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Abstract: Ion channels are linked to important cellular processes. For more than half a century,
we have been learning various structural and functional aspects of ion channels using biological,
physiological, biochemical, and biophysical principles and techniques. In recent days, bioinformati-
cians and biophysicists having the necessary expertise and interests in computer science techniques
including versatile algorithms have started covering a multitude of physiological aspects including
especially evolution, mutations, and genomics of functional channels and channel subunits. In
these focused research areas, the use of artificial intelligence (AI), machine learning (ML), and deep
learning (DL) algorithms and associated models have been found very popular. With the help of
available articles and information, this review provide an introduction to this novel research trend.
Ion channel understanding is usually made considering the structural and functional perspectives,
gating mechanisms, transport properties, channel protein mutations, etc. Focused research on ion
channels and related findings over many decades accumulated huge data which may be utilized
in a specialized scientific manner to fast conclude pinpointed aspects of channels. AI, ML, and DL
techniques and models may appear as helping tools. This review aims at explaining the ways we
may use the bioinformatics techniques and thus draw a few lines across the avenue to let the ion
channel features appear clearer.

Keywords: ion channel; bioinformatics; artificial intelligence; deep learning; machine learning;
channel classification; mutation

1. Introduction

The use of artificial intelligence (AI) in bioinformatics and computational molecular
biology research has been growing fast over the last two decades [1,2]. Bioinformatics
methods attempt to model known biological structures and predict unknown ones. Versa-
tile bioinformatics techniques are capable of storing the information processed in various
biological and biophysical studies in the created databank, and calling and utilizing the
information from the databank in pinpointing crucial molecular processes of an individual
system or collective ones. The techniques thus help establish scientific links between
various mechanisms and processes and produce concluding evidence that is otherwise
often unattainable using conventional theoretical and experimental techniques. Besides,
computational techniques are popularly found to model the biomolecular complexes in
silico studies to mainly address their statics, dynamics, and energetics in an artificially
constructed, yet mimicking the biological systems’ environment.

Although about just 2% of the protein structures that are experimentally identified
are among the transmembrane proteins (many of which construct ion channels), genome
studies suggest that these special proteins together make up about 30% of all of the coded
proteins. While mapping the membrane proteome Almén and colleagues found 27% of the
total human proteome to be α-helical transmembrane proteins [3]. Bioinformatics method
enables modeling of the unknown structure of the proteins, predicts their functions, their
transmembrane location, and their ligand binding potency. Current in silico modeling
tools use various computational methods, which are capable of providing results that may
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mimic nearly the biologically relevant functionality. General understanding of genetics, the
gene-based mutations, emergence of disease, etc., as well as information on even evolution
that concern ion channel structures and functions including both normal and abnormal
biological systems’ status quos may be addressed using bioinformatics techniques. A huge
amount of data from all this research contain information about certain biological systems,
processes or mechanisms. These data and information are stored at various locations and
sites utilizing random methods. Pulling them with the use of valid scientific ways and
processing towards constructing any meaningful conclusions are challenging tasks. AI
techniques appear as helpful tools to deal (extract, process and analyze) with such kind
of big biological research data [4]. Knowledge on computing models using AI, advanced
analytics of data and various optimization approaches that are used in bioinformatics,
bioengineering and biophysics research on designing drugs and related analysis, medical
imaging data analysis, biologically inspired artificial learning and adaption for general
analytics, etc. is very useful. This knowledge is often found applicable in understanding
many specific aspects of ion channels.

Association of AI, ML, and DL Techniques with Ion Channel Bioinformatics

DL is a subset of ML and ML is a subset of AI: AI(ML(DL))). For ML, machines are
supposed to learn and adapt through experience; for AI, machines can smartly execute
specified tasks. DL is basically concerned with specific algorithms that are inspired by
the human brain structure and function, known commonly as artificial neural networks
(ANNs). The opportunity of using AI techniques in system biology is enormous [5]. ML
techniques appear as powerful tools with capability to extract information from any data
sets which are massive in size and noisy in nature. A review has described approaches that
are based on simultaneous use of the systems biology and the ML in order to access the gene
and the protein druggability [6]. It also elaborated on the sources of data, algorithms, and
performance of different methods. The mathematical and computational methodologies
underlying DL models appear quite challenging for interdisciplinary scientists, who may
consult a recent review for being familiar with the techniques [7]. This article has presented
a review on introduction to DL approaches that include Convolutional Neural Networks
(CNNs), Deep Feedforward Neural Networks (D-FFNN), Deep Belief Networks (DBNs),
Autoencoders (AEs), Long Short-Term Memory (LSTM) networks; many (if not all) of
which have already found applications in bioinformatics field dealing with biological
structures and functions.

AI has long been found useful in bioinformatics, and computational molecular biology
(e.g., especially in the field of DNA sequencing) [1]. The main use of AI in these fields is in
understanding of the organisms’ evolution, and slow growth of complexity of working
with data having errors. AI softwares and modeling help to search, make classification
and mine versatile biological databases; and especially simulate biological, physiological,
biochemical, and biophysical experiments with and without errors. AI techniques are now
found generally useful to handle (process, understand and create conclusion on specific
aspects) partially the human genome data with billions of basepairs (bps), the necessity of
what was rigorously addressed in ref. [8].

