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Abstract: Presently, there is no FDA- or EMA-approved antiviral for the treatment of human aden-
ovirus (HAdV) ocular infections. This study determined the antiviral activity of filociclovir (FCV)
against ocular HAdV isolates in vitro and in the Ad5/NZW rabbit ocular model. The 50% effective
concentrations (EC50) of FCV and cidofovir (CDV) were determined for several ocular HAdV types
using standard plaque reduction assays. Rabbits were topically inoculated in both eyes with HAdV5.
On day 1, the rabbits were divided into four topical treatment groups: (1) 0.5% FCV 4x/day × 10 d;
(2) 0.1% FCV 4x/day × 10 d; (3) 0.5% CDV 2x/day × 7 d; (4) vehicle 4x/day × 10 d. Eyes were
cultured for virus on days 0, 1, 3, 4, 5, 7, 9, 11, and 14. The resulting viral eye titers were determined
using standard plaque assays. The mean in vitro EC50 for FCV against tested HAdV types ranged
from 0.50 to 4.68 µM, whereas those treated with CDV ranged from 0.49 to 30.3 µM. In vivo, com-
pared to vehicle, 0.5% FCV, 0.1% FCV, and 0.5% CDV produced lower eye titers, fewer numbers of
positive eye cultures, and shorter durations of eye infection. FCV demonstrated anti-adenovirus
activity in vitro and in vivo.

Keywords: filociclovir; antiviral; eye; adenovirus; EKC; in vitro; animal model

1. Introduction

Human adenoviruses (HAdV) cause a variety of respiratory infections, conjunctivitis,
gastroenteritis, and hemorrhagic cystitis [1]. A number of antiviral agents have demon-
strated antiviral activity in vitro and antiviral efficacy in small human clinical trials [1,2].
Among these infections, HAdV ocular infections (epidemic keratoconjunctivitis (EKC),
follicular conjunctivitis, and pharyngeal conjunctival fever) are the most common ocular
viral infections worldwide [3,4]. At present, there is no FDA- or EMA-approved antiviral
for the topical treatment of these ocular infections [5].

Filociclovir (FCV; cyclopropavir or MBX-400) is a novel methylene-cyclopropane
nucleoside analog (Figure 1) that has demonstrated broad-spectrum antiviral activity
against a number of herpesviruses including several that cause ocular disease, human cy-
tomegalovirus (HCMV), varicella zoster virus (VZV), and Epstein–Barr virus (EBV) [6–8].
FCV has successfully completed systemic Phase I human safety studies [6,9] and is now
entering Phase II clinical efficacy studies for the systemic treatment of HCMV viremia
in transplant recipients [6]. FCV appears to inhibit HCMV replication using a complex
mechanism of action that involves both the inhibition of the viral UL54 DNA polymerase
and the UL97 kinase [7,10].
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Collection (ATCC) isolate of human adenovirus type 5 (HAdV5) [11]. A subsequent study 
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lates in vitro and in vivo in the treatment of an HAdV6 infection in the immunosuppressed 
Syrian hamster model [12]. That study reported that FCV was a potent and selective in-
hibitor of HAdV types 4–8 in vitro with 50% effective concentrations (EC50) in the range 
of 1.24–3.60 µM [12]. In the Syrian hamster model, a 10 mg/kg daily dose of FCV com-
pletely prevented mortality after an intranasal challenge of HAdV6 [12]. From other ex-
periments presented in the article, the authors speculated that FCV inhibits HAdV repli-
cation through the inhibition of the adenovirus-encoded DNA polymerase by the triphos-
phate form of FCV [12].  
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FCV was first shown to have antiviral activity against an American Type Culture
Collection (ATCC) isolate of human adenovirus type 5 (HAdV5) [11]. A subsequent study
demonstrated that FCV produced antiviral inhibitory activity against several HAdV isolates
in vitro and in vivo in the treatment of an HAdV6 infection in the immunosuppressed
Syrian hamster model [12]. That study reported that FCV was a potent and selective
inhibitor of HAdV types 4–8 in vitro with 50% effective concentrations (EC50) in the range
of 1.24–3.60 µM [12]. In the Syrian hamster model, a 10 mg/kg daily dose of FCV completely
prevented mortality after an intranasal challenge of HAdV6 [12]. From other experiments
presented in the article, the authors speculated that FCV inhibits HAdV replication through
the inhibition of the adenovirus-encoded DNA polymerase by the triphosphate form
of FCV [12].

