhance effects on cell viability
compared to single antibodies (Figure 4e). Similarly, parallel shRNA-silencing of RON did not alter
the IMC-A12 effects on cell proliferation in vitro (Figure S3). Regarding cell migration, IMC-A12 alone
had a significant inhibitory effect only on SK-N-MC, and thus not on A673 or RH-18 cells. Again,
antibody-mediated co-targeting of both RTKs did not reveal synthetic inhibition of cell migration
compared to RON targeting alone (Figure 4f).

Given that MET was not active or expressed at substantial levels in Ewing sarcoma (Figure S2),
we had included MET-driven rhabdomyosarcoma cell lines into this study [25], hypothesizing that
rhabdomyosarcomas would utilize compensatory MET signaling and therefore be less amenable
to RON and IGF1R co-targeting than Ewing sarcoma. However, with the significant effects of
IGF1R co-targeting not observed in MET-negative Ewing sarcoma counterparts, this setting appeared
unsuitable to pursue potential RON−IGF1R−MET interaction in rhabdomyosarcoma.
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Figure 4. IMC-RON8 antibody inhibits migration but not proliferation of Ewing sarcoma cell lines
in vitro. (a) IMC-RON8 does not significantly reduce monolayer cell viability of EwS and RMS cell
lines. Cells were grown in standard conditions and treated as indicated. After 72 h, relative cell
viability was measured by MTT assay. (b) IMC-RON8 impairs migration of Ewing sarcoma cells.
Cells were cultured in serum-free medium, seeded into trans-well chambers containing 100 ng/mL
IMC-RON8 where indicated and allowed to migrate towards 10% serum. Graphs represent mean ± SD
of triplicate experiments. (c) RON is cross-activated by IGF1–IGF1R signaling but not vice versa. Cells
were starved in serum-free medium for 24 h before stimulation with fetal bovine serum (FBS) (10%),
MSP (400 ng/mL) or IGF1 (100 ng/mL) for 30 min. Following analysis of phospho-RON, blots were
stripped and re-probed for total RON expression; numbers indicate densitometry readings relative to
respective actin loading control. (d) Dose-response of the EwS and RMS cell lines to the anti-IGF1R
antibody IMC-A12. Assays were performed as in (a); significances refer to maximum dose compared to
non-treated cells. (e) Combined treatment with IMC-RON8 plus IMC-A12 does not result in synergistic
effects on cell viability. MTT assay was performed as in (a). Graphs (a), (d) and (e) represent the mean ±
SD of at least three independent experiments. (f) Combined treatment with IMC-RON8 plus IMC-A12
does not reveal synergistic effects on migration. Assays were performed as in (b) with 100 ng/mL
IMC-A12 and 1000 ng/mL IMC-RON8 as indicated. Significance is indicated as p < 0.05 (*), p < 0.01 (**)
and p < 0.001 (***), while ns indicates a non-significant p-value.



Cancers 2020, 12, 904 8 of 18

Taken together, IMC-RON8 studies recapitulate shRNA-based findings in indicating a role for
RON in the migratory phenotype of Ewing sarcoma. Yet, although our data reveal RON activation
through both MSP and IGF1 ligand-mediated mechanisms, IMC-A12 failed to sensitize sarcoma cells
to IMC-RON8. While this may be due to different strategies of IGF1R inhibition (ligand-dependent
antibody versus tyrosine kinase inhibitor in the prior study), our current focus on RON led us to
question whether additional ligand-independent mechanisms contributed to net RON activity and
attenuated the efficacy of both antibodies.

