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ABSTRACT: Due to their unique structural and mechanical
properties, randomly cross-linked polymer networks play an
important role in many different fields, ranging from cellular
biology to industrial processes. In order to elucidate how these
properties are controlled by the physical details of the network
(e.g., chain-length and end-to-end distributions), we generate
disordered phantom networks with different cross-linker concen-
trations C and initial densities ρinit and evaluate their elastic
properties. We find that the shear modulus computed at the same
strand concentration for networks with the same C, which
determines the number of chains and the chain-length distribution,
depends strongly on the preparation protocol of the network, here controlled by ρinit. We rationalize this dependence by employing a
generic stress−strain relation for polymer networks that does not rely on the specific form of the polymer end-to-end distance
distribution. We find that the shear modulus of the networks is a nonmonotonic function of the density of elastically active strands,
and that this behavior has a purely entropic origin. Our results show that if short chains are abundant, as it is always the case for
randomly cross-linked polymer networks, the knowledge of the exact chain conformation distribution is essential for correctly
predicting the elastic properties. Finally, we apply our theoretical approach to literature experimental data, qualitatively confirming
our interpretations.

1. INTRODUCTION

For many applications, the elasticity of a cross-linked polymer
network is one of its most important macroscopic properties.1

It is thus not surprising that a lot of effort has been devoted to
understanding how the features of a network, such as the
fraction and functionality of cross-linkers or the details of the
microscopic interactions between chain segments, contribute
to generate its elastic response.2−6 The macroscopic behavior
of a real polymer network (be it a rubber or a hydrogel)
depends on many quantities, such as the properties of the
polymer and of the solvent, the synthesis protocol, and the
thermodynamic parameters. However, in experiments, it is
difficult to disentangle how these different elements contribute
to the elastic properties of the material. This task becomes
easier in simulations because all the relevant parameters can be
controlled in detail.7−16 In this regard, an important feature of
real polymer networks that can be exploited is that their
elasticity can be described approximately as the sum of two
contributions: one due to the cross-linkers and one due to the
entanglements.15−18 The former can be approximated well by
the elastic contribution of the corresponding phantom
network,19 that is, when the excluded volume between the
strands is not taken into account.15,16 It is, therefore, very
important to understand the role that the chain conformation

distribution plays in determining the dynamics and elasticity of
phantom polymer models.
The distribution of the chemical lengths of the strands

connecting any two cross-linkers in a network, that is, the
chains (chain-length distribution for short), depends on the
chemical details and on the synthesis protocol. In randomly
cross-linked networks, this distribution is typically exponen-
tial,7,20 whereas monodisperse or quasimonodisperse networks
can be obtained by using specific end-linking protocols, for
example, via the assembly of tetra-PEG macromers with a small
polydispersity.21 Regardless of the synthesis route, the presence
of short or stretched chains is common, although the exact
form of the chain conformation fluctuations is highly
nontrivial. From a theoretical viewpoint, however, the majority
of the results on the elasticity of polymer networks have been
obtained within the mean-field realm, in which scaling
assumptions and chain Gaussianity are assumed.19,22 There-
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fore, simulations can be extremely helpful to clarify the exact
role played by the chain-length distribution and better
understand the experimental results. However, most simulation
studies have focused on melt densities, where random or end-
cross-linking can be carried out efficiently,7−10,12,14−16 or have
employed idealized lattice networks.11,13,23−25 This makes it
challenging to compare the results from such simulations with
common experimental systems such as hydrogels, which are
both low-density and disordered.26

In the present paper, we show that the knowledge of the
exact chain end-to-end distribution is essential to correctly
predict the linear elastic response of low-density polymer
networks. We do so by simulating disordered phantom
networks generated with different cross-linker concentrations
C and initial monomer densities ρinit. In our systems, the
former parameter controls the number of chains and the chain-
length distribution, while the latter determines the initial end-
to-end distance distribution of the chains and, therefore, plays
a similar role as the solvent quality in an experimental
synthesis. To generate the gels, we exploit a recently
introduced technique based on the self-assembly of patchy
particles, which has been found to to correctly reproduce
structural properties of experimental microgels.27−29 This
method allows us to obtain systems at densities comparable
with those of experimental hydrogels, that is, giving access to
swelling regimes inaccessible through the previously employed
techniques based on numerical vulcanization of high-density
polymer melts.8−13,15,16 We first demonstrate that systems
generated with the same C but at different values of ρinit can
display very different elastic properties even when probed at
the same strand concentration, despite having the same chain
length distribution. Second, we compare the numerical results
to the phantom network theory.19 In order to do so, we
determine the theoretical relation between the shear modulus
G and the single-chain entropy for generic non-Gaussian
chains. We find a good agreement between theory and
simulation only for the case in which the exact chain end-to-
end distribution is given as an input to the theory, with some
quantitative deviations appearing at low densities. On the other
hand, assuming a Gaussian behavior of the chains leads to
qualitatively wrong predictions for all the investigated systems
except the highest density ones. Overall, our analysis shows
that for low-density polymer networks and in the presence of
short chains, the knowledge of the exact chain conformational
fluctuations is crucial to predict the system elastic properties
reliably. Notably, we validate our approach against recently
published experimental data,21,30 showing that the behavior of
systems where short chains are present cannot be modeled
without precise knowledge of the chain-size-dependent end-to-
end distribution.