While some adenovirus antiviral studies have been completed, currently, there have
been no in vitro studies evaluating FCV against ocular isolates of HAdV or any in vivo
antiviral studies in an HAdV ocular model. Furthermore, there have been no ocular toxicity
or tolerability studies of topically instilled FCV to determine whether FCV is a viable
candidate to be used in the eye. This led us to the current study for which the goals were
to: (1) determine the in vitro antiviral activity of FCV against a panel of HAdV types and
species that commonly infect the eye; (2) to determine the ocular toxicity and tolerability
of topical 0.5% solution of FCV in normal rabbit eyes; and (3) to determine the antiviral
efficacy of topical FCV in an ocular HAdV infection in the Ad5/NZW rabbit ocular model.
The results of the study demonstrated that FCV produced in vitro antiviral activity against
a panel of ocular HAdV types, was non-toxic to rabbit eyes, and demonstrated antiviral
activity in the Ad5/NZW rabbit ocular model.

2. Results
2.1. In Vitro Antiviral Activity Assay (Plaque Reduction Assays)

The results from the in vitro antiviral plaque reduction assays (PRAs) are presented
in Table 1 as the mean and standard deviations of the 50% effective concentration (EC50;
concentration that inhibits plaque formation by 50%) (µM) from triplicate assays. The mean
in vitro EC50 for FCV ranged from 0.50 to 4.68 µM, whereas those for CDV ranged from
0.49 to 30.3 µM across the panel of seven HAdV types tested. FCV produced lower EC50
for five of the seven HAdV types compared to CDV, which was used as an experimental
positive control for antiviral activity [12,13].

2.2. Ocular Toxicity and Tolerability Study

The ocular toxicity and tolerability study evaluated 0.5% FCV compared to its ve-
hicle using the modified MacDonald–Shadduck ocular scoring system during slit-lamp
examination [14]. The naïve rabbits were topically treated in both eyes four times daily for
10 consecutive days. The topical 0.5% FCV and vehicle were well tolerated. There were no
adverse behaviors demonstrated after instillation of either the 0.5% FCV or its vehicle at any
time throughout the course of the study, indicating that the formulations were comfortable
to the eyes. Regarding toxicity, neither treatment produced any signs of corneal toxicity
(opacity, edema, corneal neovascularization, or corneal staining after fluorescein instilla-
tion). Minimal conjunctival signs (congestion (redness), chemosis (swelling), and discharge
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(tearing)) were noted before and during treatment in both groups. The scores from these
three measures were added together to produce a total conjunctival score for each day and
each eye. These data were analyzed using the Kruskal–Wallis (K–W) ANOVA with Dunn’s
multiple comparisons test. The median ± interquartile ranges of the total conjunctival
scores for each examination day are presented in Figure 2. The maximum total conjunctival
score is 10. There were no significant differences in scores demonstrated between the two
treatments for any examination day, nor were there any significant differences in scores
over time (p > 0.05 K–W). Representative photographs of an eye from each treatment group
following 10 days of treatment are presented in Figure 3.

Table 1. Mean and standard deviations of EC50 from 3 plaque reduction assay (PRA) trials.