2.4. Expression of RON Isoform Variants in Ewing Sarcoma

RON isoform variants with ligand-independent activities bear the potential to subvert the effects
of IMC-RON8 or other compounds that target ligand–receptor binding. In carcinomas, at least eight
isoforms have been reported, most due to alternative splicing. Several exhibit constitutive tyrosine
kinase activity or confer resistance due to intracellular localization or loss of N-terminal ligand-binding
elements [6,35–37]. As a first step to address such isoforms in pediatric sarcomas, we re-examined
whole cell protein lysates of cell lines at a higher separation and in comparison to characterized RON
isoforms (Figure 5a): HT-29 cells express the 180 kDa (kilodalton) wild-type pro-RON precursor,
which is cleaved into the 40 kDa α-chain and the 150 kDa wild-type RON β-chain [18]. At the same
time, HT-29 cells co-express the ∆160E5E6 variant. Alternative splicing with deletion of exons 5–6
(corresponding to the IPT1 domain) results in a 160 kDa precursor chain that is cleaved into the α-chain
and a constitutively active 125 kDa β-chain [35]. HCT-116 cells are characterized by the splicing
variant ∆160E2E3 with deletion of exons 2–3 (corresponding to parts of the β-chain SEMA domain).
It forms an un-cleaved single chain protein of 160 kDa that is retained in the intracellular compartment,
shows no tyrosine phosphorylation ability, but is associated with constitutive AKT activation [36].
In keeping, Western blots of Figure 5a revealed the ∆160E5E6 variant with phospho-specific and both
SEMA and IPT3 domain-directed antibodies, whereas the ∆160E2E3 variant was better visualized with
an IPT3 epitope-directed antibody. Interestingly, all Ewing sarcoma and RH-41 rhabdomyosarcoma
cells expressed a single phosphorylated protein band of similar weight as the 125 kDa ∆160E5E6 β-chain,
while RH-18 and RH-30 showed a second band corresponding in weight to the 150 kDa β-chain of
wild-type RON. Although these preliminary findings require further validation of specific isoforms,
they suggest that pediatric sarcomas may express splicing variants of full-length RON (flRON) that
evade targeting strategies based on interruption of ligand–receptor binding, such as IMC-RON8.

Short-form RON (sfRON) is a distinct truncated isoform that derives not from alternative splicing
but an alternative intragenic promoter between introns 8 and 10 [5,38]. Functionally, sfRON is of
particular interest due to its strong constitutive tyrosine kinase activity that was shown to confer
an aggressive, motile phenotype in several carcinomas [5]. Moreover, it lacks all extracellular domains,
so that the sfRON proportion of total RON activities may undermine therapeutic benefits derived
from flRON-directed N-terminus-targeting strategies, such as IMC-RON8. We therefore investigated
sfRON expression in Ewing sarcomas and found sfRON expressed in 11 of 19 Ewing sarcoma tumor
samples (Figure 5b). Sequencing of the double bands revealed sfRON variants with and without
splicing of intron 11 (Figure S4), as previously reported in carcinomas [5]. Cell lines of Ewing and
rhabdomyosarcoma expressed sfRON as well (Figure 5c). Interestingly, in contrast to tumor samples
and to HT-29 and HCT-116, they displayed a single-banded pattern of intron 11-containing sfRON only.
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Figure 5. Ewing sarcomas express targeting-relevant RON isoforms. (a) Western blots suggest
the presence of full-length RON (flRON) splice variants in pediatric sarcoma cell lines. RON protein
expression was analyzed in comparison to characterized isoforms in HT-29 and HCT-116. Cells were
grown in standard tissue culture conditions. Following analysis of phospho-RON, Western blots were
stripped and re-probed for analysis of two distinct total RON antibodies directed at the SEMA and IPT3
domain epitopes. Arrows indicate RON species. 8% gel. (b) Ewing sarcomas express the short-form
RON (sfRON) isoform containing (upper band) and/or lacking intron 11 sequences (lower band).
Tumor samples are numbered; M indicates primary tumors from patients with metastatic disease,
R indicates a relapsed tumor. (c) Sarcoma cell lines express sfRON. RT-PCR was performed on mRNA
isolated from cell lines grown in standard conditions. (d,e) Treatment with 5-Aza-2’-deoxycytidine
(5-Aza-CdR) modulates flRON (d) and sfRON (e) transcription. RT-PCRs were performed on mRNA
isolated from cell lines grown in standard conditions and treated with 2.5 µM 5-Aza-CdR for 72 h
where indicated. In (a–e), numbers indicate densitometry readings relative to the respective actin or
GAPDH loading control.