2. THEORETICAL BACKGROUND
In this section, we review some theoretical results on the
elasticity of polymer networks, for the most part available in
the literature,1,19,22 by reorganizing them and introducing the
terminology and notation that will be employed in the rest of
the paper. We will consider a polydisperse polymer network
made of cross-linkers of valence ϕ connected by Ns strands.
Here and in the following, we will assume the network to be
composed of Ns elastically active strands, defined as strands
with the two ends connected to distinct cross-linkers, that is,
that are neither dangling ends nor closed loops (i.e., loops of
order one). Moreover, for those strands, which are part of

higher-order loops, we assume their elasticity to be
independent of the loop order (see Zhong et al.31 and Lin et
al.32). We will focus on evaluating the shear modulus G of the
gel, which relates a pure shear strain to the corresponding
stress in the linear elastic regime.33 One can theoretically
compute G by considering uniaxial deformations of strain λ
along, for instance, the x axis. We assume the system to be
isotropic; moreover, since we are interested in systems with no
excluded volume interactions, we assume a volume-preserving
transformation,a that is, λx = λ and λy = λz = λ−1/2 as extents of
deformation along the three axes.
The starting point to calculate the shear modulus is the

single-chain entropy, which is a function of the chain’s end-to-
end distance.22 In general, we can write the instantaneous end-
to-end vector of a single chain, which connects any two cross-
linkers as r(t) = R + u(t), where ≡ tR r( ) represents the time-
averaged end-to-end vector and u(t) the fluctuation term (see
Figure 1 for a cartoon depicting these quantities). We also

assume that there are no excluded volume interactions, so that
the chains can freely cross each other. We thus have

= +r R u2 2 2 ,b because · =tR u( ) 0, the position and
fluctuations of cross-linkers being uncorrelated.19

The entropy of a chain with end-to-end vector r = (rx, ry, rz)
is Sn(r) = kB log Wn(r) + An,

34 where Wn(r) is the end-to-end
probability density of r and An is a temperature-dependent
parameter that can be set to zero in this context. If the three
spatial directions are independent (which is the case, e.g., if
Wn(r) is Gaussian) then Wn(r) can be written as the product
of three functions of rx, ry, and rz, so that Sn(r) = sn(rx) + sn(ry)
+ sn(rz), where sn is the entropy of a one-dimensional chain.
Building upon this result, we can assume that each chain in the
network can be replaced by three independent one-dimen-
sional chains parallel to the axes using the so-called three-chain
approximation.1,35 This assumption is exact for Gaussian
chains, although for non-Gaussian chains the associated error is
small if the strain is not too large.1

We will also assume (i) that the length of each chain in the

unstrained state (λ = 1) is ̃ ≡ ≡ +r r R u( ) ( )2 1/2 2 2 1/2, and
(ii) that, upon deformation, the chains deform affinely with the
network, so that the length of the chain oriented along the x
axis becomes rλ̃ and those of the chains oriented along the y
and z axes become rλ−1/2. With those assumptions, the single-
chain entropy Sn(λ) becomes1

Figure 1. Cartoon providing a visual explanation of some of the
quantities used throughout the text. In the cartoon, the black dots are
the average positions of two cross-linkers i and j, the green dots are
their instantaneous positions at time t, and the gray dots are their
positions at some other times. The time-averaged end-to-end vector R
is the vector connecting the black dots, the instantaneous end-to-end
vector r(t) is the vector connecting the green dots, and its
instantaneous fluctuation is the difference between the instantaneous
fluctuations of the positions of the two cross-linkers, ui(t) and uj(t).
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n n 1/2

(1)

where we need to divide by three because we are replacing
each unstrained chain with end-to-end distance r ̃ by three
fictitious chains of the same size. Usually, the λ-dependence of
rλ̃ is controlled by the microscopic model and by the
macroscopic conditions (density, temperature, etc.). Two
well-known limiting cases are the affine network model,19 in
which both the average positions and fluctuations of the cross-
linkers deform affinely, rλ̃ = λr,̃ and the phantom network
model,19 in which the fluctuations are independent of the
extent of the deformation, so that

λ λ̃ = [ + ] ̃ = [ + ]λ λ−r R u r R u( ) , and thus ( / )2 2 2 1/2 2 2 1/2
1/2

(2)

The free-energy difference between the deformed and
undeformed state of a generic chain is ΔF = −T[Sn(λ) −
Sn(1)], and thus the x component of the tensile force is given
by
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The latter quantity divided by the section Ly0Lz0 yields the
xx component of the stress tensor, which thus reads
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where we have used eq 2.
Because the volume is kept constant, the Poisson ratio is

1/233 and hence the single-chain shear modulus g is connected

to the Young’s modulus = σ
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We note that, although similar equations can be found in
Smith35 and Treloar,1 to the best of our knowledge eq 5 has
not been reported in the literature in this form. In order to
obtain the total shear modulus G of the network, and under the
assumption that the effect of higher-order loops can be
neglected,31,32 one has to sum over the Ns elastically active
chains. Of course, the result will depend on the specific form
chosen for the entropy sn. We stress that a closed-form
expression of the end-to-end probability density Wn(r) is not
needed because only its derivatives play a role in the
calculation. Hence, it is sufficient to know the force−extension
relation for the chain, because, as discussed above, the
component of the force along the pulling direction satisfies
eq 3 (see also Appendix A).
For a freely jointed chain (FJC)22 of n bonds of length b,

