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The majority of the single nucleotide variants (SNVs) identified by genome-wide association 
studies (GWAS) fall outside of the protein-coding regions. Elucidating the functional 
implications of these variants has been a major challenge. A possible mechanism for 
functional non-coding variants is that they disrupted the canonical transcription factor 
(TF) binding sites that affect the in vivo binding of the TF. However, their impact varies 
since many positions within a TF binding motif are not well conserved. Therefore, simply 
annotating all variants located in putative TF binding sites may overestimate the functional 
impact of these SNVs. We conducted a comprehensive survey to study the effect of SNVs 
on the TF binding affinity. A sequence-based machine learning method was used to 
estimate the change in binding affinity for each SNV located inside a putative motif site. 
From the results obtained on 18 TF binding motifs, we found that there is a substantial 
variation in terms of a SNV’s impact on TF binding affinity. We found that only about 20% 
of SNVs located inside putative TF binding sites would likely to have significant impact 
on the TF-DNA binding.

Keywords: non-coding variant annotation, transcription regulation, transcription factor binding motif, gapped 
k-mer SVM classifier, genome-wide association study, position weight matrix

INTRODUCTION

Thousands of genome-wide association studies (GWAS) have been conducted over the past 
15 years, resulting in considerable single nucleotide variants (SNVs) being discovered as robustly 
associated with a wide array of phenotypes (Welter et  al., 2014). The vast majority of the 
trait-associated variants detected by these studies lies in the non-coding part of the human 
genome (Maurano et  al., 2012) and is hypothesized to play a regulatory role in controlling 
the expression of genes related to disease pathogenesis. Moreover, it has been demonstrated 
that GWAS-identified variants are enriched in regulatory regions (Cookson et  al., 2009).

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.667866&domain=pdf&date_stamp=2021-09-07
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.667866
https://creativecommons.org/licenses/by/4.0/
mailto:zhaohui.qin@emory.edu
https://doi.org/10.3389/fgene.2021.667866
https://www.frontiersin.org/articles/10.3389/fgene.2021.667866/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.667866/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.667866/full


Jin et al. Survey of SNV Impact

Frontiers in Genetics | www.frontiersin.org 2 September 2021 | Volume 12 | Article 667866

A possible mechanism for non-coding trait-associated variants 
is that mutations may affect the in vivo binding of transcription 
factors (TFs) to regulatory elements (promoters and enhancers; 
Pasquali et  al., 2014) by disrupting the canonical motif pattern 
recognized by the TF (Yan et  al., 2021). Here, identifying TF 
binding sites is a well-known classical bioinformatics problem. 
Many statistical and computational approaches have been 
proposed (Lawrence et  al., 1993; Hertz and Stormo, 1999). 
Despite the fact that many sophisticated methods have been 
proposed lately to model TF binding motif accurately (Zhao 
et  al., 2012; Mathelier and Wasserman, 2013; Eggeling et  al., 
2015; Keilwagen and Grau, 2015; Siebert and Söding, 2016), 
in practice, using position weight matrix (PWM; Stormo et al., 
1982) scan is still the most commonly used method for 
identifying TF binding sites, due to its simplicity. PWM models 
the nucleotide preference at each position independently. There 
are different forms of PWMs, like nucleotide frequencies, 
probability, or log likelihood. In this study, either frequency 
or probability form of the PWM was imported from the original 
databases, but we  transformed all the frequency form of PWM 
to the probability form ahead of all analyses. By scanning the 
genome, one can calculate a matching score based on the 
PWM for each candidate binding site. A locus with score 
exceeding a pre-defined threshold is considered to be a putative 
binding site. Subsequently, all mutations found within such 
binding sites are considered as consequential and marked (Boyle 
et  al., 2012; Ward and Kellis, 2012). However, it is well-known 
that many positions within a TF binding motif are weakly 
conserved and the functional impact of a mutation at such 
positions are likely to be  low. Although there exist highly 
informative PWMs for many TF binding sites in databases 
like TRANSFAC (Wingender et  al., 2000), Factorbook (Wang 
et  al., 2012), JASPAR (Sandelin et  al., 2004), HOCOMOCO 
(Kulakovskiy et  al., 2017), and CIS-BP, these resources are 
designed for characterizing motif patterns. Their effectiveness 
for measuring the impact of mutations has yet to be investigated. 
In this study, we aim to evaluate whether measuring the overall 
PWM probability difference for a motif with or without a 
mutation is a reasonable strategy to measure the impact of 
the mutation.