2.5. Modulation of RON Isoform Transcription by 5-Aza-CdR

In carcinomas and leukemias, differential expression of full-length RON (flRON) and sfRON
isoforms has been found governed, at least in part, by methylation patterns of two CpG islands
in the proximal RON promoter. Hypermethylation of island 1 coincided with lack of flRON, whereas
hypermethylation of island 2 was associated with sfRON transcription [38]. Hence, modulation of DNA
methylation was explored as a means to shift RON isoform patterns. In erythroleukemic cells expressing
sfRON but not flRON, treatment with the DNA methyltransferase inhibitor 5-Aza-2’-deoxycytidine



Cancers 2020, 12, 904 10 of 18

(5-Aza-CdR; decitabine) inverted isoform expressions, downregulating sfRON and upregulating
flRON [38]. Yet conversely, treatment of initially sfRON-negative myeloid leukemia cells induced
sfRON expression [39]. We therefore tested whether 5-Aza-CdR affected isoforms of pediatric sarcoma
cell lines in favor of the IMC-RON8-sensitive flRON. For flRON analysis, we here used a primer pair that
anneals in exon 20 and remains unaffected by the alternative-splicing variants of flRON discussed above.
Expression levels flRON appeared lower in sarcoma compared to carcinoma cells and indeed increased
following 5-Aza-CdR treatment in several cell lines (Figure 5d), whereas relatively higher-level flRON
expression of HT-29 and SK-N-MC decreased (or remained unchanged). Interestingly, because contrary
to published data from leukemic cell lines, treatment with 5-Aza-CdR did not diminish sfRON
transcription, but instead upregulated sfRON in most sarcoma cell lines. Furthermore, 5-Aza-CdR
induced splicing of intron 11 in several sarcoma cell lines (lower-base pair sfRON band; Figure 5e).
These data indicate that similar to carcinomas and leukemias, expression of RON species in sarcomas
underlies, at least in part, transcriptional regulation by methylation. Yet in contrast, 5-Aza-CdR
treatment failed to diminish intrinsically IMC-RON8-resistant sfRON.

3. Discussion

3.1. RON as a Therapeutic Target in Ewing Sarcoma Metastasis

We report the first analysis of RON expression and function in sarcomas, specifically Ewing sarcoma.
Notably, although RON was overexpressed compared to MSC in several tumor samples (particularly
from metastatic disease), this does not constitute genuine overexpression, as the relationship between
Ewing sarcoma and normal bone marrow-derived MSC remains unclear. Although RON overexpression
is established for various cancers [3], a query of the cBioPortal platform [40–42] revealed that
overexpression due to genomic amplification is generally rare and was it not observed in two large-scale
datasets of 219 Ewing sarcomas and cell lines accessible through the platform [43,44]. Furthermore,
the MSK-IMPACT Clinical Sequencing Cohort of >10,000 cancer patients available at cBioPortal revealed
a low RON mutation frequency of <2% that did not influence survival. Interestingly, no more than two
mutations were found in Ewing sarcoma datasets and none in established cell lines. Thus, RON lacks
oncogenic amplification or mutation to advocate it as a classical tumor-driving molecular target in Ewing
sarcoma. Furthermore, RON silencing (shRNA- or antibody-mediated) did not affect cell viability or
proliferation of monolayer cultures in vitro. Yet in our in vivo model, RON silencing reduced tumor
burden. Importantly, this tumor burden does not reflect proliferation alone but provides a combined
measure of xenograft tumor−host interaction, cell survival, proliferation and death. The above
findings are in keeping with pancreatic carcinoma, where RON is a well-characterized molecular target.
Although neither IMC-RON8 nor RNAi knockdown affected monolayer cell proliferation in vitro [45],
RON silencing inhibited tumor growth of pancreatic cancer mouse xenografts in vivo, primarily due
to an increased susceptibility to apoptosis [9]. Furthermore similar to its ascribed role in carcinomas,
our in vitro and in vivo data, despite important limitations as to a single cell line, animal number and
quantification of distant-site invasion, indicate that RON contributes to the micrometastatic properties
of Ewing sarcoma cells, illustrating its scatter factor nature [6]. Following its characterization in diverse
carcinomas and leukemia, our study therefore recommends further investigation of RON as a molecular
component in the progression of sarcomas, possibly with a more prominent role in metastasis than
in proliferation of established tumors or as an oncogenic driver-RTK.