Wn(r) has the following form1,36
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where τ = ⌊(nb − r)/2b⌋, that is, the largest integer smaller
than (nb − r)/2b.
In the limit of large n, eq 6 reduces to a Gaussian36
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Under this approximation, the shear modulus takes the well-
known form
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where ν = Ns/V is the number density of elastically active
strands and A is often called the front factor.35,37−39 We have
also introduced the notation ⟨·⟩ = Ns

−1∑i
Ns· for the average

over all the strands in the system. In the particular case that the

ri
2 values of the different chains are Gaussian-distributed (a
distinct assumption from the one that Wn(r) is Gaussian),
which is the case, for example, for end-cross-linking starting
from a melt of precursor chains,10 it can be shown that

= −
ϕ

A 1 2 (we recall that ϕ is the cross-linker valence), so

that one obtains the commonly reported expression (see also
Appendix A)19,22

ϕ
ν= −

i
k
jjjj

y
{
zzzzG k T1

2G
B

(9)

Equation 8 was derived from eq 5, which assumes the validity
of the phantom network model. If one assumes, on the other
hand, that the affine network model is valid, a different
expression for G is obtained (see Supporting Information).
To obtain a more accurate description of the end-to-end

probability distribution for strained polymer networks, one has
to go beyond the Gaussian model and introduce more refined
theoretical assumptions. Among other approaches, the
Langevin-FJC1 (L-FJC), the extensible-FJC40 (ex-FJC), and
the worm-like chain41 (WLC) have been extensively used in
the literature. In the L-FJC model, the force−extension
relation is approximated using an inverse Langevin function,
whereas in the ex-FJC model bonds are modeled as harmonic
springs. These models give a better description of the system’s
elasticity when large deformations are considered. The WLC
model, in which chains are represented as continuously flexible
rods, is useful when modeling polymers with a high persistence
length (compared to the Kuhn length). More details about
these models can be found in Appendix A.

3. MODELS AND METHODS
We build the polymer networks by employing the method reported in
Gnan et al.,27 which makes use of the self-assembly of a binary
mixture of limited-valence particles. Particles of species A can form up
to four bonds (valence ϕ = 4) and bond only to B particles, thus
acting as cross-linkers. Particles of species B can form up to two bonds
(ϕ = 2) and can bond to A and B particles. We carry out the assembly
of Ninit = NA + NB = 5 × 104 particles at different number densities
ρinit = Ninit/V, with V the volume of the simulation box, and different
cross-linker concentrations C = NA/(NB + NA). We consider two
initial densities ρinit = 0.1, 0.85, and C = 1, 5, and 10%. The results are
averaged over two system realizations for each pair of ρinit, C values.

The assembly proceeds until an almost fully bonded percolating
network is attained, that is, the fraction of formed bonds is at least
Nbond/Nbond

max = 99.9%, where Nbond
max =(4NA + 2NB)/2 is the maximum

number of bonds. The self-assembly process is greatly accelerated
thanks to an efficient bond-swapping mechanism.42 When the desired
fraction Nbond/Nbond

max is reached, we stop the assembly, identify the
percolating network, and remove all particles or clusters that do not
belong to it. Because some particles are removed, at the end of the
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procedure the values of ρinit and C change slightly. However, these
changes are small (at most 10%) and in the following we will hence
use the nominal (initial) values of ρinit and C to refer to the different
networks.
The normalized distribution of the chemical lengths n of the chains,

P(n)/P(1), which constitute the network is shown in Figure 2. Here,

the chemical chain length is defined as the number of particles in a
chain, excluding the cross-linkers, so that a chain with n + 1 bonds has
length n.c In all cases, the distribution decays exponentially, as it is
also the case for random-cross-linking from a melt of precursor
chains.7 This exponential behavior can be explained by the Flory−
Huggins polymerization theory43 or, equivalently, by the Wertheim
theory for associating fluids applied to patchy particles,44 and it is
ultimately due to the independence of the bonding events. We also
note that P(n) does not depend on the initial density27,45 and, as one
expects given the equilibrium nature of the assembly protocol, it is
fully reproducible. This distribution can be estimated from the
nominal values of ϕ and C via the well-known formula of Flory43

= −
⟨ ⟩

−i
k
jjjj

y
{
zzzz

P n
P n

( )
(1)

1
1

n 1

(10)

where ⟨n⟩ = 2(1 − C)/ϕC is the mean chain length,45 which, using
the nominal cross-linker valence (ϕ = 4) and concentrations, takes the
values 49.5, 9.5, and 4.5 for C = 1, 5, and 10%, respectively. The

parameter-free theoretical probability distribution is shown as orange-
dashed lines in Figure 2 and reproduces almost perfectly the
numerical data.