In a recent study, Ghandi et  al. (2014) developed a novel 
sequence-based computational method to predict the impact 
of regulatory variants. The authors took advantage of sequencing-
based assays, such as ChIP-seq (Johnson et  al., 2007) that is 
able to recognize TF binding in vivo, to define gapped k-mer 
support vector machine (gkm-SVM) weights to quantify the 
different level of abundance of k-mers at functionally important 
genomic loci. The authors then defined deltaSVM scores as 
the induced change in the SVM weights and used deltaSVM 
score to quantify the functional impact of SNVs. Applications 
of deltaSVM showed accurate prediction of the impact of SNVs 
on DNase I sensitivity in the genomic context (Lee et al., 2015).

Built on its success on regulatory sequence prediction, a 
natural extension is to apply the gkm-SVM methodology to 
predict TF binding. Given the dominance of PWM in this 
area, it is of great interest to compare PWM scores with SVM 
weights on the same DNA fragment. In this work, we conducted 

a survey to compare these two motif-scoring methods. 
Subsequently, we  compared the consistency of using PWM to 
evaluate the impact of SNVs on TF binding in vivo with that 
from deltaSVM. We  first employed gkm-SVM (Ghandi et  al., 
2014) to evaluate the TF binding potential for all 10-mers 
based on the TF’s ChIP-seq data. We  then quantify the effect 
of a SNV on the TF binding using deltaSVM. We  believe that 
deltaSVM scores derived from ChIP-seq data can serve as a 
useful resource to quantify the impact of SNVs throughout 
the genome. Finally, we  compare the SNV impact measured 
by deltaSVM with that of the probability difference derived 
from the PWM. The goal is to check whether the results 
derived from these two methods are comparable.

MATERIALS AND METHODS

Data Sources
In this study, we  surveyed 18 TFs including BCL11A, CTCF, 
EGR1, GABPA, JUN, JUND, MAX, NANOG, POU5F1, RAD21, 
RFX5, SIX5, SRF, STAT1, TCF12, USF1, USF2, and YY1. 
We  choose these 18 TFs since their motif PWMs are well-
defined and their ChIP-seq data are available from the 
Encyclopedia of DNA Elements (ENCODE) consortium 
(ENCODE Project Consortium, 2012). The PWMs used in 
this study are obtained from JASPAR and Factorbook. The 
IDs of these PWMs are summarized in Supplementary Table S1.

All the ChIP-seq peak region information is provided by 
ENCODE and downloaded from the ENCODE website. The 
dataset IDs are summarized in Supplementary Table S2.

Measuring TF Binding Strength
Using classical approaches, the binding affinity of the TF is 
measured by the probability calculated based on the PWM of 
the TF. And, the impact of a SNV can be  evaluated by the 
difference between the probabilities of the two motif incidences 
(differing at the SNV position). An alternative method is based 
on the new gkm-SVM method introduced recently (Ghandi 
et  al., 2014). The deltaSVM scores derived from there 
(Lee et al., 2015) can be used to measure the impact of a SNV.