Following the starting point presented here, subsequent comprehensive analyses of RON function
in pediatric sarcomas should include alternative shRNA sequences or transgenic rescue control and
the design of such future RNA interference or CRISPR sequences should account for the predominant
isoforms at play. In vitro, anchorage-independent spheroid or soft-agar colony assays that explore
suppression of anoikis and tumorigenicity as additional prerequisites of metastasis will be useful.
In vivo, our experiments in embryonic zebrafish, despite their limitations, underline the principal
value of this model for the study of micrometastatic sarcoma progression. However, to study specific
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mechanisms responsible for decreased tumor burden, to quantify and analyze xenograft metastases
tissue (e.g., for specific isoform expressions) and to explore the anti-tumor activity of alternative
RON-targeting strategies, mouse xenograft models will be more suitable.

3.2. Targeting RON with the IMC-RON8 Antibody Strategy

Activity of the therapeutic IMC-RON8 antibody in Ewing sarcoma cell lines correlated
with shRNA-based experiments, inhibiting their migration but not proliferation. This is in line
with a previous report in pancreatic cancers cells, where IMC-RON8 treatment in vitro impaired
MSP-induced RON signaling and migration but not proliferation [45]. Yet while both cancers’
migratory phenotypes showed some response to IMC-RON8, simultaneous MSP-independent RON
activities may undermine IMC-RON8’s net inhibitory effect. Although requiring further validation,
our findings suggest that analogical to pancreatic and other carcinomas [5,6,17], RON isoforms
and RON–RTK networking are general principles of such MSP-independent RON activation
in sarcomas. To successfully pursue IMC-RON8’s ligand-directed targeting strategy, it will therefore
be crucial to define confounding RTKs and RON isoforms or certain patterns thereof that perform
as biomarkers of resistance or response. Yet, of note, clinical development of IMC-RON8, the only
RON-targeting monoclonal antibody to reach clinical trial, has been discontinued [46]. Indeed, given
the kinase-mediated nature of resistance mechanisms, a kinase-directed targeting strategy in turn may
be of advantage. Chakedis et al. recently reported promising results with a small-molecule tyrosine
kinase inhibitor that inhibited MSP ligand-mediated RON kinase activation as well as the constitutive
kinase activity of RON isoforms, including sfRON, in pancreatic cancer cell lines [37]. Due to
the structural similarity of the tyrosine kinase domains across RTK families, most tyrosine kinase
inhibitors lack specificity compared to monoclonal antibodies. While therefore being less suitable
when studying specific RON functions, a broader target spectrum comprising RON among other,
more-established RTK targets (including its interacting co-targets MET and IGF1R [6,47]) may promote
the clinical development of tyrosine kinase inhibitors, such as crizotinib (NCT02612194) or ASLAN002
(also known as BMS-777607; NCT01721148) [48].