Virus Filociclovir Cidofovir

AdV3 0.78 ± 0.21 µM 5.78 ± 1.70 µM

HAdV4 4.31 ± 0.28 µM 8.71 ± 1.40 µM

HAdV5 4.68 ± 0.29 µM 30.3 ± 22.0 µM

HAdV7a 2.12 ± 2.59 µM 1.81 ± 2.33 µM

HAdV8 0.50 ± 0.08 µM 0.49 ± 0.03 µM

HAdV19/64 1.86 ± 2.58 µM 4.09 ± 3.71 µM

HAdV37 3.53 ± 2.67 µM 3.96 ± 6.22 µM
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Figure 2. Median and interquartile ranges of the total conjunctival scores for 0.5% FCV and vehicle 
for each observation day in the ocular toxicity study. There were no significant differences be-
tween 0.5% FCV and the vehicle for any day (p > 0.05, K–W). 

Figure 2. Median and interquartile ranges of the total conjunctival scores for 0.5% FCV and vehicle
for each observation day in the ocular toxicity study. There were no significant differences between
0.5% FCV and the vehicle for any day (p > 0.05, K–W).

2.3. In Vivo Antiviral Activity Study

The percentages of HAdV5-positive cultures per total for each culture day are pre-
sented in Figure 4. This is the most stringent of the viral outcome measures, as one HAdV5
plaque is considered a positive culture. Compared to the vehicle control, both 0.5% FCV
and CDV significantly reduced the percentage of HAdV5-positive cultures per total on
Days 4, 5, 7, 9 and 11, while 0.1% FCV demonstrated fewer HAdV5-positive cultures per
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total on Days 5, 7, 9, and 11 (p ≤ 0.026, chi-square or Fisher’s exact test (FET)). There were
no differences between 0.5% FCV and CDV and 0.1% FCV and CDV on any day. However,
0.5% FCV significantly reduced the percentage of positive cultures per total compared to
0.1% FCV on Days 4 and 7 (p ≤ 0.006, chi-square).
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Figure 3. Representative photographs of eyes treated with (A) 0.5% FCV and (B) vehicle after 4 times
daily dosing for 10 consecutive days in the ocular toxicity study.
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Figure 4. Percentages of HAdV5-positive cultures per total for each treatment group and cul-
ture day. Significant differences were demonstrated on the following days: Day 4: (0.5% FCV
= 0.5% CDV < VEH; 0.5% FCV < 0.1% FCV); Day 5: (0.5% FCV = 0.5% CDV = 0.1%
FCV < VEH); Day 7: (0.5% FCV, 0.5% CDV, 0.1% FCV < VEH; 0.5% FCV < 0.1% FCV); Day 9:
(0.5% FCV = 0.1% FCV = 0.5% CDV < VEH); Day 11: (0.5% FCV = 0.1% FCV = 0.5% CDV < VEH).
p ≤ 0.05, chi-Square or Fisher’s exact test (FET) (< is significantly fewer HAdV5-positive eyes per total).

The Log10 median ± interquartile ranges of the daily ocular HAdV5 titers are pre-
sented in Figure 5. These data were analyzed using the Kruskal–Wallis ANOVA with
Dunn’s multiple comparisons test. All tested antiviral formulations significantly decreased
HAdV5 titers compared to the vehicle control, but to different degrees. Treatment with
0.5% FCV was the most active, significantly reducing HAdV5 titers on Days 3, 4, 5, 7, 9,
and 11. Treatment with 0.1% FCV was less active, only reducing HAdV5 titers later in



Pharmaceuticals 2021, 14, 294 5 of 10

the infection on Days 7, 9, and 11. The activity of 0.5% CDV was in between the FCV
groups, reducing titers on Days 5, 7, 9, and 11. On Day 4, 0.5% FCV had significantly lower
titers than 0.1% FCV and a lower titer than 0.5% CDV on Day 1. There were no significant
differences among the groups on any other days.
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Day 3: (0.5% FCV < VEH); Day 4: (0.5% FCV < 0.1% FCV = VEH); Day 5: (0.5% FCV = 0.5% CDV
< VEH); Day 7: (0.5% FCV = 0.5% CDV = 0.1% FCV < VEH); Day 9: (0.5% FCV = 0.1% FCV = 0.5%
CDV < VEH); Day 11: (0.5% FCV = 0.1% FCV = 0.5% CDV < VEH). p ≤ 0.05, K–W. (< is significantly
lower titers).

