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Abstract: Electrocatalytic conversion of carbon dioxide (CO2) into specific renewable fuels is an
attractive way to mitigate the greenhouse effect and solve the energy crisis. AunCu100-n/C alloy
nanoparticles (AunCu100−n/C NPs) with tunable compositions, a highly active crystal plane and a
strained lattice were synthesized by the thermal solvent co-reduction method. Transmission electron
microscopy (TEM) and X-ray diffraction (XRD) results show that AunCu100−n/C catalysts display a
subtle lattice strain and dominant (111) crystal plane, which can be adjusted by the alloy composition.
Electrochemical results show that AunCu100−n/C alloy catalysts for CO2 reduction display high
catalytic activity; in particular, the Faradaic efficiency of Au75Cu25/C is up to 92.6% for CO at −0.7 V
(vs. the reversible hydrogen electrode), which is related to lattice shrinkage and the active facet. This
research provides a new strategy with which to design strong and active nanoalloy catalysts with
lattice mismatch and main active surfaces for CO2 reduction reaction.

Keywords: lattice strain; crystal plane; Faradaic efficiency; CO2 reduction reaction

1. Introduction

Converting CO2 into useful chemicals can reduce the concentration of CO2 in the
atmosphere and realize the recycling of CO2, which has attracted extensive attention
of researchers. Electrochemical reduction reaction of CO2 (CO2RR) can be performed
using electricity produced by renewable energy sources, such as wind energy and hy-
dropower [1–3]. There have been a number of reports on catalysts for the electroreduction
of carbon dioxide [4]. In this regard, noble metals have proved to be promising catalysts
for the electroreduction of CO2 to CO [5–9]. A large number of studies have shown that
metal nanostructured catalysts with more active sites, such as Au, Ag and Pd, can greatly
improve the catalytic activity of CO2 reduction [5,10–15]. However, the multiple electron
transfer in the CO2RR process, the reaction pathway, the hydrogen evolution reaction
(HER) and the high price and low reserves of noble metals hinder the wide application
of precious metals [16–18]. Therefore, reducing catalyst costs and improving activity and
selectivity are challenges [19]. Many studies have shown that the incorporation of cheap
metals into noble metal nanocrystals can also improve their catalytic performances and
efficiency. The formation of the alloy changes the lattice of the metal catalyst, resulting in
lattice strain [20,21]. The lattice strain generated by the catalyst can change the electronic
properties of the metal and improve the electrocatalytic activity [22]. Previous studies
have shown that Au-based catalysts have high activity and selectivity for CO2 reduction
to CO [23]. Introducing cheap metals with Au to form alloy catalysts is necessary to im-
proving the catalytic activity for CO2 reduction and decreasing the price of catalyst [24,25].
The composition of the alloy catalyst can be adjusted to regulate the electronic structure
and enhance the catalytic activity and stability [26]. Gold and copper form nano-alloys in
different proportions, and lattice strains are controlled by changing the proportions of gold
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and copper in the material [27]. Previous studies have found that the lattice spacing of the
alloy expands and contracts to varying degrees with the changes in the atomic proportions
of the two metals [28,29]. The expansion and contraction of lattice spacing are the key
factors affecting the electrochemical properties of the alloy [30,31].

In this work, the thermal solvent co-reduction method was used to synthesize AunCu100−n/C
NPs with tunable compositions, a highly active crystal plane and a strained lattice. TEM
results show that AunCu100−n/C catalysts display a dominant (111) crystal plane. XRD
results show that the lattice constant shrinks and expands through tuning the compositions
of catalysts. Electrochemical results show that AunCu100−n/C alloy catalysts for CO2 reduc-
tion display highly catalytic activity; in particular, the Faradaic efficiency of Au75Cu25/C is
up to 92.6% for CO at −0.7 V vs. RHE, which is related to lattice shrinkage and bimetallic
compositions.

2. Materials and Methods
2.1. Chemicals

Hydrogen tetrachloroaurate (III) hydrate (HAuCl4·xH2O, 49%~51% Au basis), copper
dinitrate (Cu(NO3)2, AR), sodium hydroxide (NaOH, AR), ethylenediamine, hydrazine
(80%), sodium thiosulphate (Na2S2O3, AR), deionized water, Nafion (5 wt%) and ethanol
(99.7%) were obtained from Deen reagent. Carbon black (Vulcan XC-72) was purchased
from Cabot. All gases were obtained from Airgas. All chemicals were used without further
purification.