In an ML paper on bioinformatics, two decades ago, Tan and Gilbert analyzed learning
systems (7 individual ones) and methods (9 combined ones) using 4 data sets of biological
systems, and provided a few crucial issues (which are still considered generally applicable)
to follow while answering a few questions on choosing correct algorithm to best suit
for a data set, possibility of having any combined method(s) which might be better than
especially any singular approach, comparing the effectiveness of any particular algorithm
over others, etc. [9]. Even about three decades ago, people used ML approaches for gene
recognition [10].

ML techniques; the ANN and the support vector machine (SVM) have been recently
found to help predict the secretory proteins that may not necessarily require the presence or
absence of the N-terminal signaling peptides, which are commonly known as the classical
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and the non-classical secreted proteins [11]. Here the methods have been trained and
tested on a dataset of 3321 secretory and 3654 non-secretory proteins of mammals have
been used to train the methods here with the use of a technique consisting of five-fold
cross-validations. ANN-based modules were developed for mainly predicting the secretory
proteins where 33 physicochemical properties, with compositions of the amino acids
and the dipeptide, were considered. Considerable accuracies (73.1%, 76.1%, and 77.1%,
respectively), were achieved. SVM-based modules used 33 physicochemical properties,
with the compositions of amino acid, and the dipeptide and found similar accuracies
(77.4%, 79.4%, and 79.9%, respectively). Basic Local Alignment Search Tool, commonly
known as BLAST and the Position-Specific Iterative BLAST (PSI-BLAST) modules got
designed for the purpose of predicting the secretory proteins considering similarity search
which achieved 23.4% and 26.9% accuracy, respectively. A hybrid-approach that integrated
amino acid and dipeptide composition-based modules SVM, and PSI-BLAST, which found
increased accuracy 83.2% and sensitivity 60.4% having low 5% false positive predictions).
This reflects a substantial increase than achieved using individual modules.

As presented here, versatile applications of AI, MI, and DL in various protein, gene
structural, and functional aspects have been evident. Our goal in this article is to go beyond
addressing these general features and pinpoint the membrane proteins structures and
functions which are addressable using artificial modeling and algorithms. The use of AI,
ML and DL techniques is popularly used to understand various features of ion channels.
From understanding the amino acid properties and classifications to classifying specific
channel subunits representing ion channel families, artificial techniques are utilized [12].
We see that artificial techniques, such as the ML approach, can now capture crucial ion
channel complexities related to channel protein expression, correct insertion and folding
in membranes, and trafficking to proper locations inside the cell, thus help in further
membrane protein engineering and artificial designing [13,14]. AI techniques help us
track the early animal evolution by comparative genomics studies of ion channels that
specifically help us understand the early evolution of animal nervous systems [15]. ML has
recently been used to analyze ion channel genes, especially to extract the feature vectors of
various ion channels [16].

It is clear that artificial techniques, models, and algorithms are utilized to program
various ion channel features, including classification of channels, channel subunit proteins,
or even amino acids and genes, which addresses evolution, modern engineering, and
various other related aspects. AI, ML, and DL have a lot of involvement in this new area.
Experimental address and their theoretical analysis have produced so much data that we
now need these artificial techniques to grasp most about ion channels’ various features in a
simplistic manner, using models and algorithms that are made possible using the power of
AI, including its subfields ML and DL.

2. Bioinformatics Predictions of Ion Channel Structures and Functions

X-ray crystallography, NMR data, etc. on transmembrane proteins are generally used
to predict the optimal protein structures. These techniques require the use of extremely
expensive necessary ingredients and a tuned laboratory setup. Bioinformatics modeling
utilizing appropriate techniques that may promote in silico mechanics and energetics of the
protein structure considering the underlying mechanisms are often popularly considered
in biophysical studies of proteins. Membrane proteins are generally studied specifically to
address their ion channel-forming potency. Bioinformatics techniques play crucial roles
when important molecular actions are to be inspected to explain the experimental facts
obtained in vitro studies, such as their imaging in the interface of hydrophobic/hydrophilic
regions, electrophysiology record of currents across membranes hosting the proteins, etc.
Molecular dynamics (MD) simulations often appear as important computational techniques
to detect energetics underlying biomolecular interactions. We have been quite successful in
biophysical addressing, using MD simulations, of the channel energetics involving channel
subunits and membrane lipids for small channels, such as gramicidin A, alamethicin,
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and chemotherapy drug-induced channels in model membrane systems [17–22]. In these
publications altogether we could establish a single fundamental fact that the channel
stability inside the membrane is due to nothing but molecular mechanisms depending on
charge-based screened Coulomb interaction energetics among functional charge groups
in the ion channel complex involving channel subunit peptides or drugs and membrane
lipids. Our computational in silico assays (numerical computations and MD simulations)
simply supported the experimental findings in the distance and time-dependent channel
subunit-lipid interaction energetics theoretically. We could calculate the binding energies
and evaluate the binding energetics in the channel complex and thus know of the statistical
mechanical nature in the channel stability in a biological thermodynamic environment.
The readers are invited to read directly from these articles to gain further insights.