The network contains a few defects in the form of dangling ends
(chains that are connected to the percolating network by one cross-
linker only) and first-order loops, that is, chains having both ends
connected to the same cross-linker.32 Because there are no excluded
volume interactions, these defects are elastically inactive and,
therefore, do not influence the elastic properties of the network.32,46,47

For the configurations assembled at C = 1%, the percentage of
particles belonging to the dangling ends is ≈10% for ρinit = 0.1 and
≈6% for ρinit = 0.85. For higher values of C, the percentages are much
smaller (e.g., ≈ 2% for C = 5%, ρinit = 0.1 and ≈1% for C = 10%, ρinit =
0.1). In order to obtain an ideal fully bonded network, the dangling
ends are removed. We note that during this procedure, the cross-
linkers connected to dangling ends have their valence reduced from ϕ
= 4 to ϕ = 3 or 2 (in the latter case, they become type B particles).
The percentage of the so-created three-valent cross-linkers remains
small: for ρinit = 0.1, it is ≈15, 4, and 2% for C = 1, 5, and 10%,
respectively. The presence of these cross-linkers slightly changes the
average cross-linker valence, but does not influence the main results of
this work.

Once the network is formed, we change the interaction potential,
making the bonds permanent and thus fixing the topology of the
network. Since we are interested in understanding the roles that
topology and chain size distribution of a polymer network play in
determining its elasticity, we consider interactions only between
bonded neighbors, similar to what has been done in Duering et al.10

Particles that do not share a bond do not feel any mutual interaction,
and hence chains can freely cross each other (whence the name
phantom network). Two bonded particles interact through the widely
used Kremer−Grest potential,48 which is given by the sum of a
repulsive term accounting for steric interactions, modeled via the
Weeks−Chandler−Andersen potential,49 and of a finite extensible
nonlinear elastic (FENE) potential modeling the intramolecular
bonds. The former is given by

σ σ σ
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where σ is the monomer diameter and ϵ sets the scale of the
repulsion, while the latter is

Figure 2. Rescaled distribution of chain lengths for all the simulated
systems. We report the data for two samples (S1 and S2) generated
with two values of initial density each. The orange dashed lines are the
theoretical prediction of eq 10.

Figure 3. Snapshots of a network with cross-linker concentration C = 5% and assembly density ρinit = 0.1 simulated at (a, b, e, and f) ρ = 0.1 and (c,
d, g, and h) ρ = 1.5. We show configurations in equilibrium (a, c, e, and g) and subject to a uniaxial deformation along the vertical direction with λ
= 1.2 (b, d, f, and h). Top row (panels a−d): turquoise and red particles indicate cross-linkers and monomers, respectively. The orange scale bars in
the top left corners are 10σ long. Bottom row (panels e−h): the same configurations are represented in a way such that the chains are colored
according to the ratio between their end-to-end distance and contour length (see the legend on the right).
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where k = 30ϵ/σ2 and r0 = 1.5σ. Here and in the following, all
quantities are given in reduced units: the units of energy, length, and
mass are, respectively, ϵ, σ, and m, where ϵ and σ are defined by eq 11
and m is the mass of a particle, which is the same for A and B particles.
The units of temperature, density, time, and elastic moduli are,

respectively, [T] = ϵ/kB, [ρ] = σ−3, σ[ ] = ϵmt /2 , and [G] = ϵσ−3.
In these units, the Kuhn length of the model is b = 0.97.48

We run molecular dynamics simulations in the NVT ensemble at
constant temperature T = 1.0 by employing a Nose−́Hoover
thermostat.50 Simulations are carried out using the LAMMPS
simulation package,51 with a simulation time step δt = 0.003.
In order to study the effects of the density on the elastic properties,

the initial configurations are slowly and isotropically compressed or
expanded to reach the target densities ρ = 0.1, 0.2, 0.5, 0.85, and 1.5.
Then, a short annealing of 106 steps and subsequently a production
run of 107 steps are carried out. Even for the system with the longest
chains, the mean-squared displacement of the single particles reaches
a plateau, indicating that the chains have equilibrated (see the
Supporting Information).
For each final density value, we run several simulations for which

we perform a uniaxial deformation in the range λα ∈ [0.8, 1.2] along a
direction α, where λα = Lα/Lα,0 is the extent of the deformation and
Lα,0 and Lα are the initial and final box lengths along α, respectively.
The deformation is carried out at constant volume with a deformation
rate of 10−1. To confirm that the system is isotropic, we perform the
deformation along different spatial directions α.
Figure 3 shows representative snapshots of the C = 5%, ρinit = 0.1

system at low (ρ = 0.1) and high (ρ = 1.5) density, in equilibrium and
subject to a uniaxial deformation along the vertical direction. In panels
3a−d, we show the particles (monomers and cross-linkers),
highlighting the highly disordered nature of the systems and their
structural heterogeneity, which is especially evident at low density.
The same systems are also shown in panels 3e−h, where we use a
gradient to color chains according to the ratio between their end-to-
end distance and contour length. These panels highlight the effect that
density has on the heterogeneous elastic response of these systems
when they are subject to deformations.
Once the system acquires the target value of λz, we determine the

diagonal elements of the stress tensor σαα and compute the
engineering stress σeng as

22
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where σtr is the so-called true stress.1,52 The shear modulus G is then
the quantity that connects the engineering stress and the strain
through the following relation22
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In eq 14, λref is an extra fit parameter that we add to take into account
the fact that in some cases σeng ≠ 0 for λz = 1, which signals the
presence of some prestrain in our configurations. The stress−strain
curves we use to estimate G are averaged over 10 independent
configurations obtained by the randomization of the particle
velocities, prior to deformation, with a Gaussian distribution of
mean value T = 1.0ϵ/kB in order to reduce the statistical noise.
Figure 4 shows the numerical data for the stress−strain curves for

the C = 1%, ρinit = 0.1 system. We also report the associated
theoretical curves, fitted to eq 14, through which we obtain an
estimate of the shear modulus.