2.2. Preparation Cu NPs

The Cu NPs were prepared by a simple method. Cu(NO3)2 (376.0 mg) and NaOH
(8.0 g) were dissolved in 20 mL deionized water to form a uniform solution. Then, 4 mL
ethylenediamine and 1 mL hydrazine were added to the above solution. After all the
reactants were thoroughly mixed and transferred to a flask, it was placed in a water bath at
80 ◦C for 1 h. Finally, the product was washed four times with deionized water and ethanol
to obtain Cu NPs [32].

2.3. Preparation AunCu100−n NPs

Cu NPs (64.0 mg) and Na2S2O3 (79.0 mg) were dissolved in 100 mL deionized
water saturated with N2 and dispersed by ultrasonication. When Cu NPs were com-
pletely dispersed, 340.0 mg HAuCl4·xH2O was added, and the reaction was carried out
under magnetic stirring for 30 min. Finally, the product was collected by centrifuga-
tion, washed four times with ethanol and dried under vacuum to obtain Au50Cu50 NPs.
Au25Cu75 NPs and Au75Cu25 NPs catalysts were prepared under similar conditions where
n(HAuCl4 × xH2O):n(Cu(NO3)2) was 1:3 or 3:1, respectively. All the catalysts were loaded
onto the carbon black to obtain Au25Cu75/C, Au50Cu50/C and Au75Cu25/C.

2.4. Characterizations

Transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM) were
used to characterize the morphology and size of AunCu100−n/C catalysts performed on
JEM-2100F TEM working at 200 kV [33]. The structures of AunCu100−n/C were measured
on a Shimadzu X-ray diffractometer (XRD) instrument operating with Cu Kα (λ = 0.154 nm)
radiation [34]. X-ray photoelectron spectroscopy (XPS) can determine the content and
chemical states of the elements contained on the surface of a sample [35,36].

2.5. Electrochemical Measurements

To prepare a working electrode for electrochemical activity test, 2 mL of a mixture
containing deionized water, isopropanol and Nafion (5% wt) (9:1:15, V/V/V) was ultrasonic
dispersed on a 4 mg AunCu100−n/C powder catalyst for 60 min to form a homogeneous
catalyst ink (2 mg/mL). The prepared catalyst suspension (300 µL) was coated on the
surface of carbon paper with an area of 1 cm × 1 cm [37]. Electrocatalytic reduction of



Materials 2022, 15, 5064 3 of 11

CO2 was performed on a computer-controlled electrochemical analyzer (CHI760e, CH
Instruments). All the experiments were conducted in a gas-tight H-type cell with cathode
and anode compartments separated by a Nafion® NRE-212 proton exchange membrane.
The H-type cell was filled with a 0.1 M KHCO3 solution (pH = 6.8, 45 mL) as the electrolyte
in each chamber with 15 mL headspace. Platinum foil and Ag/AgCl (saturated KCl) were
used as a counter electrode and reference electrode. The pH of the electrolyte was measured
by the Thermo Scientific Orion Versa Star pH Benchtop Tester (INESA). In the process of
electrochemical reduction of CO2, the mass flow controller (Sevenstar, Beijing) was used
to purge CO2 at the flow rate of 20 mL/min. Before each electrochemical experiment,
CO2 was purged into the cathodic compartment for at least 40 min until the solution
pH reached 6.8 (CO2-saturated 0.1 M KHCO3). The working electrode was activated by
cyclic voltammetry (CV) until a stable curve at room temperature and ambient pressure.
The gas products in the cathode chamber were quantitatively analyzed by an online gas
chromatograph (GC2030, Shimadzu) equipped with a thermal conductivity detector (TCD)
and flame ionization detector (FID) [38]. The Faraday efficiency (FE) was calculated by
dividing the amount of charge transferred to the gas product by the total amount of charge
transferred in a specific time or the entire reduction reaction (for gas products). In this
work, the potentials were adjusted to reversible hydrogen electrode (RHE) potentials. The
electrochemical active area (ECSA) was obtained from a cyclic voltammogram in 50 mM
H2SO4 [39].