Besides various computational assays addressing the general structure and function
of channel proteins, bioinformatics templates that draw information from various databank
on the channel protein structures, genomics of the proteins, mutations in genes of the ion
channel proteins are found to produce crucial information about channel functions in both
healthy cells and mutated (disease) conditions.

The aspects addressing the ion channel protein genetics and mutations are presented
later in this article using a few example case studies. Here we wish to address the general
aspects of ion channel structures and functions using bioinformatics techniques [23] in-
cluding various computational assays and in silico modeling. Table 1 presents a set of ion
channels that are addressed using various in silico computational techniques [24].

Table 1. Ion Channel modeling and simulation studies. The references quoted in the table are readily found as referenced in
article [24]. Here the general area of ion channels are organized according to the system type and computational models
employed. “Reprinted (adapted) with permission from [24]”.

System

Method
(We Quote Here the References, Numbered in ref. [24]. We Avoided to Relist the Huge Amount of

References Here.)

Continuum Implicit
Solvent MD All-Atom MD Hybrid CG Others (QM)

gramcidins 8–15 16, 17 18–31 52, 53 54

Other membrane
porins 55–61 55, 62–64 55, 65–87 55

α-hemolysin 88–93 88, 90, 94, 95 90, 93, 96–99 90, 93, 100–102

K+ channels 103–109 110–117 29, 88, 111–113,
116–197 107, 198–202 203–206 207–211

nAChR 212–220

MscL/MscS 221–228 229, 225 230–257 225, 258 222, 258

Anion channels
(VDAC, CIC) 259 260–264 265–268

Aquaporins 269–274

NH4
+ transporter 275–278

Other channels 279–310 311–318 299, 312,
319–348

302, 330, 337,
349–356 357, 358

Synthetic nanopores 359–370 371–374 375–391 350, 382, 383, 392 393 394

A two-decade-old review provided analysis combining MD simulations and various
associated calculations with modeling to provide approaches that help understand the
structure/function relationships for channels in human cells [25]. Here the modeling
techniques were analyzed for potassium channels, the voltage-gated (Kv), and the inward
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rectifier (Kir) channels. The NMR structures of (the pore-lining) M2 helix were the basis on
which the transmembrane region of the pore could be modeled.

What matters to understand the ion channel function is based mostly on two things: (i)
ion channel pore region geometry, and (ii) energetics that controls the pore opening/closing
phenomena. Direct and indirect experimental techniques usually can address them phe-
nomenologically but underlying mechanisms largely rely on modeling of the channel using
bioinformatics techniques [24].

Taking the potassium channel as an example case, Heil and colleagues introduced
an interesting bioinformatics method, the so-called ‘Property Signature Method’ (PSM),
to address this issue of identification of the channel sequences [12]. This technique relies
on physicochemical amino acid properties, instead of amino acid building blocks. A
pore region signature (including the selectivity filter) was created, representing the most
common physicochemical properties of the known potassium channel, thus enabling the
genome-wide screening for the sequences having similar features, despite having low
degree of the amino acid similarity within any specific family of the protein.

While developing PSM the dataset used 461 potassium channel α-subunits that rep-
resent different family types, see Figure 1 [12]. A pairwise similarity of the sequences
<80% were considered (187 sequences). The set was considered to contain additional
957 non-α-subunits, so that false positive could be provided. The sequences included ion
channels that are closely related. All of the sequences used here have been extracted from
the Swiss-Prot [26].

Figure 1. Channel families-the composition of dataset. All of the sequences have been extracted from
the Swiss-Prot [26]. Potassium channels represent both the different families and the topologies of
the known channels. Non-potassium channels here have been used as the false positives. All of the
sequences having >80% sequence-similarity have been removed. The remaining channel numbers
are in brackets. The (2 + 2) channels’ double-pore consists of 2 α-subunits having 4 transmembrane
domains each. The α-subunits of the (6 + 2) channels with double-pore possess 8 transmembrane
domains. Ambiguity exists in 3 unclassified potassium-channels classification.

The pore region profile for a potassium channel was created with the use of the
dataset. The profile wasn’t used for describing the conserved positions of the amino acids
in the region. But it described all of the variations in various families of the potassium
channels. The profile then was translated into creating a descriptor, which describes various
sequence region properties. Each profile position located amino acids got analyzed, and
the properties with conserved absence or presence were used in order to describe the
mentioned position. Here the Hits were ranked following the properties that were found in
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the property descriptor and in the target sequence. The algorithm of screening was created
in the C++ language of programming.