4. RESULTS AND DISCUSSION

We use the simulation data to estimate ̃ ≡r r( )2 1/2 (RMS end-
to-end distance) and R ≡ r ̅ for each chain to compute the
elastic moduli of the networks through eq 5. In the following,
we will refer to the elastic moduli computed in this way with
the term “theoretical”.
Figure 5a shows the shear modulus as computed in

simulations for all investigated systems as a function of ν,
the density of elastically active strands. We note that, to a first
approximation, one would have ν = ϕCρ/2. However, the
actual value of ν is slightly smaller than this figure because of
the presence of elastically inactive strands, as discussed in
Section 3. First of all, we observe that systems generated at the
same C but with different values of ρinit exhibit markedly
different values of the shear modulus when probed under the
same conditions (i.e., the same strand density). This result
highlights the fundamental role of the cross-linking process,
which greatly affects the initial distribution of the chains’ end-
to-end distances even when the number of chains and their
chemical length distribution, being dependent only on C (see
Figure 2), are left unaltered. Thus, the echo of the difference
between the initial end-to-end distributions gives rise to
distinct elastic properties of the phantom networks even at the
same strand density.
In Figure 5a, we also plot the behavior predicted by eq 9

(blue line), which assumes Gaussian-distributed end-to-end
distances. Even though the numerical data seem to approach
this limit at very large values of the density, they do so with a
slope that is clearly smaller than unity. For the C = 1% sample,
this slope is almost exactly 1/3, and it is also very close to this
value for the C = 5% and C = 10% samples assembled at ρinit =
0.1. This behavior can be understood at the qualitative level
from eq 8: R is the average distance between cross-linkers and,
therefore, it changes affinely upon compression or expansion,
thereby scaling as R ∝ ν−1/3.53,54 As a result, in the Gaussian
limit, the shear modulus scales as GG ∝ ν1/3.21,53−55 As
discussed above, our results show that the way this limiting
regime is approached depends on the cross-linker concen-
tration C and on the preparation state, which is here controlled
by ρinit.
The quantitative differences in the elastic response of

systems with different C and ρinit can be partially rationalized
by looking at the scaling properties of the end-to-end distances.
We notice that the RMS equilibrium end-to-end distance R(n)
of the strands for different values of ρinit and C nearly collapses
on a master curve when divided by the initial cross-linker

Figure 4. Example of stress−strain curves for the C = 1%, ρinit = 0.1
system. Symbols are simulation data, lines are fits with eq 14.
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density, ρinit
A = Cρinit (see Supporting Information). A slightly

better agreement is found if the heuristic factor γρinit
A , with γ =

0.74 for ρinit = 0.85 and γ = 1 for ρinit = 0.1, is used. Based on
this observation, we rescale the data of Figure 5a multiplying
both G and ν by γρinit

A . The result is shown in Figure 5b: one
can see that the shear modulus of systems with the same C but
different values of ρinit nicely fall on the same curve. Moreover,
in the large-ν limit, where all the curves tend to have the same
slope, a good collapse of the data of systems with different C is
also observed.
The differences arising between systems at different C can be

explained by noting that the cross-linker concentration
controls the relative abundance of chains with different n,
whose elastic response cannot be rescaled on top of each other
by using n but depends on their specific end-to-end
distribution (see e.g., Appendix A). As a result, the elasticity
of networks generated at different C cannot be rescaled on top

of each other. In particular, systems with more cross-linkers,
and hence more short chains, will deviate earlier and more
strongly from the Gaussian behavior.
Interestingly, G exhibits a nonmonotonic behavior as a

function of ν; this feature appears for all but the lowest C and
ρinit values. This behavior, which has also been observed in
hydrogels,21,30,53,54,56 cannot be explained assuming that the
chains are Gaussian because in this case one has for all ν that G
∝ ν1/3, as discussed above. Given that our model features
stretchable bonds, at large strains it cannot be considered to be
a FJC, being more akin to an ex-FJC.40 Therefore, one might
be tempted to ascribe the increase of G upon decreasing ν to
the energetic contribution. For this reason, in addition to the
Gaussian and FJC descriptions, we also plot in Figure 6b the
shear modulus estimated by neglecting the contributions of
those chains that have r ≥ 0.95·nb. We note that chains with r
< 0.95·nb behave essentially as FJCs, and that in any case the

Figure 5. (a) Shear modulus as a function of the elastically active strand number density ν for all the investigated systems. Solid blue line: eq 9 with
ϕ = 4. Solid orange line: slope 1/3. (b) Same as (a), with both G and ν rescaled by γρinit

A , where γ = 0.74 for ρinit = 0.85, γ = 1 for ρinit = 0.1 is a fit
parameter, and ρinit

A = =Cρinit is the initial cross-linker density.