3.3. RON Acts as One Member of a Cellular RTK Network

We show that RON connects to the RTK network of Ewing sarcoma cells to gain MSP-independent
activation. One, though likely not exclusive, interacting partner is IGF1R, a prominent RTK in Ewing
sarcoma biology [20]. Our previous study had shown that therapeutic inhibition of IGF1R kinase
activity resulted in compensatory RON input to shared downstream signaling nodes, such as
RPS6 [22]. This current study now indicates a second, more upstream receptor-level interaction
through IGF1−IGF1R signaling-mediated cross-activation. This mechanism was unidirectional and
has recently been first reported in pancreatic cancer cells, where RON was found to serve as a mediator
of IGF1R signaling [15]. Yet despite strong cross-activation from IGF1−IGF1R signaling, IMC-A12
was unable to sensitize sarcoma cells to RON targeting and showed limited effects as a single agent.
This is in contrast to our previous study, where an IGF1R tyrosine kinase inhibitor markedly sensitized
cells to RON knockdown [22]. Based on our limited analysis so far and on the literature from
other cancers [49,50], one explanatory hypothesis is that both RON and IGF1R act as members of
a redundant signaling network that maintains and compensates signaling input across its cascades.
Because IMC-A12 and IMC-RON8 are by mechanism of action restricted to ligand-mediated signals,
cross-activation between tyrosine kinases may pass by, leaving the sensitizing capacity of the antibodies
as inferior to the kinase inhibitor approach of our prior study. To answer this, a systemic analysis
of RON signaling activation (serum, specific ligands, starvation and RTK cross-talk), transduction
(through common signaling nodes down to effectors such RPS6 [22]) and response (to ligand-dependent
antibodies versus specific or broad-spectrum tyrosine kinase inhibitors) is warranted, but exceeded
our study.
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3.4. Targeting-Relevant RON Isoforms in Ewing Sarcoma

This study provides, to our knowledge, first evidence of targeting-relevant RTK isoforms
in pediatric sarcomas. Although the migratory phenotype of Ewing sarcoma was sensitive to
IMC-RON8, indicating ligand-dependency at least in part, simultaneous expression of constitutively
active isoforms may dampen the efficacy of ligand-directed targeting strategies. To clearly define
wild-type RON and individual flRON splicing variants suspected in Ewing sarcoma cell lines, despite
overlapping molecular weights and lack of specific antibodies, isoform-specific PCRs and more
advanced proteomic techniques will be required. This will be important, as most flRON splice variants
confer ligand-independent, constitutive tyrosine kinase activity [6]. Short-form RON, unsusceptible to
immunoblot detection using N-terminus-directed antibodies as chosen for this study, remains to be
confirmed at the protein level. Therefore, our data so far provide no more than starting-points for future
analyses: To distinguish the exact functional significance of specific isoform variants on the proliferative,
migratory or metastatic phenotype of Ewing sarcoma, signaling crosstalk, drug response, selective
depletion or overexpression experiments are warranted. To assess a clinical relevance, isoform analyses
in tumor tissue with corresponding clinical data will be important. In these analyses, sfRON deserves
particular interest for conferring resistance to N-terminus-directed therapeutic strategies [5,6].

Modulating RON promoter methylation to shift relative sfRON and flRON expressions towards
a more drug-sensitive pattern provides an intriguing strategy [37–39]. Yet, as previously noted
in pancreatic cancer, cell line-specific responses are observed [37]. In most Ewing sarcoma cell lines,
DNA methyltransferase inhibition did not prompt a shift between isoforms, but an increase in both
sfRON and flRON. In principle, this up-regulation of RON species as therapeutic targets may sensitize
sarcoma cells to tyrosine kinase inhibitors that silence both MSP-mediated and MSP-independent
tyrosine kinase activities (in contrast to the IMC-RON8 antibody). Indeed, in myeloid leukemia
cells, 5-Aza-CdR has been used to produce sfRON as de novo target for tyrosine kinase inhibitor
treatment [39]. However, a potential benefit of this approach must be carefully weighed against
the risk of enhancing oncogenic RON actions. As yet, confirmatory analyses of actual RON promoter
methylation in sarcomas, protein expression and signaling outcome of DNA methyltransferase
inhibition remain open. Particularly, the functional consequences of sfRON (and flRON) induction
on the metastatic ability of Ewing sarcoma require investigation. Furthermore, in light of an increasing
therapeutic exploitation of DNA (de-) methylation, global effects on tumor phenotypes, beyond RON
and RTKs, require consideration.