3. Results and Discussion
3.1. Morphology

AunCu100−n NPs was prepared by galvanic replacement reaction assisted by Na2S2O3
in an aqueous solution composed of HAuCl4 and copper NPs, where Na2S2O3 acted as an
inhibitor of CuCl disproportionation caused by Cu/HAuCl4 substitution. The compositions
of AunCu100−n NPs were controlled by adjusting the ratios of Cu NPs and HAuCl4. The
morphology and alloy structure of the AunCu100−n NPs were obtained by TEM and HR-
TEM. The compositions of the AunCu100−n NPs were controlled by the metal precursor
ratios and analyzed by ICP-MS, indicating that the compositions of the AunCu100−n NPs
can be controlled well by tuning the feeding ratio during the synthesis. It can be seen in
Figure 1 that the diameter of Au25Cu75 NPs was 10–16 nm (Figure 1a), that of Au50Cu50 NPs
was 8–12 nm (Figure 1b) and that of Au75Cu25 NPs was 6–10 nm, via TEM (Figure 1c). It
can be concluded from the TEM images that with the increase in Au content in AunCu100−n
alloy NPs, the diameter of AunCu100−n alloy NPs gradually decreased. HR-TEM images
revealed that AunCu100−n NPs are a dominant (111) facet and the continuous lattice fringes
of AunCu100−n NPs calculated were slightly smaller than those of the pure Au (0.235 nm)
and larger than that of pure Cu (0.208 nm), indicating that Au successfully replaced Cu
to form AuCu alloy catalysts, as shown in Figure 1d–f. The AunCu100−n alloyed structure
was also achieved by the elemental mapping technique (Figure 1g–i) [32], which showed
that Au and Cu were evenly distributed in the AunCu100−n NPs.

3.2. Structures

The differences in crystalline structures between AunCu100−n/C NPs were determined
from X-ray diffraction (XRD). As shown in Figure 2a, the peak positions located at 38.2◦,
44.4◦ and 64.9◦ diffractions further confirmed the formation of an alloy system, as they are
located between those of pure Au and pure Cu. Figure 2b shows that the lattice spacing was
basically linear in accordance with Vegard’s law, but there was a slight deviation, which
mainly depended on the compositions of AunCu100−n/C. The lattice constant shrunk when
the Au% was more than 50%, but when the Au% was less than 50%, the lattice spacing
showed lattice expansion. The compositions, structures and valence states on the surface
of catalysts were further analyzed by XPS spectra. Figure 2c–d show the Au 4f region
(Au 4f5/2 and Au 4f7/2) and Cu 2p region (Cu 2p1/2 and Cu 2p3/2), corresponding to Au0

and Cu0 chemical states, respectively. However, the positive shift of the Au 4f spectrum
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occurred with the increase in Au%, especially for the Au75Cu25/C composition, indicating
that the catalyst had a partial positive charge, and the transition of the d-band center, which
is usually regarded as an effective descriptor for evaluating the catalytic activity and is
beneficial for electrochemical catalysis. The adsorption and desorption capacity of the
reaction product on the catalyst surface is closely related to the binding energy, which
indicates that the center of the d band moves downward in the AunCu100−n/C catalyst
compared with pure Au. The electrons from Cu to Au in the AunCu100−n NPs catalyst
doubled the local electron density around the Au sites, which has been shown to reduce
the intermediate CO generated during the catalytic process and the adsorption of catalyst
poisons to prevent catalytically active sites’ formation.
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Figure 2. (a) XRD patterns of Au25Cu75/C, Au50Cu50/C and Au75Cu25/C. (b) Dependence of the
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Au50Cu50/C and Au75Cu25/C.