Motif incidences are typically identified by sliding through 
the entire human genome using a pre-defined motif PWM to 
calculate a matching probability for each possible motif start 
position. Mathematically, the PWM model assumes a product-
multinomial model. Strictly speaking, a PWM model is better 
defined as an inhomogeneous Markov model of order zero. 
Nevertheless, a motif PWM score is defined as the negative 
log-transformed probability that the DNA motif is generated 
from the series of underlying multinomial distributions defined 
by the PWM. Here, we  use CTCF (motif length 15 bp) as an 
example: adopting the same PWM and the same threshold 
for calling a match described previously (Xu et  al., 2015), 
we  identified 139,084 15-mer CTCF motif sites genome-wide. 
Among them, there are 48,804 unique 15-mer motif sequences. 
For a 15-bp motif like CTCF motif, since it contains six different 
alignments (overlapping bases 1–10, 2–11, 3–12, 4–13, 5–14, 
and 6–15) for a 10-mer, we assessed the probability of observing 
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the 10-mer using part of the PWM for each of the six potential 
matching alignments (positions 1–10, 2–11, 3–12, 4–13, 5–14, 
and 6–15), and then selected the highest probability among 
the six as the probabilistic value of the specific 10-mer, defined 
as the 10-mer PWM score. We use the aforementioned strategy 
described above to process motifs longer than 10 bp. No such 
alignment is needed for motif with 10 bp in length.

In some scenarios, relative entropy (Vinga, 2014) is preferred 
over the PWM score as the estimate of the binding strength. 
The relative entropy for motif sequence (a1, a2,…,aL) is defined by
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where ai = A, C, G or T, L is the motif length. Pi,j is the 
probability for nucleotide j at position i. Pj’s are background 
probabilities, which are fixed at 0.25  in the present study as 
in most applications, J = A, C, G or T. Higher values of the 
entropy indicate better fit to the PWM model.

Alternatively, gkm-SVM (Ghandi et  al., 2014) can be  used 
to measure how likely a DNA segment may be  bound by a 
TF. Using ChIP-seq data, we first treated peak regions annotated 
by ENCODE as the positive training set, whereas regions 
outside peaks are selected as the negative training set. These 
null sequences were generated using the genNullSeqs function, 
part of the gkmSVM R package (Ghandi et  al., 2014). Here, 
the tolerance parameters for difference in repeat ratio, GC 
content and length were all set to 0.02, such that null sequences 
generated resembles the input positive regions. Next, we applied 
gkm-SVM to estimate the SVM weights of all possible 10-mers. 
Because TF binding is cell type-specific, the 10-mer SVM 
weights are different from one cell type to another. However, 
we found that there are about 80% overlaps among the top 1,000 
10-mers with the highest SVM weights from the three cell 
types (GM12878, K562, and H1). And, the percentage increases 
to 84% for the top  500 10-mers, so we  concluded that the 
SVM weights for CTCF obtained from the three different cell 
types are quite consistent. Therefore, for all subsequent analyses, 
we  used SVM weights calculated from ChIP-seq data collected 
from the GM12878 cell line. Note that, although there is little 
difference for the SVM weight in these three cell lines, it does 
not mean this is the case for other cell lines / tissues types 
and for other TFs.

With the defined PWM scores and SVM weights, we  can 
compare sensitivity and specificity of in vivo TF binding predicted 
by these two quantities by adopting various thresholds, and 
then can enumerate the number of false positives and 
false negatives.

Measuring Impact of SNV on TF Binding 
Strength
If a motif site contains a SNV, we  define the motif with the 
reference allele at the SNV position to be  the wild-type (WT) 
motif and the motif with the alternative allele at the SNV 
position to be  the variant motif. The difference of motif PWM 
scores between the WT motif and the variant motif is defined 
as the delta-PWM score of the motif.

Alternatively, for each SNV, sliding along its flanking sequence, 
there are 10 different 10-mers containing this SNV. Assuming 
the SNV is bi-allelic, as in the original study, the deltaSVM score 
of the SNV is defined as the sum of the SVM weight differences 
between 10 pairs of corresponding WT and variant motifs, as 
illustrated in Figure  1 in the original study (Lee et  al., 2015).

For each motif, in order to determine an empirical threshold 
for calling an SNV impactful on TF binding, we first randomly 
selected 10,000 non-motif sites of the same length (below PWM 
scan probability threshold) as the control set. For each base, 
we  calculated the average deltaSVM score over three possible 
variants. After repeating this step for all positions in the control 
set, we  established a large collection of averaged deltaSVM 
scores from random sequences. We  then determined the 2.5 
percentile and the 97.5 percentile of the empirical distribution 
of the deltaSVM scores as the significant thresholds.