The PSM is found to use the representation of the amino acid via consideration of a
binary signature that was derived using varieties of physicochemical properties. Altogether,
23 properties were used, combined into 5 groups as follows: the side chain type, the
functional properties, the secondary and the tertiary structure (preference), and size, see
Figure 2 [12]. Each amino acid is represented by a created binary string, where a bit has
been set to 1 for a corresponding property found to apply to the considered amino acid.
Five bits have been set, one for every group of the property. Zero is assigned for all of the
bits that are remaining. Thus, 20-bit strings (unique) have been found, 1 for every amino
acid, which was used in this algorithm. Two steps are considered in the method as follows:

(i) an aligned pore domain profile was created including all of the amino acids that were
present (in >3% of the investigated total 461 potassium channels),

(ii) the profile was translated into a representing string consisting of the sequences’
physicochemical properties.

Figure 2. Amino acid properties. The Bit string that represents the amino acids with 23 properties has
been presented. The relative occurance frequency got converted into corresponding binary values
with the aid of the majority vote. Regarding ‘size’ all of the amino acids got categorized considering
the molecular weights: tiny, small, medium, large, and very large for ≤71 Da, ≤103 Da, ≤115 Da,
≤137 Da, and >137 Da, respectively.

Large-scale potassium channel sequence analysis confirms the requirement of identify-
ing the potassium channel α-subunit proteins [27]. As the family of the potassium channel
is found to be highly diverse and also closely related to many other ion channels, the use
of the amino acids in order to classify the potassium channels in PSM has been found
imprecise. PSM is found superior over Markov models and the BLASTp, see refs. [27–29].
Moreover, the PRINTS Database provided potassium channel motifs are used [30]. These
approaches are found to utilize multiple methods to overcome a method’s limitations of
recognizing the potassium channel family’s subset sequences. These issues are indeed
resolved in PSM. Because it can detect properties representing all of the subsets of the
family of the potassium channels. Moreover, PSM is able to analyze amino acids’ physico-
chemically relevant properties and enables pretty sensitive extraction of the information
that is coded in the sequences of the amino acids. For details, readers may consult the
original article [12].

The Saccharomyces cerevisiae genome was well screened applying PSM [12]. Two hits
were found, the domains in the pore in the two-pore potassium channel, TOK1, which
is the only one known as the S.cerevisiae potassium channel. Despite having a strong
relationship including high homology among the potassium transporters, TRK1 and TRK2,
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to the potassium selective domains of the pore of TOK1, the mentioned two are classified
as nothing but the non-potassium channels.

Heil and colleaques also performed another test with Caenorhabditis elegans having
a complete genome sequence [31]. Its genome regarding the sequences of the potassium
channels is well understood; almost 40 double-pore domains have been annotated. PSM
helped recover all. Additionally, a new (potential) pore domain was identified.

For the signature of the potassium channel, a summary of the conserved properties (at
60% with 80% threshold of conservation) is presented, see Figure 3. Despite considerable
sequence set divergency, as many as 63 properties are found conserved with as high as 60%
level of significance, and 19 properties are found conserved with as high as 80% level of
significance. Unusual properties (not shown) coded in signature; almost 350 properties
with 60% level of significance and 330 properties with 80% level of significance. The
method specificity draws significant contributions from these mentioned properties.

Figure 3. Property conservation at the 60 and 80% level of significance, respectively. Despite having
low amount of amino acid conservations we find properties conserved in almost 80% sequences.
From pores of the potassium channels, as expected, the hydrophobic residues are found to dominate
in pore regions, a few polar residues decrease energetic barriers for K+ ions. Details in ref. [12].
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PSM is considered superior to other conventional methods while searching for the
sequences having a pretty low level of conservation. PSM has an important advantage.
For every amino acid position, the signature describes the frequent properties (selected
and uncommon ones) in the α-subunit portion of the potassium channel. The use of the
position-bound signature properties has additional advantages, interpretation of the results
appears pretty simple. Next to the missing and unusual number properties, this method is
found to return, for every sequence, the display of a vector whose sequence positions are
found to contain the untypical and missing residues, respectively, thus facilitating the fast
sequence analysis.

3. Ion channel Genomes Track the Early Animal Evolution

A comparative study of genomics provides novel windows into the (confusing) past
that may be applied for the understanding of the early nervous systems evolution of the
animal kingdom [15]. There is a controversy on nervous systems whether they got evolved
just once, or independently being distinctive in various animal lineages. Liebeskind and
colleagues explored the historical aspects of the gene families of the ion channels, central
to the function of the nervous system. They tracked the timeline when the families of
the genes expanded in the evolution of the animal and discovered the gene families to be
radiated on multiple occasions, occasionally, they underwent various periods of contraction.
Multiple gene family origins may be considered to signify considerably the large-scale
evolution convergence for the complexity of the nervous system.