3.3. Electrochemical CO2 Reduction on the AunCu100−n/C Catalysts

The electrocatalytic properties of AunCu100−n/C for CO2RR were evaluated in a gas-
tight H-type electrolyzer in 0.1 M KHCO3 electrolyte saturated with Ar or CO2 under room
temperature and standard atmospheric pressure. For quantitative analysis of the gaseous
products, the H-type electrolyzer was connected directly with the gas chromatograph
(GC) at the gas outlet. The cyclic voltammetry (CV) and linear sweep voltammetry (LSV)
curves of the AunCu100−n/C catalyst were tested in CO2 and Ar-saturated 0.1 M KHCO3
electrolyte, respectively (Figures 3–5). The LSV of three different composition catalysts in
CO2-saturated 0.1 M KHCO3 electrolyte are given in Figure 6a. Apparently, Au75Cu25/C
exhibited higher total current density than the other catalysts, suggesting that Au75Cu25/C
was the most active catalyst for CO2 reduction. Moreover, the cathodic current densities
of the three catalysts in CO2-saturated electrolyte were all higher than in the Ar-saturated
electrolyte, indicating that CO2RR occurred. Furthermore, the electrochemically active
surface area (ECSA) of the AunCu100−n alloy was tested to verify the catalytic activity. The
results are shown in Figure 7. Au75Cu25/C had the largest electrochemically active surface
area. The electrochemically active surface area of Au75Cu25/C was 25.2 m2 g−1, greater
than those of Au25Cu75/C (6.38 m2 g−1) and Au50Cu50/C (17.6 m2 g−1). The value of the
electrochemically active surface area was increased with Au content, which is related to
the facet and lattice strain of catalysts. In the process of CO2 reduction, the gas products
produced in the electrolytic cell were analyzed every 30 min by the GC sampling system at
each given potential. Figure 6b shows the FE of CO for different component catalysts in
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the CO2RR process. It can be seen in Figures 6b and 8 that the gas products only included
CO and H2. The FECO of Au75Cu25/C was the highest at −0.7 V vs. RHE, achieving 92.6%.
As shown in Figure 6c, the current density of Au75Cu25/C for CO was 28.5 mA cm−2 at
−0.7 V vs. RHE, which is several times the values of other catalysts.
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Stability is an important indicator with which to evaluate the performances of elec-
trocatalysts. The stability of Au75Cu25/C was tested by the timing current method (i–t),
and the gas products were detected with an online gas chromatograph every hour for
10 h (Figure 6d). In the reaction process for 10 h, the catalytic activity of Au75Cu25/C
catalyst for CO had no obvious attenuation, and FECO remained above 90%. This indi-
cates that Au75Cu25/C maintained good catalytic activity and selectivity for CO in the
CO2RR process, and could keep stable. The results show that alloying caused changes in
lattice parameters between catalysts which affected the performance of the catalysts for
the CO2RR. In order to further prove that Au75Cu25/C catalyst has good stability, XPS
was used to characterize the Au75Cu25/C catalyst after electrolysis. XPS results show that
Au75Cu25/C retained its original composition after a long period of electrolysis (Figure 11).
In the process of electroreduction for CO2, Au and Cu cooperated with each other to form
an alloy and showed high catalytic activity and selectivity for CO. Meanwhile, the unique
nanostructure of AunCu100−n alloy could reduce the adsorption of CO on the surface and
increase the yield of CO. The high selectivity of this gas product makes the separation
process relatively simple, which is beneficial for practical applications.
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4. Conclusions

In summary, an AunCu100−n alloy dominant (111) facet was synthesized with a simple
method. The composition of AunCu100−n alloy can be simply controlled by adjusting the
Au/Cu atomic ratio of the precursor. Na2S2O3 and NaOH as inhibitors that also prevent
NPs aggregation play important roles in the synthesis of AunCu100−n. Au75Cu25/C exhibits
excellent catalytic activity and stability for CO2 electroreduction. The excellent catalytic
performance of Au75Cu25/C mainly depends on the large specific surface area and inter-
lattice shrinkage. Meanwhile, the coordination of Au and Cu in the catalyst is also a reason
for its good stability and the good performance of the catalyst. Au75Cu25/C had the highest
Faradaic efficiency and the highest CO selectivity compared with pure gold catalysts in the
CO2 reduction process. Our study on AunCu100−n alloy catalysts demonstrated that the
formation of alloys of noble metals with inexpensive metals can improve the activity and
selectivity of the catalysts, which provides a new strategy for the design of catalysts for
CO2RR.
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