The sfRON isoform has been shown to interact with the cellular tyrosine kinase network.
In gastric cancer, specifically sfRON was found to confer resistance to therapeutic MET targeting [51].
While flRON acted transactivated by MET and MSP ligand failed to reactivate flRON in the presence
of a MET inhibitor, sfRON maintained downstream signaling and conferred resistance. In myeloid
leukemia, sfRON but not flRON physically interacted with the intracellular tyrosine kinase LYN to
drive cell proliferation in a PI3K/AKT-independent manner [39]. Before, interactions with IGF1R,
EGFR and MET receptors had been shown for flRON [15–17] and several studies had demonstrated
MSP-mediated tumor proliferation and progression involving the PI3K/AKT signaling pathway [6,10].
Thus, MSP-activated RON and sfRON may act as original tyrosine kinases with distinct signaling and
interaction partners. To take this further, Angeloni et al. reported that RON species affected each other,
with flRON reducing protein expression and kinase activity of its sfRON counterpart [38]. Thus, in light
of increasingly emerging data on sfRON as an intriguing new target and important mechanism of
resistance, it will be important to unravel which cellular functions and network interactions of RON are
truly MSP ligand-mediated, which are shared between flRON and sfRON, or unique to each isoform.
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4. Materials and Methods

4.1. Cell Lines and Tumor Samples

Ewing sarcoma and rhabdomyosarcoma cell lines were originally received from the cell culture
bank at Children’s Hospital Los Angeles (see DSMZ and ATCC for reference). HT-29 and HCT-116
colon carcinoma cell lines were from the Leibniz Institute DSMZ-German Collection of Microorganisms
and Cell Cultures (DSMZ, Braunschweig, Germany) and CAPAN-1 pancreas adenocarcinoma cells
were from American Type Culture Collection (ATCC, Manassas, VA, USA). Short tandem repeat
profiling was performed to verify identities and cells were regularly tested to be free of mycoplasma.
Standard cell culture conditions were in RPMI1640 medium with 10% fetal bovine serum (FBS)
(Invitrogen, Carlsbad, CA, USA) at 37 ◦C and with 5% CO2. Experiments we performed at ~80%
cell confluence. Ewing sarcoma tumor samples, MSC cultures and respective ethical approval were
previously described [23].

4.2. Compounds and Reagents

IMC-RON8 [33] and IMC-A12 [34] monoclonal antibodies were provided by ImClone Systems
Corporation (Branchburg, NJ, USA) through a Material Transfer Agreement. Recombinant human
MSP (Cat-No. 352-MS) was from R&D Systems (Minneapolis, MN, USA) and recombinant human
insulin-like growth factor 1 (IGF1; Cat-No. I3769) and 5-Aza-2’-deoxycytidine (5-Aza-CdR, Decitabine;
Cat-No. A3656) were from Sigma-Aldrich (St. Louis, MO, USA).

4.3. shRNA Plasmids and Lentiviral Transduction

GIPZTM lentiviral shRNA plasmids and packaging plasmids (Trans-Lentiviral Packaging Kit,
Cat-No. TLP5912) were from GE Healthcare Dharmacon (Lafayette, CO, USA). GIPZTM plasmids
express the turbo GFP reporter protein as part of a bicistronic transcript with shRNAs. RON was targeted
using a pool of three distinct shRNAs (V3LHS_643802; V3LHS_646375; V3LHS_643804). A non-silencing
shRNA (Cat-No. RHS4346) served as control. shRNA plasmids were purchased as glycerol stocks,
prepared according to the manufacturer’s protocol, and inserts were sequence-confirmed prior to
use. Generation of lentivirus and spin transductions were performed as previously described [52],
with the modification that after centrifugation, plates were incubated at 4 ◦C for 30 min before incubation
at 37 ◦C with 5% CO2 overnight. A second transduction was performed on Day 1. Experiments were
performed as of Day 9.