The ancestral gene content reconstruction helped was used in tracking the gene
family’s expansion timing. Here the majority of the ion-channel protein families that may
drive nervous system functions are used. Animals having nervous systems are found
broadly to have identical complements of the types of ion channels. But it was also
found that these complements could have been evolved independently. Ion channel gene
family evolution was found to experience a large amount of loss events, among those two
were found to immediately be followed by a few rounds of duplications. Ctenophores,
cnidarians, and bilaterians have been found to undergo independent bouts of the gene
expansion in the involved channel families connected to the synaptic transmission and
the shaping of the action potential, suggesting the genomic signature of the expanding
complexity in the nervous system. Ancestral nodes, where the nervous systems probably
originated, were found to experience not-so-large expansions. This suggests for the origin
of nerves not to experience any immediate complexity bursts, instead, the complexity of
evolution perhaps experienced a rather slow fuse in the stem animals, which got followed
by gene gains and losses independently.

A custom bioinformatics pipeline [15] was used for collecting and annotating proteins
that are predicted in a group of 16 families of ion channels, see Table 2 where 41 sample
opisthokonts (this group includes animal, fungi, and related protest members), and an
apusozoan outgroup are presented. The channels’ families are found to be playing diver-
sified roles in the nervous systems. Some families (e.g., the families of the voltage-gated
ion channels) are found to solely be associated with the function of the nervous systems in
the animals, while others (e.g., P2X receptors) are found to play relatively diverse types of
roles. Only a handful of isoforms are expressed in the nervous systems. The dataset then
got used in order to infer the ancestral contents of the genome and understand the timing
of the happening of the gene duplications with the help of EvolMap [32].

These gene families were found ancient [33,34]. All except for two, acid-sensing
channel (ASC) and the Cys-loop receptor (LIC), are found in the most recent common
ancestor (MRCA) of the examined taxa [15]. ASC family was the only one found as the
metazoan-specific. The families were pulled together and they then plotted the net gains
and the percent losses (on the species tree), see Figure 4 [15]. The animal lineage was
dominated by the gains but losses led to the fungal lineage.

In phylogenetic gain and loss patterns for all of 16 families of ion channels (Table 2),
large expansions of LIC, voltage-gated potassium channel (Kv), and glutamate-gated
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channel (GIC) families at multiple places were reported, see details in ref. [15]. This
independent gene-(family) expansions lead to MRCAs of the bilaterians, the vertebrates,
and the cnidarians [34].

Table 2. Ion channel families [15].

Abbreviation Full Names Function

Ano Anoctamin, Ca2+ activated Cl− Smooth muscle, excitability

ASC Epithelial (ENaC), acid sensing channel (ASIC) Osmoregulation, synaptic transmission

CNG/HCN Cyc. nucleotide gated Sensory transduction, heart

Cav Voltage-gated Ca+ channel AP, muscle contraction, secretion

ClC Voltage-gated Cl− channel Muscle membrane potential, kidney

GIC Glutamate receptor (iGluR) Synaptic transmission

LIC Ligand-gated, Cys-loop receptor Synaptic transmission

Kv Voltage-gated K+ channel AP, membrane potential regulation

Nav Voltage-gated Na+ channel AP propagation

Leak Sodium leak (NALCN), yeast calcium
channel (Cch1) Regulation of excitability

P2X Purinurgic receptor Vascular tone, swelling

PCC Polycystine, Mucolipin Sensory transduction, kidney

RyR Ryanodine receptor, IP3 receptor Intracellular, muscle contraction

Slo Voltage and ligand-gated K+ AP, resting potential

TPC Two-pore channel Intracellular, NAADP signaling

TRP Transient receptor potential Sensory transduction

Figure 4. The families of the ion-channels in opisthokont evolution. Both trees contain similar
topologies. The lengths of the branch of the left tree are actually net gain, gains-losses. The lengths of
the branch of the right tree are the percent loss, losses-gains as a% of the parent copy number. Total
ion channel numbers in every taxon are presented on the left tree. Two animal branches having large
loss events have been labeled-the common deuterostome and ecdysozoan ancestors.
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Ecdysozoans and lophotrocozoans were found to have large expansions in LIC, GIC,
and Kv channels. A huge expansion in ASC family was also observed, see Figure 5A [15].
These expansions were observed to have happened in terminal lineages that led to every
species, see Figure 5. Figure 5A presents the family count of ion channels from species of
the major lineage. All taxa with nervous systems, with the notable exception of the tunicate
Ciona, were enriched for similar gene families. Two taxa (without the nervous systems),
Trichoplax and Amphimedon, were found to have smaller complements of ion channels.
MRCAs of the chordates, the cnidarians plus the bilaterians, and the animals each were
found to have ion-channel complements resembling the extant animals having no nervous
systems more than animals having nervous systems.