RESULTS

It is important to annotate non-coding variants. Currently, all 
SNVs that fall into putative TF binding sites, called by PWM 
scan, are considered to affect transcriptional regulation. In this 
study, using the newly developed gkm-SVM method and ChIP-seq 
data, we  conducted a survey to tell whether these SNVs indeed 
affect TF binding in vivo. In the present study, we  utilized data 
from the ENCODE project (ENCODE Project Consortium, 2012). 
For each TF, using peaks called from its ChIP-seq data on the 
GM12878 cell line, we first divided the genome into two categories: 
peaks and non-peaks. Next, we counted the occurrences of every 
10-mer found in the ENCODE peak regions and obtained its 
SVM weights. Then for the top  10mers based on PWM scores, 
we  conducted a comprehensive survey of the impact of all 
common SNVs occurring within each of these 10mers. By common 
SNVs, we  mean all SNVs listed in the dbSNP153 Common 
SNPs panel (accessed from the UCSC TableBrowser). This strategy 
was applied to all 18 TFs.

Correlation Between SVM Weights and 
PWM Scores
It is of interest to find out which type of scores is better to 
detect TF binding in vivo. Therefore, we conducted the following 
comparison study on CTCF and JUND. We  used ENCODE 
ChIP-seq data obtained from the K562 cell line, which differs 
from the GM12878 cell line used to train the SVM weights. 
We  first obtained 1,000 top ranked sequences under ChIP-seq 
peaks, which are 244 bps in length for CTCF and 280 bps in 
length for JUND. Then for each TF, we  randomly extracted 
1,000 sequences of the same length outside peak regions as 
controls. Within these sequences, full length motif PWM scores 
and 10-mer SVM weights were retrieved for all possible motif 
incidences. We  used two difference methods to summarize all 
the scores in each sequence: average and maximum. The 
performance of the two approaches was evaluated using area 
under the curve (AUC) of receiver operator characteristic (ROC) 
and precision and recall curve (PRC) and is summarized in 
Supplementary Table S3. From the results, we  observed that 
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PWM score performed better for CTCF when using the 
maximum scores, and SVM weight performed better in all 
other cases. The results suggest that SVM weight is a competitive 
method to score TF binding in vivo and performs better than 
PWM scores when the motif is shorter and weak.

Next, we address the question about the relationship between 
the PWM scores and the SVM weights. For each TF, we  first 
calculated the PWM scores for all 10-mers and selected 1,000 
10-mers with the highest PWM scores. Then we  calculated 
the SVM weights for each of the 1,000 10-mers. We  found 
that the correlation between PWM scores and SVM weights 
of these 10-mers ranges from −0.081 to 0.787. Figure  1 shows 
the scatter plots for four TF binding motifs: CTCF, USF1, 
SIX5, and BCL11A. The complete set of results for all 18 TFs 
is summarized in Supplementary Figure  1. For some TFs, 
such as USF1 and SIX5, moderately strong and positive correlation 
relationships are observed between the two measures, whereas 
such a trend is less obvious in other TFs, such as BCL11A 
and STAT1. Other TFs, such as CTCF, lie in between. This 
suggests the PWM-based method and SVM-based method does 

not always agree when measuring in vivo TF binding strength. 
The complete summary of the top  100 motif incidences, in 
terms of deltaSVM scores for all 18 TFs are summarized in 
Supplementary Table S4. To further illustrate this point, 
we selected the top 20 10-mers according to their SVM weights 
and displayed both their SVM weights and PWM scores in 
Supplementary Figure  2. In this part, binding strength is 
calculated using the relative entropy for the purpose of better 
visualization. As can be  seen, some of the 10-mers with high 
SVM weights do not show a very significant PWM score, 
especially for JUND, MAX, POU5F1, and USF1. The observed 
discrepancy often shows that the core motif is often well-
understood, but the motif length and the exact boundary of 
the motif are often debatable. On the other hand, focusing 
on 10-mer frequencies and weights can overcome this issue.

Exploring Potential Association Between 
TFs and Complex Diseases
We next conducted a comprehensive survey of complex disease-
associated SNVs in terms of their impact on TF binding. 