Figure 6. Comparison between the shear moduli obtained through eq 5 and three different approximations and the numerical ones (G) for the
simulated systems (see legends). Dashed-dotted line/stars in panel b: FJC approximation with no overstretched chains (chains with r ≥ 0.95·nb).
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number of such chains is minuscule in all but the lowest-
density C = 10% systems (see the Supporting Information).
Because the sets of data with and without the overstretched
chains overlap almost perfectly, we confirm that the energetic
contribution due to the few overstretched chains is negligible:
we can thus conclude that the nonmonotonicity we observe
has a purely entropic origin. This holds true for all the systems
investigated except for the C = 10%, ρinit = 0.85 system, which
contains the largest number of short, overstretched chains (see
Supporting Information).
In Figure 6, we compare the numerical shear modulus for all

investigated systems with estimates as predicted by different
theories, with the common assumption that the three-chain
model remains valid (see Section 2). In particular, we show the
results obtained with the FJC (eq 6), Gaussian (eq 7), and ex-
FJC (see Appendix A) models. One can see that the agreement
between the theoretical and numerical results is always better
for larger values of ν, that is, when chains are less stretched.
Moreover, the agreement between data and theory is better for
systems generated at smaller ρinit. We note that the Gaussian
approximation, which predicts a monotonically increasing
dependence on ν, fails to reproduce the qualitative behavior of
G, whereas the ex-FJC systematically overestimates G. The FJC
description is the one that consistently achieves the best
results, although it fails (dramatically at large C) at small
densities. We ascribe this qualitative behavior to the
progressive failure of the three-chain assumption as the density
decreases. Because the three-chain model is known to
overestimate the stress at large strains compared to more
complex and realistic approximations such as the tetrahedral
model,1 the resulting single-chain contribution to the elastic
modulus for stretched chains is most likely overestimated as
well. Regardless of the specific model used, our results suggest
that when the samples are strongly swollen, something that can
be achieved in experiments,21 any description that attempts to
model the network as a set of independent chains gives rise to
an unreliable estimate of the overall elasticity even when
energetic contributions due to stretched bonds do not play a
role.
In addition to providing the best comparison with the

numerical data in the whole density range, the FJC description
also captures the presence and (although only in a semi-
quantitative fashion) the position of the minimum. This is the
case for all the investigated systems, highlighting the role
played by the short chains, whose strong non-Gaussian
character heavily influences the overall elasticity of the
network.
Although real short chains do not follow the exact end-to-

end probability distribution we use here (see eq 6), they are
surely far from the scaling regime and hence they should never
be regarded as Gaussian chains, even in the melt or close to the
theta point. This aspect has important consequences for the
analysis of experimental randomly cross-linked polymer
networks, for which one may attempt to extract some
microscopic parameter (such as the contour length or the
average end-to-end distance) by fitting the measured elastic
properties to some theoretical relations such as the ones we
discuss here. Unfortunately, such an approach will most likely
yield unreliable estimates. We demonstrate that this happens
even with a very idealized system such as the one we consider
here. In order to follow the procedure usually applied to these
polymeric systems,21 we make the assumption that the network
can be considered as composed of Ns strands of ⟨n⟩ segments.

We then compare in Figure 7a−c, the numerically estimated
values of G with those obtained with the L-FJC model (see

Appendix A). The expression we employ contains two
quantities that can be either fixed or fitted to the data: the
average end-to-end distance in a specific state (e.g., the
preparation state), R0, and the average strand length ⟨n⟩ (or,
equivalently, the contour length rmax = ⟨n⟩b). Together with
the numerical data, in Figure 7 we present three sets of
theoretical curves: G as estimated by using the simulation
values of R0 and ⟨n⟩ or fitted by using either R0 or both
quantities as free parameters. If C is small (and hence ⟨n⟩ is
large), the difference between the parameter-free expression
and the numerical data is small (10−15%). However, as C
becomes comparable with the values that are often used in real
randomly cross-linked hydrogels (≈5%), the difference
between the theoretical and simulation data becomes very
significant: for instance, for C = 10% the parameter-free
expression fails to even capture the presence of the minimum.
Fitting the numerical data makes it possible to achieve an
excellent agreement, although the values of the parameters
come out to be sensibly different (sometimes more than 50%)
from the real values (see Appendix A). Our results thus show
that even in the simplest randomly cross-linked systema
phantom network of freely jointed chainsneglecting the
shortness of the majority of the chains, which dominate the
elastic response, can lead to a dramatic loss of accuracy.
Randomly cross-linked polymer networks contain short chains,
which are inevitably quite far from the scaling regime, and
hence even their qualitative behavior can become elusive if

Figure 7. Fitting results to (a−c) simulation data (a) C = 1%, (b) C =
5%, and (c) C = 10% and (d,e) experimental data: (d) Young’s
modulus taken from Hoshino et al.21 and (e) shear modulus taken
from Matsuda et al.30 The quality of the fits in panel e does not
depend on whether the point at Q = 1 is considered or not or if we
restrict the fit to swelling ratios Q ≲ 15.
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looked through the lens of polymer theories that rest too
heavily on the Gaussianity of the chains.
To conclude our analysis, we also apply our theoretical

expressions to two sets of data, which have been recently
published. Both experiments have been carried out in the
group of Gong.21,30 The first system is a tetra-PEG hydrogel
composed of monodisperse long chains that can be greatly
swollen by using a combined approach of adding a molecular
stent and applying a PEG dehydration method.21 Because the
system is monodisperse and the chains are quite long, we
expect the theoretical expressions derived here to work well.
Indeed, as shown in Figure 7d, the resulting Young’s modulus
is a nonmonotonic function of the swelling ratio Q, defined as
the ratio between the volume at which the measurements are
performed and the volume at which the sample was
synthesized. The experimental data can be fitted with both
the L-FJC and WLC expressions (see Appendix A) because
both models reproduce the data with high accuracy when fitted
with the two free parameters introduced above (R0 and ⟨n⟩).
However, better results are obtained with the WLC model,
which fits well when ⟨n⟩ is fixed to its experimentally estimated
value, yielding a value R0 = 7.2 nm, which is very close to the
independently estimated value of 8.1 nm,21 in agreement with
what reported in Hoshino et al.21