Figure 5. (A) The count of the channels of the extant and the ancestral species. (B) The species tree
shows the relationships between the extant taxa and key ancestral nodes’ locations. (C) The PCA of
the normalized gene contents of the ion channels for all tips and three ancestral nodes. The proximity
in the space of two PCs indicates identical contents of the gene. The ion-channel families loadings
have been presented as vectors. The loading vector size and direction indicate its correlation with
corresponding two components. The loading arrows are pointing to the regions where the gene
family is found in high relative abundance. The labeled species represent Amphimedon (Aq), and
Ciona (Ci).
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4. Bioinformatics Prediction of Ion Channel Genes and Channel Classification

Ion channels are indirectly or directly associated with various types of cellular dis-
orders leading to specific diseases. Ion channels are therefore therapeutic and diagnostic
targets of many drugs. About 700 drugs are known so far to act upon ion channels [16].
Knowledge of ion channel genes and their mutations certainly is key to understanding
diseases and planning for drug discovery. Bioinformatics techniques may be found quite
helpful in understanding the roles of ion channels in diseases through analysis of genetics-
based classifications [16], as well as genetic mutations [35,36] of ion channels. AI techniques
have been found to play important roles in both predicting ion channel genes and un-
derstanding genetic mutations and connecting them with classified diseases. We wish to
elaborate these features quite in detail here.

AI Techniques Help Predicting Ion Channel Genes

ML, a subset of AI, was used recently to extract the feature vectors of various ion
channels [16]. The SVMProt and the k-skip-n-gram methods were used, which helped
obtain 188- and 400-dimensional features, respectively. SVMProt, a web-based support
vector machine software, was developed for mainly functional classification of any protein
considering its primary sequence [37]. In the case where the structural protein class is
inconsiderably correlated with its constituent amino acids, the support vector machine
appeared as a computational tool that could predict the structural protein classes [38]. In
the k-skip-n-gram method every protein sequence needs to be transferred into a vector.
Then the training vectors are used for training the random forest parameters. The testing
vectors evaluate the method’s performance.

Various bioinformatics softwares are available to predict the ion channel identifications
in membranes. A series of high-throughput computational tools are now available which
help predict not only the ion channels but also their types directly using the protein
sequences, helping in ion channel targeted drug discovery research. During last decade,
many ML algorithm-based computational methods have been developed [39,40], which
may be used in drug repositioning. Saha and colleagues used the amino acid and the
dipeptide compositions as feature vectors, then classified them with the use of a support
vector machine (SVM) so that they could predict the voltage-gated ion channels, and their
available subtypes [41]. The identification method for a voltage-gated potassium channel,
based on the local sequence information, was also proposed later by another group [42].
The latter is found better than that developed for the identification of the voltage-gated
potassium channels, based on the global sequence information [43]. A support vector
machine (SVM)-based model was recently constructed which helps predict quickly [44].
A SVM-based model to search the predicted ion channels and subfamilies that uses the
sequence similarity search features of the basic local alignment search tools was developed
recently [45].

In a recent article, the application of ML Methods in ion channels has been briefed [46].
The review focusses on prediction methods developments for ion channels considering a
few issues as follows:

i. ion channel proteins datasets,
ii. predicting ion channels using ML methods,
iii. obtaining the optimal ion channel prediction features using feature selection technique,
iv. the prospect of bioinformatics methods prediction of ion channels using appropriate

and available tools.

Han and colleagues used SVM and random forest classifiers in order to identify first
the ion channels, and further to classify them [16]. The feature selection was made using
the maximum-relevance-maximum-distance (MRMD) method that helped improve the
accuracy of the prediction. Three steps were followed. Firstly, a protein sequence got
detected to check if it might belong to any ion channel. If the positive, then the sequence
of the protein got classified as to belong to voltage-gated or ligand-gated ion channels.
Finally, if the sequence belonged to the voltage-gated ion channel family, the classification
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was made regarding them to belong to the potassium (K+), the sodium (Na+), the calcium
(Ca2+), or the anion voltage-gated ion channel class.

The flowchart shows the stepwise adopted basic processes that Han and colleagues
considered for the gene detection and the channel classification, see Figure 6 [16]. We avoid
explaining how they introduce the set of data, the method of the feature extraction, the
method of the dimension reduction, and the classifier that were used in the study, but the
readers may find them in the original article.

Figure 6. Flowchart representing the proposed processes.

The original data used for the prediction model can be found in ref. [43]. The ion chan-
nel sequences have been collected from the depository Universal Protein Resource (UniProt)
and the depository Ligand-Gated Ion channel databases [46,47]. The total number of the
voltage-gated ion channels was 148; 81, 29, 12, 26 of them are potassium channels, calcium
channels, sodium channels, the anion channels, respectively. Finally, 150 ligand-gated ion
channels were extracted. From the UniProt 300, protein sequences were selected randomly
as the non-ion channels, having the consistency of these non-ion channel sequences < 40%.
Two ML methods (feature extraction methods), SVMProt 188-D relying on the protein com-
position and the physicochemical properties, and k-skip-n-gram 400-D were used. These
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two (feature representation) methods were then combined in order to form a new feature
vector that contains multiple (more than one) features. The new feature vector set was then
classified using the SVM and the random forest classifiers. MRMD based dimensionality
reduction method (see the site http://lab.malab.cn/soft/MRMD/index_en.html, updated
by Prof. Quan Zou on 2 November 2016) was then employed for reducing the generated
feature vectors’ dimensionality [48]. The MRMD works in selecting the feature having the
highest correlation and the least redundancy through calculation of the maximum distance
and relevance. Here, they used a random forest classifier for building the model. As this
classifier uses multiple trees for training and predicting samples, this one is popularly used
in bioinformatics research where applicable, e.g., see ref. [49]. It is found a good performing
tool, using especially the random forest algorithm [50], in many practically relevant fields,
e.g., the regression and classification of the gene sequences, the action recognition, the face
recognition, the anomaly detection in data mining, and the metric learning.