4.4. Reverse Transcription PCR and Sequencing

RNA isolation, Moloney murine leukemia virus (M-MLV) reverse transcription, qPCR, RON,
MET and GAPDH primers, probes spanning exon-exon junctions and analysis relative to GAPDH
housekeeping gene were performed as recently reported [23]. Reverse transcription PCR (RT-PCR)
of short-form RON (sfRON) was carried out as semi-nested PCR as described by Bardella et al. [5].
Each 25 µL PCR reaction contained 2 µL template, 200 µM dNTP, 0.2 µM primers, 1.5 mM MgCl2
and 0.6 units of GoTaq® G2 Flexi DNA polymerase in 1× buffer (Promega, Madison, WI, USA).
Product cleanup used the GeneJET PCR Purification Kit (Thermo Fisher Scientific, Waltham, MA,
USA) according to the manufacturer’s protocol. To sequence sfRON PCR products, bands were
excised from agarose gels and PCR products were extracted using the QIAquick Gel Extraction Kit
(Qiagen, Hilden, Germany). Sequencing was performed in both directions using sfRON sense and exon
12 antisense primers as previously described [52]. Sequences were analyzed using CodonCode Aligner
v8.0.2. For comparative RT-PCR of full-length RON, we chose primers annealing on a C-terminal
exon 20 sequence: 5’-TAGTGTCTGCACTGCTTGGG (forward) and 5’-GCTGTTCTGGACGCACATTC
(reverse) [37].
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4.5. Western Blotting

Procedures and buffers were as previously described [22]. Primary antibodies detecting RON
were Cat-No. HPA007657 (SEMA domain amino acids 283-433, corresponding to exons 1-2; unless
otherwise specified, this antibody was used for total RON detection) and Cat-No. HPA008180 (IPT3
domain amino acids 767–875, corresponding to exons 9–10) from Sigma-Aldrich; phospho-RON
(kinase domain Tyr1238/39) (Cat-No. AF1947) was from R&D Systems; MET (25H2) (Cat-No. 3127),
phospho-MET (Tyr1234/35; D26) (Cat-No. 3077) and phospho-IGF1R (Tyr1131/1146) (Cat-No. 3021)
were from Cell Signaling Technology (Beverly, MA, USA); IGF1Rβ (C20) (Cat-No. sc-713) and
actin (C4) (Cat-No. sc-47778) were from Santa Cruz Biotechnology (Santa Cruz, CA). Secondary
horseradish-peroxidase-conjugated antibodies were anti-mouse (Cat-No. 7076, Cell Signaling
Technology) and anti-rabbit (Cat-No. 554021, BD Pharmingen, Franklin Lakes, NJ, USA). Densitometric
analyses were performed using Image J software (version 1.52j). Uncropped blots are provided
in Figure S5.

4.6. Cell Viability Assay

Cells were seeded into 96-well plates, at densities of 2–5 × 103 cells per well in 100 µL
of standard growth medium containing 10% FBS. Cells were allowed to attach for 24 h
before treatment. After 72 h of treatment, cell viability was determined by a standard 3-(4,5-
Dimethylthiazol-2-yl)-2,5diphenyltetrazolium-bromid (MTT; Sigma-Aldrich) assay. Absorbance was
measured at 570 nm on a TriStar2 Multimode Reader LB942 (Berthold Technologies, Bad Wildbad,
Germany). Median values of replicate analyses and standard deviations (SD) were calculated using
Microsoft Excel. IC50 was calculated by non-linear regression analysis using GraphPad Prism
7.0a software.