The duration of HAdV5 shedding for each eye was determined by the final day on
which the eye had a positive HAdV5 culture. This outcome measure is presented as the
median (± interquartile ranges) length of the infection in the eyes. Treatment with 5%
FCV (5.0 ± 2.00 days), 0.1% FCV (7.0 ± 2.25 days), and 0.5% CDV (5.0 ± 3.25 days) signifi-
cantly decreased the length of infection compared to the vehicle control (11.0 ± 2.00 days)
(p ≤ 0.0002, K–W). There were no significant differences among the treatment groups.

3. Discussion

Nucleoside analog antiviral agents have a long history of use in ophthalmology.
The first antiviral approved by the FDA for human use (1963) was a topical treatment for
herpetic epithelial keratitis, idoxuridine (IDU) [15,16]. Over subsequent years, many other
nucleoside analog antivirals have been used to treat viral eye infections. Trifluridine (TFT),
acyclovir (ACV), vidarabine (ara-A), and ganciclovir (GCV) have been used in the USA or
Europe to topically treat herpetic epithelial keratitis caused by herpes simplex virus type 1
(HSV-1) [15]. Valacyclovir (VACV), ACV, and famciclovir have been used systemically to
treat herpetic epithelial keratitis and to reduce local ocular toxicity produced by some of the
topical agents [15]. CDV, GCV, and valganciclovir (VGCV) are used for systemic and local
treatment of HCMV retinitis [17]. These nucleoside analog antivirals have demonstrated
clinical efficacy and safety for nearly 60 years.

While there are approved antivirals available to treat ocular infections caused by her-
pesviruses, there are no FDA- or EMA-approved antivirals available to treat eye infections
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caused by adenoviruses. The nucleoside analogs CDV [13,18–21], zalcitabine (ddC) [21],
and GCV [22] have been evaluated against adenovirus in vitro and in animal models of
adenoviral ocular infection. Although the results of those studies demonstrated that these
nucleoside analogs produced antiviral activity in those models, none of them have been
approved for use in patients. Therefore, the search for a safe and effective nucleoside
analog antiviral for adenovirus eye infections continues.

This search has led us to a promising new nucleoside analog, filociclovir. FCV has
already been shown to possess in vitro and in vivo antiviral activity against HAdVs [11,12].
However, its antiviral activity against ocular isolates of HAdV, its ocular tolerability,
and antiviral efficacy in animal models had not yet been determined. In the current study,
we sought to answer these questions.

This study demonstrates that FCV exhibits antiviral activity against a panel of oc-
ular HAdV isolates in the range of 0.5–5.0 µM. This is in the same range as the com-
parator antiviral CDV, with FCV demonstrating lower EC50 than CDV for five of seven
isolates. These EC50 are similar to those produced in a previous anti-adenoviral study
(1.24–3.60 µM) [12]. The in vitro evaluation of FCV cytotoxicity has been completed pre-
viously [12]. In this study, the 50% cytotoxic concentration (CC50) was found to be >100
or >150 µM depending on the cell line used [12]. The authors of this previous study con-
cluded that the selectivity index (ratio of cytotoxicity over antiviral activity) of FCV was
high for those HAdV types tested [12]. Since our study demonstrates similar EC50 values,
the selectivity index of these additional HAdV types should also be considered high.