A B

C D

FIGURE 1 | Correlation between top-ranked 10-mer’s PWM score and their weight. The correlations between 10-mer PWM scores and SVM weights were 0.620, 
0.787, 0.773, and 0.021 for CTCF (A), USF1 (B), SIX5 (C), and BCL11A (D) in GM12878, respectively.
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We  hypothesize that if a TF is playing an important role in 
the pathogenesis of a disease, then SNVs that affects the binding 
of the TF will be enriched among those disease-associated SNVs. 
We used both PWM-based method and gkm-SVM-based method 
and compared their findings. We  studied 11 diseases including 
Alzheimer’s disease (AD), asthma, breast cancer, cardiovascular 
diseases, child development disorders pervasive (CDDP), colorectal 
cancer, Crohn’s disease, lung cancer, obesity, psoriasis, and type 
2 diabetes. For each disease, we  first identified all disease-
associated SNVs from the PheGenI web portal (Ramos et  al., 
2014) using values of p of 10−6 as the threshold. Since PheGenI 
only collect index SNVs, which means the actual functional 
SNV may be a nearby SNV that is in high linkage disequilibrium 
(LD) with it. Hence, we  included all SNVs located within 5 kb 
of the GWAS index SNV, hoping to capture the functional SNV(s).

Next, for each TF, we  went through every one of the SNVs 
at the disease-associated loci to see whether it overlaps with 
any putative TF binding site according to its motif ’s PWM. 
Then, we  assessed that among these SNVs, how many of them 
cause significant changes, i.e., with significant deltaSVM scores 
exceeding the empirical thresholds. SNVs that overlap with 
putative TF binding sites identified by PWM but have insignificant 
deltaSVM scores (not exceeding the significance thresholds) 
were named “discordant SNVs.” Here, significance is defined 
as exceeding the threshold corresponding to the empirical 
value of p of 0.05 (described in section Measuring Impact of 

SNV on TF Binding Strength of section Materials and 
Methods). The percentage of discordant SNVs in all 11 
diseases were evaluated for each motif and presented in 
Supplementary Table S5, and its corresponding heatmap is 
shown in Figure  2. We  observe that there is much variation 
in terms of the number of motif incidence among the 18 TFs. 
For some TFs, such as POU5F1, most of the SNVs overlapped 
with significant motif incidences identified using the traditional 
PWM-based methods, do not make much difference in SVM 
weights, which suggest that these SNVs may have limited effect 
on POU5F1 binding in vivo, and the opposite is also possible, 
that a SNV not identified by PWM-based methods may 
significantly affect POU5F1 binding in vivo. Despite variations 
among the TFs, we  observe that the average percentage of 
discordant SNVs across 18 TFs are close to 80% for all 11 
diseases we  have tested. This illustrated the importance of 
using information beyond PWM to better study the biological 
impact of SNVs on complex disease etiology.

DISCUSSION

Understanding the functional impact of non-coding variants 
is a grand challenge in contemporary molecular genetics. The 
ever-increasing of genomics and epigenomics data provided 
an unprecedented opportunity to address this issue. 

FIGURE 2 | Heat maps showing percentage of discordant SNVs across 18 TFs and 11 complex diseases. That is, among all SNVs that overlap with putative TF 
binding sites identified by PWM at GWAS-identified disease loci, what proportion of them has insignificant deltaSVM scores. The value shown inside each cell is the 
percentage of discordant SNVs found for the TF and disease combination.
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Many  attempts have been made to understand the impact of 
non-coding variants (Stormo et  al., 1982; Kircher et  al., 2014; 
Ritchie et  al., 2014; Lee et  al., 2015; Lu et  al., 2015; Quang 
et  al., 2015; Shihab et  al., 2015; Zhou and Troyanskaya, 2015; 
Chen et  al., 2016, 2019; Ionita-Laza et  al., 2016; Li et  al., 
2016; Huang et  al., 2017; Gao et  al., 2018; Zhou and Zhao, 
2018). In this study, we  explored how to best quantify the 
impact of SNVs on in vivo TF binding strength, which may 
help us to better understand potential functional impact of 
disease-associated non-coding variants.