The second system we compare to is a randomly cross-
linked PNaAMPS network, for which the shear modulus as a
function of Q has been reported.30 As shown in Figure 7e, the
theoretical expressions reported here cannot go beyond a
qualitative agreement with the experimental data, even if two
parameters are left free and we only fit to the experimental data
in a narrow range of swelling ratios. In addition, the fitting
procedure always yields unphysical values for the two
parameters (e.g., R0 comes out to be smaller than 1 nm, see
Appendix A). Although part of the discrepancy might be due
to the charged nature of the polymers involved,57 we believe
that the disagreement between the theoretical and exper-
imental behaviors can be partially ascribed to the randomly
cross-linked nature of the network, and hence to the
abundance of short chains. Because the end-to-end distribution
of such short chains is not known and depends on the chemical
and physical details, there is no way of taking into account
their contribution to the overall elasticity in a realistic way.
These results thus highlight the difficulty of deriving a
theoretical expression to assess the elastic behavior of
randomly cross-linked real networks.

5. SUMMARY AND CONCLUSIONS
We have used numerical simulations of disordered phantom
polymer networks to understand the role played by the chain
size distribution in determining their elastic properties. In
order to do so, we employed an in silico synthesis technique by
means of which we can independently control the number and
chemical size of the chains, set by the cross-linker
concentration, as well as the distribution of their end-to-end
distances, which can be controlled by varying the initial
monomer concentration. We found that networks composed of
chains of equal contour length can have shear moduli that
depend strongly on the end-to-end distance even when probed
at the same strand concentration. Hence, this shows that even
in simple systems the synthesis protocol can have a large
impact on the final material properties of the network even
when it does not affect the chemical properties of its basic
constituents, as recently highlighted in a microgel system.58

We then compared the results from the simulations of the
phantom network polymer theory, which was revisited to
obtain explicit expressions for the shear modulus assuming
three different chain conformation fluctuations, namely, the
exact freely jointed chain, Gaussian, and extensible freely
jointed chain models. We observed a nonmonotonic behavior
of G as a function of the strand density that, thanks to a
comparison with the theoretical results, can be completely
ascribed to entropic effects that cannot be accounted for within
a Gaussian description. We thus conclude that the role played
by short-stretched chains in the mechanical description of
polymer networks is fundamental and should not be
overlooked. This insight is supported by an analysis of
experimental data of the elastic moduli of hydrogels reported
in the literature. We are confident that the numerical and
analytical tools employed here can be used to address similar
and other open questions concerning both the dynamics and
the topology in systems in which excluded-volume effects are
also taken into account, and hence entanglements effects may
be relevant. Investigations in this direction are underway.

■ APPENDIX A

Shear Modulus of a System with Gaussian-Distributed
End-to-End Distances
In this section, we show how eq 9 can be derived for a
polydisperse network. Similar derivations for the case of
monodisperse networks can be found in standard text-
books.19,22 We start by noting something that is sometimes
overlooked: the Gaussian distribution Wn

G(r), eq 7, applies to a
single chain. However, at the ensemble level, the distribution
of end-to-end vectors, which we may call Ω[r(n)], is no
Gaussian in general. However, if we assume, for example, that
the system has been obtained through end-cross-linking
starting from a melt of precursor chains,10 then Ω[r(n)] =
Wn

G(r),34 so that the magnitudes r of the r vectors will be
Gaussian-distributed. Under this assumption, one has
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To evaluate the term in brackets in eq 8, we thus only need to

evaluate the fluctuation term u
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2 . This term can be

computed using the equipartition theorem (the same
derivation can be found, e.g., in ref 59). The total energy of
the fluctuations is = k TNxfluct
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active cross-linkers because there is one mode for each node
and to each mode it is associated an energy of 3/2kBT.
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where the sum extends over all the elastically active strands.

Therefore, we get =
ϕ

u
nb

22

2 (a generalization to the

polydisperse case of a well-known result for the phantom
network20,60), from which we finally obtain
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From eq 8, we obtain eq 9, that is, ν= −
ϕ( )G k T1G 2

B .