This panel of isolates represents HAdV types that are commonly associated with eye
infections. Adenovirus types HAdV3, HAdV4, and HAdV7a are associated with follicular
conjunctivitis and pharyngeal conjunctival fever, while HAdV8, HAdV19/64, and HAdV37
are associated with EKC, and HAdV5 is used in the Ad5 NZW rabbit ocular model. It is
important to demonstrate broad-spectrum antiviral activity against the range of HAdV
types and species as it has been previously reported that antivirals have variable activity
across types and species of HAdVs [23]. Furthermore, we wanted to determine whether
the antiviral activity demonstrated against HAdV5 was similar to the other common ocular
adenovirus types so we could use HAdV5 as a surrogate for the other adenovirus species
and types in the NZW rabbit ocular model. The results of the current in vitro study indicate
that this is the case for FCV. In fact, HAdV5 produced the highest EC50 of the isolates tested
(Table 1). Therefore, we conclude that the antiviral efficacy demonstrated against HAdV5
in vivo would translate to the other HAdV types.

The second goal was to determine the ocular toxicity and tolerability of FCV in rabbit
eyes. We chose to evaluate 0.5% FCV and its vehicle in naïve rabbit eyes. The FCV and
vehicle drops were well tolerated. No adverse behavior from the rabbits was seen after
instillation of the drops four times daily for 10 consecutive days. This indicates that the
formulations are comfortable to the eyes. The formulations were also non-toxic to the
eyes during the treatment period. There were no corneal signs of toxicity noted in any
of the eyes and only minor conjunctival scores. There were no significant differences in
total conjunctival scores between the 0.5% FCV-treated eyes and the vehicle-treated eyes.
In fact, the median scores were slightly lower for the 0.5% FCV on several examination
days. There was no cumulative toxic effect of FCV over time since there was no significant
increase in total conjunctival scores from Day 0 through Day 10. Histological analysis of
the eyes showed no differences or abnormalities (data not shown), confirming the clinical
data. Long-term and delayed toxicity after cessation of treatment was not evaluated in this
study. These evaluations will be conducted in future studies.

Finally, the antiviral activity of FCV was evaluated in an ocular model of adenovirus
infection. Our group has used the Ad5/NZW rabbit ocular model for several decades to
evaluate potential antiviral agents for adenoviral ocular infection. In the current study,
we evaluated two concentrations of FCV, 0.5% and 0.1%, using a standard treatment
regimen of four times daily. We treated for 10 days to maximize the antiviral effect.
We compared the efficacy to 0.5% CDV, twice daily for 7 days. This is the standard CDV
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treatment regimen that we have used in several studies [20,21,24,25]. Both concentrations
of FCV and CDV demonstrated statistically significant reductions of ocular HAdV5 titers
and shortened the length of the infection. Specifically, 0.5% FCV, 0.1% FCV, and 0.5% CDV
significantly reduced the percentages of HAdV5-positive cultures per total, daily HAdV5
viral eye titers, and significantly shortened the duration of HAdV5 shedding (length of
the infection).

Treatment with 0.5% FCV produced antiviral activity early in the infection. HAdV5
eye titers were significantly reduced compared to the vehicle beginning on Day 3 and
continued throughout the course of the study until being completely eliminated by Day 9,
while 80% of the vehicle eyes were still shedding virus. By Days 4–5, around half of the eyes
had the virus completely eliminated from the ocular surface. On Day 7, 83% of the eyes
were completely cleared from virus compared with 0% cleared in the vehicle-treated eyes.
This translated to a shortened median length of viral shedding by 55% (11 days for vehicle
vs. 5 days for FCV). This is an important outcome. Shortening the viral shedding by more
than half in conjunction with reducing the viral load in the eyes early in the infection could
alleviate some patient suffering while potentially reducing or eliminating the formation of
subepithelial corneal infiltrates that are associated with severe forms of adenovirus ocular
infections, including EKC.

Within the FCV groups, treatment with 0.1% FCV was not as effective as 0.5% FCV.
Compared to the vehicle control, 0.1% FCV significantly reduced HAdV5 titers starting
on Day 7 compared with Day 3 for 0.5% FCV. The application of 0.5% FCV significantly
decreased HAdV5 eye titers on Day 4 compared with 0.1% FCV and also reduced the
percentage of HAdV5-positive cultures per total on Days 4 and 7. Treatment with 0.5%
FCV also shortened the median duration of shedding by two days compared to 0.1% FCV,
although this difference was not significant. These results suggest that 0.5% FCV is more
active than 0.1% FCV, making the antiviral effect of FCV concentration dependent.