The effects of the prediction of the random forest-based and SVM-based methods on
both non-ion and ion channels in various dimensions were compared in this study, see the
results in Table 3 [16]. The results for 10-fold cross-validations of 188- and 400-dimensional
features and their mixed features have been listed in Table 3. The MRMD method
was then applied to reduce 27 dimensions from 588-dimensional features for obtaining
587-dimensional features, with the latter having average classification accuracy lower than
that found for the 400-dimensional features. The SVM classifier was reported to be the
best to classify the 400-dimensional features. The average overall accuracy (OA) rate,
85.1%. 86.6% of the ion channels, and 83.7% of the non-ion channels, can be identified
approximately by the SVM classifier. A total 85.1% accuracy was obtained. Thus feature
vectors from 188- and 400- dimensional features yield pretty acceptable prediction results.

Table 3. Prediction results of the ion channels and the non-ion channels.

Method Ion Channel (%) Non-Ion Channel (%) OA (%)

Random forest (188D) 90.3 77.2 83.7793
SVM (188D) 87.0 78.5 82.7759

Random forest (400D) 87.7 77.5 82.6087
SVM (400D) 86.6 83.7 85.1171

Random forest (588D) 77.5 90 83.7793
SVM (588D) 83.2 80 81.6054

Random forest (587D) 77.2 89.7 83.4448
SVM (587D) 77.2 83.3 80.2676

The accuracy was evaluated on 188-, 400-dimensional features, and their mixed
features, and 88-dimensional features that were obtained following dimensional reduction
with the use of MRMD which discriminates between classification results of the voltage-
gated and the ligand-gated channels. All these results are summarized in Table 4 for these
two classes and in Table 5 for ion specificity in voltage-gated ion channels [16]. 93.9% and
86.0% of the voltage-gated and ligand-gated ion channels, respectively, could correctly be
identified with the use of the random forest method. This classifier is a better performer
than the SVM classifier especially in a few cases, and also can provide an improved
prediction performance model.

http://lab.malab.cn/soft/MRMD/index_en.html
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Table 4. Compare the results of the voltage-gated ion channels with that of the ligand-gated ionchannels.

Method Voltage-Gated
Ion Channel (%)

Ligand-Gated
Ion Channel (%) OA (%)

Random forest (188D) 93.9 86.0 89.9329
SVM (188D) 91.9 86.7 89.2617

Random forest (400D) 88.5 82.7 85.5705
SVM (400D) 82.4 83.3 82.8859

Random forest (588D) 89.2 86.0 87.5839
SVM (588D) 91.9 86.7 89.2617

Random forest (188D) 92.6 86.7 89.5973
SVM (188D) 91.9 86.7 89.2617

Table 5. Prediction results for the voltage-gated ion channels-four types.

Method K (%) Ca (%) Na (%) Anion (%) OA (%) AA (%)

Random forest (188D) 97.5 37.9 50 46.2 72.973 57.9
SVM (188D) 96.3 48.3 58.3 69.2 79.0541 68.0

Random forest (400D) 97.5 6.9 50 23.1 62.8378 44.4
SVM (400D) 85.2 62.1 50 73.1 75.6757 67.6

Random forest (588D) 97.5 34.5 50 57.7 74.3243 59.9
SVM (588D) 96.3 48.3 58.3 69.2 79.0541 60.2

Random forest (424D) 98.8 34.5 58.3 46.2 73.6486 59.5
SVM (424D) 96.3 48.3 58.3 69.2 79.0541 68.0

5. Detection of Ion Channel Genetic Mutations Using AI Techniques

Mutations in genes are generally known to be responsible for diseases. Genetic mu-
tations involving ion channel subunits or proteins may also often be found responsible
for various diseases. AI techniques may be applied to establish such evidence in bioin-
formatics explorations. We shall use a few case studies to address this phenomenon for
certain diseases.

5.1. Ion Channel Genetic Variants in Epilepsy

The mutations of ion channels are known to raise causes for rare Mendelian disorders
affecting the heart, the brain, and various other tissues. Mendelian mutations have been
found linked with various single-channel defects that cause the familial episodic and
the degenerative excitability disorders of the cardiovascular [51], the nervous [52], the
neuroendocrine [53] and the immune surveillance systems [54].

Klassen and colleagues did parallel exome sequencing on 237 genes of channels in the
human sample. They compared the variant profiles of the unaffected individuals to the
individuals having the most common disorders related to neuronal excitability, sporadic
idiopathic epilepsy [35]. A rare missense variant in the known Mendelian (disease) genes
was reported, prevalent in both groups with identical complexity. Thus it proves that even
the deleterious channel mutations may confer uncertain risks to any individual, depending
on other variants they are combined with.