The validity of eq 17 depends not only on the cross-linking
procedure but also on the macroscopic thermodynamic
parameters (such as solvent quality, density, or pressure).
For example, if the chain-size distribution is such that short
chains are abundant, as it is the case for randomly cross-linked
networks,7,20 the front factor A (see eq 8) will depend on the
chain size distribution because short chains are non-Gaussian.
Another example is when the cross-linking procedure is
performed in a state in which the chains are non-Gaussian, for
example, under good solvent conditions, where the chains
behave as self-avoiding random walks.22

Models of Chain Statistics
The freely jointed chain approximation, eq 6, describes an
inextensible chain because each component fα, where α = x, y,
and z, of the force f required to stretch the chain, for example
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diverges in the limit r → nb, that is, when the end-to-end
distance approaches the contour length. In the limit of large
strains and large degree of polymerization n, a better
approximation is provided by the well-known Langevin
dependence of the elongation on the exerted force f, which
yields for the end-to-end probability distribution function1
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where β = 1/kBT, T is the temperature, kB is the Boltzmann
constant, A is a normalization constant, and −x( ) 1 is the
inverse Langevin function. The latter is defined as

= −x x x( ) coth( ) 1/ and it turns out to be equal to the
ratio between the end-to-end distance and the contour length
of a chain that is subject to a force f
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We note on passing that ·− ( )1 cannot be written in a
closed form61 and hence must be evaluated numerically.
Phantom Kremer−Grest chains behave exactly as freely

jointed chains up to end-to-end distances that are very close to
the contour length. However, beyond those values the
Langevin description is no longer valid, and one has to resort
to the ex-FJC model, for which the following analytical form of
the force−extension curve has been recently derived40
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where k is the monomer−monomer force constant in the
harmonic approximation. In principle, it is possible to integrate
the inverse of this relation to get the end-to-end probability
density. However, as it is clear from eq 5, we only need the
derivatives of the inverse function, and hence there is no need
to obtain W(r) explicitly. We set the value of k to the value of
the second derivative of the Kremer−Grest potential as
computed in the minimum, k ≈ 867 ϵ/σ2. We have also fitted
the force−extension curves as obtained in simulations of single

chains, obtaining values that are compatible with this latter
estimate.
We also report the following expression, which approximates

the force−elongation relation for a WLC42 and is used in the
main text to fit the experimental data shown in Figure 7c
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Figure 8 shows the force−extension curve for polymer
chains described with different models. Because the force is

plotted as a function of the distance scaled by the FJC contour
length nb, the Gaussian, L-FJC and ex-FJC descriptions
become independent of n. By contrast, the extensional force
of the exact FJC model, whose end-to-end probability
distribution is given by eq 6, retains an n-dependence that is
very strong for small n and decreases upon increasing the chain
size. Indeed, for n ≳ 40, the resulting force is essentially n-
independent and overlaps almost completely with the FJC
curve.
Fitting Procedure and Additional Results
As discussed in the main text in Section 4, we fit the
experimental Young’s and shear moduli reported in Hoshino et
al.21 (system A) and Matsuda et al.30 (system B). As
commonly done in the analysis of experimental systems, in
both cases, we will consider the networks to be formed by
strands of average size ⟨n⟩ and use relations based on eq 5: for
system A, we use

ν= − ̃
̃ ̃
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while for system B, we fit Yexp = 3Gexp. We fit the experimental
data with the L-FJC and WLC models by using eqs 19 and 22
to numerically evaluate the derivatives of sn(r)̃.
We evaluate R, r,̃ and ν as follows. Let V0, ν0, and R0 be the

volume, chain number density, and average end-to-end
distance of the polymer chains in the preparation state,
respectively, and V, ν, and R be the same quantities for the
generic state point at which the experimental measurements
are carried out. We define the swelling ratio Q = V/V0 = ν0/ν

so that ν = ν0/Q and = =( )R R Q RV
V

1/3

0
1/3

0
0

. Since

Figure 8. Force required to extend a chain by r (scaled by its contour
length nb) for the Gaussian (dashed line, eq 7), L-FJC and ex-JFC
(solid lines, eq 21), and FJC (dashed-dotted lines, eq 6) models at T
= 1. Note that being plotted in this way, f depends on n only for the
latter case.
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̃ = = +r r R u2 2 2 2 and, as shown in Appendix A, =
ϕ

u nb2 2 2,

for systems with ϕ = 4 we also have that ̃ = +r R r b/22
max ,

where rmax = ⟨n⟩b is the contour length of the strands. Using
the numbers reported in the original papers, we found that ν0

A

= 1.97 × 10−3 nm−3 and ν0
B = 0.245 nm−3. For system A, the

authors also report independent estimates for R0 (R0
A = 8.1

nm) and rmax (rmax
A = 82 nm). For system A, we show the fitting

results obtained by either fixing rmax and using R0 as a fitting
parameter or by leaving both quantities as fitting parameters.
For system B, we do the latter.
For system A, we obtain R0

FJC = 7.46 nm and R0
WLC = 7.2 nm

for the one-parameter fits and R0
FJC = 5.08 nm, rmax

FJC = 42.75 nm
and R0

WLC = 7.2, rmax
WLC = 63.87 nm for the two-parameter fits.

For system B, we obtain unphysical values (R0
FJC = 0.11 nm,

rmax
FJC = 0.65 nm and R0

WLC = 0.17, rmax
WLC = 0.96 nm). The results

do not improve if we restrict the fitting range to narrower Q-
ranges.
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■ ADDITIONAL NOTES
aIn the absence of excluded volume interactions, the pressure
of the system is negative and would, therefore, collapse if the
volume was not kept constant.
bHere and in the following, italic is used to indicate the
magnitude of the vector.
cWe recall that because two cross-linkers cannot bind to each
other, the minimum chain length is n = 1 (for two bonds)
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