In conclusion, FCV possesses antiviral in vitro activity against a panel of ocular HAdV
types and species. It is tolerable and non-toxic when instilled into rabbit eyes and has
antiviral activity against HAdV5 in the Ad5/NZW rabbit ocular model. This experiment
is the first to demonstrate the in vivo antiviral activity of FCV against an experimental
adenovirus ocular infection. Further research must be done to optimize the topical ocular
FCV formulation, concentration, and treatment regimen and duration before human trials
for adenoviral conjunctivitis are initiated.

4. Materials and Methods
4.1. Viruses and Cells

De-identified isolates from a clinical validation bank of human adenovirus types
HAdV3, HAdV4, HAdV5, HAdV7a, HAdV8, and HAdV19/64 were recovered at the
Charles T. Campbell Ophthalmic Microbiology Laboratory from patients presenting with
typical adenoviral ocular disease. The use of these isolates in this study did not require
Institution Review Board (IRB)/Ethics Committee approval because neither direct patient
contact nor personal information were involved. The types of the isolates were determined
using serum neutralization. HAdV19/64 was originally characterized as HAdV19, but sub-
sequent studies have determined that HAdV19 is actually HAdV64 [26]. Therefore, for the
purposes of this study, the isolate is designated HAdV19/64. No clinical isolates of HAdv37
were recovered, so the American Type Culture Collection (ATCC, Manassas, VA, USA)
reference strain of HAdv37 was used. The rationale for the HAdV isolates and types chosen
was that HAdV3 (Species B), HAdV4 (Species E), and HAdV7a (Species B) are common
causes of follicular conjunctivitis and pharyngeal conjunctival fever, HAdV8 (Species D),
HAdV19/64 (Species D), and HAdV37 (Species D) are major causes of EKC, and HAdV5
(Species C) is used in the Ad5/NZW rabbit ocular model. A549 human lung carcinoma cells
were used to prepare the virus stocks, for the in vitro studies, and for the determination of
ocular viral titers in the in vivo study.
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4.2. Experimental Drugs

FCV, dissolved in DMSO to 20 mM, was used for the in vitro antiviral assays. For the
in vivo studies, 0.5% and 0.1% FCV along with their vehicle (10% [2-Hydroxpropyl]-β-
cyclodextrin (Millipore Sigma, St. Louis, MO, USA), 0.2% cremophore (Millipore Sigma,
St. Louis, MO, USA)) (VEH) were provided by Microbiotix, Inc. (Worcester, MA, USA) and
were used for the in vivo studies. Cidofovir (CDV) for the in vitro and in vivo studies was
prepared from the 7.5% injectable form of cidofovir (Cidofovir Injection, Heritage Pharma-
ceuticals Inc., East Brunswick, NJ, USA). CDV was prepared in the same vehicle and used
as a comparator antiviral as it has demonstrated antiviral activity against adenoviruses
in vitro [12,13] and in the Ad5/NZW rabbit ocular model [18–21,24,25].

4.3. Animals

Female New Zealand White rabbits weighing 1.1–1.4 kg were obtained from Charles
River Laboratories’ Oakwood Rabbitry. All animal studies conformed to the ARVO State-
ment on the Use of Animals in Ophthalmic and Vision Research. University of Pittsburgh
IACUC approval (19106241) was obtained and all federal guidelines regarding animal
experimentation were followed.