4.7. Migration and Wound-Healing Assays

Migration assays were conducted as previously described and analyzed after 48 h [53].
For wound-healing assays, A673 monolayers of 80% confluence were pre-treated with antibodies for
2 h before a wound was created using a pipette tip. Images were acquired at indicated time points and
wound areas were quantified using the MRI Wound Healing Tool plug-in for Image J software [54].

4.8. Zebrafish Xenograft Model

The transgenic zebrafish line Tg(kdrl:mCherry), originally received from the D. Stainier’s
laboratory [55], provides fluorescently traceable blood vessels. Zebrafish were kept in compliance
with local animal welfare regulations and European directives. The study was approved by the local
animal welfare committee (DEC) of the University of Leiden (license number 10612, protocol 14227).
Zebrafish adults were maintained according to standard protocols in a 10/14-hour dark/light cycle [56].
Larvae were maintained at 28 ◦C in egg water (60µg/mL ocean salt in distilled water), containing
0.003% 1-phenyl-2-thiourea to block pigmentation. Experiments were performed on zebrafish larvae
before the onset of independent feeding, according to Dutch animal welfare regulation. Experimental
procedures and analyses were previously described in detail [57] (also see Document S1: ARRIVE
Guidelines Checklist). A673 cells expressing shRNA-silencing RON (Group 1—experimental group) or
the non-silencing control (Group 2—control group) together with GFP reporter protein were implanted
into the duct of Cuvier of larvae 2 days post fertilization. Four days after implantation, tumor
burden was analyzed by automated image analysis of GFP-fluorescent objects per zebrafish area as
described [57].

4.9. Statistics

Statistical significance of multiple different conditions was calculated using ANOVA with Sidak
correction for post-hoc pairwise comparisons. Independent pairwise comparisons were calculated using
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t-tests, and dependent pairwise comparisons were calculated using t-tests with the Benjamini–Hochberg
(FDR) correction. Calculations were performed in Microsoft Excel and GraphPad Prism 7.0a software.
Significance is indicated as p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***), while ns indicates a non-significant
p-value.

5. Conclusions

Our study provides a first characterization of the scatter factor receptor RON in sarcomas,
specifically Ewing sarcoma. Reflecting on previous findings in carcinomas, our data indicate a function
of RON within the micrometastatic cellular capacities of Ewing sarcoma. RON’s benefit as a therapeutic
target may therefore lie in slowing of metastatic tumor progression more than tumor proliferation.
Our findings further suggest that RON’s net tyrosine kinase activity derives from both ligand-mediated
and ligand-independent mechanisms, such as RTK crosstalk and the constitutively active isoforms.
For future therapeutic exploitation of RON, a kinase-directed targeting strategy may therefore be more
successful than the ligand-dependent antibody approach employed here.

Although this study remains initiatory in many aspects and leaves several open questions,
this example of RON highlights that successful therapeutic targeting of RTKs requires an understanding
of their diverse mechanisms of kinase activation, relevant receptor isoforms and dynamic interactions
in receptor and signal transduction networks, as these may comprise prime therapeutic targets next
to resistance mechanisms. Despite an overlap of these principal mechanisms between rare pediatric
sarcomas and frequent carcinomas and leukemias, distinct expression patterns and regulations observed
in Ewing sarcoma underscore that future advances towards RON and RTK (co-) targeting must consider
this tumor-specific background to select the optimal, most effective strategy for each cancer.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/4/904/s1,
Figure S1: RON expression in additional Ewing sarcoma datasets, Figure S2: MET is minimally expressed in Ewing
sarcomas and cell lines, Figure S3: RON targeting does not affect cell viability in vitro, Figure S4: Ewing sarcomas
express two sfRON variants, Figure S5: Uncropped immunoblots, Document S1: ARRIVE Guidelines Checklist.
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