Existing methods to evaluate the impact of SNVs on TF 
binding, such as regulomeDB (Boyle et  al., 2012), work by 
determining whether a SNV fall inside a putative TF binding 
sites inferred by PWM scan. Despite the fact that the PWM 
is a simple yet  effective way to represent the canonical TF 
binding motif patterns, however, with few exceptions (Hu et al., 
2010), most of the PWMs assume that all the positions are 
independent, which reflect our limited understanding of TF 
binding. Inspired by the gkm-SVM method (Ghandi et  al., 
2014; Lee et  al., 2015), in this work, we  suggested to consider 
an alternative metric based on SVM weights to measure in 
vivo TF binding affinity and to assess the functional impact 
of SNVs. The training data utilized is derived from ENCODE 
TF ChIP-seq data that measure in vivo TF binding. Using 18 
different TFs as examples, we  found that there is substantial 
variation in terms of a SNV’s impact on in vivo binding affinity. 
For most TFs, there is a positive, yet moderate correlation 
between the new SVM weight and the classical probability 
measure based on the PWM. However, for individual binding 
site, we  found many with high PWM scores but low SVM 
weights and vice versa.

Additionally, we  found that the vast majority of the SNVs 
located inside putative motifs identified by PWM scan have little 
effect on the TF’s in vivo binding affinity according to our analysis 
based on SVM weights. To be  specific, only about 20% of SNVs 
located inside putative TF binding sites will likely have significant 
effect on the TF-DNA binding in vivo. This suggests that using 
the traditional PWM approach to annotate SNVs in terms of 
their impact on TF binding in vivo may be  unreliable. Our 
results suggest that it is inadequate to use PWM-based probability 
alone to annotate SNVs for their impact on TF binding in vivo 
and suggest that more detailed elucidation of the functional 
impact of SNVs to be  conducted.

We do not consider the SVM weight as the gold standard 
for measuring TF binding strength. However, we  do think the 
deltaSVM method provide an attractive alternative to PWM-based 
methods that are being predominantly used in TF binding 
inference and also functional annotation of non-coding variants. 
This is because PWM model assumes different positions are 
independent, which is over-simplified. Given that PWM-based 
method dominates the practice of predicting TF binding sites, 
we  want to caution researchers that current annotation for 
SNP on TF binding based on PWM may not be  reliable. 
We  recommend adding SVM-based method to PWM-based 
method to measure TF binding strength. We think the prediction 
could be  much more reliable if both methods return 
significant results.

There are many epigenomics factors that affect TF binding 
in vivo including but not limited to DNA methylation and 
chromatin accessibility. We  focus on studying the impact of 
SNVs on TF binding using only sequence information. But 
there are many other tools that are available to annotate 
the genome using such epigenomics information (Stormo 
et  al., 1982; Kircher et  al., 2014; Ritchie et  al., 2014; Lee 
et  al., 2015; Lu et  al., 2015; Quang et  al., 2015; Shihab 
et  al., 2015; Zhou and Troyanskaya, 2015; Chen et  al., 2016, 
2019; Ionita-Laza et  al., 2016; Li et  al., 2016; Huang et  al., 
2017; Gao et  al., 2018; Zhou and Zhao, 2018). Adding such 
information can help to provide more accurate information 
to study the impact of SNV on TF binding in vivo in specific 
tissues or cell types.

The predictive power of our method has limitations. The 
SVM weights are trained using ChIP-seq data, which are cell-
type specific, and the quality of the data varies. Nevertheless, 
we felt that it is important that we bring in fresh new information 
from the latest genomics data to enrich our understanding of 
TF binding. Such information may shed light on the pathogenesis 
of GWAS findings in terms of disease mechanism 
and pathogenesis.

Another limitation is that currently we  do not have 
experimental data other than ChIP-seq to compare the TF 
binding prediction results between these two methods. For 
future work, we  will consider utilizing different types of 
epigenomics data, such as chromatin accessibility data (Pique-
Regi et  al., 2011) or DNA methylation data (Xu et  al., 2015), 
to evaluate the prediction accuracy.
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