4.4. In Vitro Antiviral Activity Assay (Plaque Reduction Assay (PRA))

These studies were performed using 24-well multiplates (Costar 3526, Corning Inc.,
Kennebunk, ME, USA) containing A549 cell monolayers. One plate per virus strain per
drug was used. The 24-well multiplates were inoculated with approximately 100 PFU/well
of virus. After 3 h of adsorption, the inocula were removed from all wells. One milliliter of
overlay media containing 0.001 µM, 0.01 µM, 0.1 µM, 1.0 µM, 10 µM, or 100 µM of FCV or
CDV was added to 3 wells each. To the remaining 6 wells, 1 mL of overlay media without
test drug was added. The plates were incubated at 37 ◦C in 5% CO2 until plaque formation
was visible in the control wells. At that time, the media were removed, and the cells were
stained and fixed with 0.5% gentian violet in formalin, and the number of plaques per
well counted. Triplicate experiments were performed. The EC50 for each virus isolate,
test drug, and trial were determined using fitted line plot regression analysis (Minitab,
State College, PA, USA). The mean and standard deviations of the EC50 for FCV and CDV
were determined for the three experiments.

4.5. Ocular Toxicity and Tolerability Study

Six naïve NZW rabbits were divided into 2 topical treatment groups of 3 rabbits each.
The first group received 0.5% FCV while the second group received the vehicle. Both groups
were treated in both eyes four times daily for 10 days. The eyes were examined using a
slit-lamp (Topcon, Tokyo, Japan) and graded using the modified MacDonald–Shadduck
ocular scoring system [10] before treatment and on Days 1, 3, 5, 7, and 10 at least 1 h
after the final dose. Total conjunctival scores were determined for each day and group
and analyzed using the Kruskal–Wallis test (K–W) (Minitab, State College, PA, USA).
Notations of adverse behavior of the rabbits after instillation were made. Rabbits were
assessed for vocalization, immediate or delayed eye wiping, and/or hiding after instillation
of drops. These behaviors can be indicators that the formulations may be irritating or that
they sting.

4.6. In Vivo Antiviral Activity Study (Ad5 NZW Rabbit Ocular Model)

This study was performed using a total of 37 rabbits. Following systemic anesthesia
with 40 mg/kg ketamine and 4 mg/kg xylazine administered intramuscularly and topical
anesthesia from 2 drops of 0.5% proparacaine, the rabbits were inoculated in both eyes with
50 µL (1.5 × 106 PFU/eye) of HAdV5 following 12 cross-hatched strokes of a #25 sterile
needle on each cornea. Twenty-four hours later, rabbits were randomly assigned to one of
four topical treatment groups: (1) 0.5% FCV: 4x per day for 10 days (n = 9); (2) 0.1% FCV:
4x per day for 10 days (n = 9); (3) 0.5% CDV: 2x per day for 7 days (n = 10); and (4) vehicle:
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4x per day for 10 days (n = 9). The rabbits were treated topically in both eyes according to
the above treatment regimens. Ocular cultures were performed on days 0, 1, 3, 4, 5, 7, 9, 11,
and 14 after inoculation and at least 1 h after the final dose of antiviral. The conjunctival
and corneal surfaces were cultured after topical anesthesia with 0.5% proparacaine using
dacron-tipped applicators. The swabs were placed into tubes containing 1 mL of tissue
culture media and were frozen at −75 ◦C pending the determination of HAdV5 titers.

4.7. Determination of Ocular Viral Titers (Plaque Assay)

The ocular culture samples to be titered were thawed, diluted, and inoculated onto
A549 cell monolayers in 24-well multiplates. Following adsorption for 3 h, 1 mL of overlay
media was added to the wells. After 7 days of incubation at 37 ◦C in 5% CO2, the media
were removed and cells were stained and fixed with 0.5% gentian violet in formalin, and the
number of plaques per well counted. The viral titers were then calculated and expressed as
plaque-forming units per milliliter (PFU/mL).

4.8. Statistical Analyses

Ocular titer and toxicity data were analyzed using Kruskal–Wallis ANOVA with
Dunn’s multiple comparisons (GraphPad Prism, San Diego, CA, USA), and chi-square
(Minitab, State College, PA, USA), or Fisher’s exact test (FET) (https://www.graphpad.
com/quickcalcs/contingency1/, accessed on 1 April 2020). Significance was established at
the p ≤ 0.05 confidence level.
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