Comparisons were made on the polymorphism (SNP) profiles of the exomic single
nucleotide, including the type, the relative burden, and the variants pattern within a large
number of genes of the ion channel candidate, set between healthy/unaffected individuals
and ones with severe disease of the neurological excitability in order to evaluate the
personal genetic liability. Table 6 summarizes SNPs [35].

The study claims SNPs for every targeted gene in both groups; of the validated SNPs,
1355 were unique to either population, and their majority, 1740, was shared. The data have
expanded the list of the known channel SNPs in dbSNP. This addition also confirms the
rare allelic variation across a lot of genes of the ion channels. The huge variation is found
to agree to those that emerged from the whole-genome sequencing of the individuals [55],
from >2100 cases screened for the variants in (the clinically important) cardiac channel gene



Membranes 2021, 11, 672 15 of 35

subset [56]. Any individual channotype is unique. In the cohort, no individuals were free of
SNPs, and no two channotypes from 291 individuals were found identical, see Figure 7 [35].
An overlapping SNP type variety was found in both groups, which include sSNPs, nsSNPs,
and SNPs in the promoter, coding, UTR, and intronic regions. Both populations contain
nonsense SNPs.

Table 6. SNPs in 237 ion channel genes in subjects having idiopathic generalized epilepsy and neurologically normal
individuals.

Type/Location of SNP
Number of
Validated

SNPs 1

Percent of
Validated

Dataset (%)

Number of
Novel SNPs
Discovered

Number of Validated SNPs per Megabases Sequenced 6

Cases Only
(n = 152)

Controls Only
(n = 139)

SNPs in Both Cases
and Controls

(n = 291)

Promoter 2 80 2.6 18 0.4 0.1 0.4
5′ UTR 79 2.6 7 0.2 0.1 0.5
3′ UTR 461 14.9 62 1.4 0.6 3.0

Synonymous (sSNP) 936 30.2 351 5.1 2.2 4.2
Nonsynonymous (nsSNP) 668 21.6 415 4.9 2.2 1.9

Nonsense/Stop Codon 9 <1 9 0.1 0.03 0
Splice Site SNP 3 12 <1 9 0.1 0.03 0.02

Splice Region SNP 4 90 2.9 13 0.3 0.1 0.6
Intron SNP 737 23.8 101 2.3 1.0 4.7
Undefined 5 23 <1 4 0.1 0 0.2

TOTALS 3095 100.0 989 14.6 6.3 15.6
1 validated SNPs combining 1. visual validation, 2. previous discovery (dbSNP ID), 3. detected on a custom MIP chip, 4. Biotage and/or
454 sequencing. 2 SNPs in promoter regions. 3 splice site (+2 to −2 bp in exon boundary at splice junction). 4 splice region (−2 to −15 bp in
exon boundary). 5 undefined SNPs. 6 number of individual SNPs per megabase sequenced.

300 missense channel variants were detected in 139 (unaffected) individuals. 23 are
in human epilepsy (hEP) genes that signal that the allelic penetrance in channelopathy is
underappreciated, see Figure 8 [35]. R393H nsSNP in SCN1A gene’s ion-selective pore
perhaps causes severe myoclonic epilepsy in infancy [57], detected once, and in only a
control population. The in vitro studies however failed to record sodium currents [58]
indicating that the protein structural deleterious alterations in the known hEP gene are not
sufficient so that the risk of epilepsy can be detected.

The study also found the value of the computational models in assisting in the personal
risk predictions [35]. Idiopathic epilepsy (IE), with no cause known yet, had been found as
an ideal condition in order to study sporadic genetic channel variation’s impact on cortical
function, as seizure disorders affect 1–2% population. Analyses of rare Mendelian forms
revealed that the ion channels are the major phenotype determinants, as 17/20 (confirmed)
monogenic syndromes are found to arise in individuals that are heterozygous for any
SNP in a gene in the channel subunit [59]. Thus, the study observed considerable genetic
complexities.

Understanding the genetic mutations in ion channels using bioinformatics techniques
is expected to help largely in drug discovery. In epilepsy, almost a third of patients are
found refractory to the current anti-epileptic treatments of drugs. With few exceptions, they
target the ion channels. The sequence variants, which alter access to the binding sites of the
drugs, are obviously the candidates with mechanisms thereof for pharmacoresistant. The
variant profiles perhaps personalize the treatments through identification of the ineffective
drugs for epilepsy and various other excitability bourn disorders that concern modulations
of channels. Thus these profiles are found clinically useful.
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Figure 7. All variants are to render unique channotype. (A) The low resolution (in gray color back-
ground) 3D representation illustrates the extreme channotypes that are present in the cohort study
(2 cases and 2 controls, each having >450 SNPs). Columns are to list the genes of the channel subunits
in an alphabetical order (ANK—SCN), and rows are to list the validated individual identifiers of the
SNP organized in alphabet order by the type (3′UTR—promoter). The enlargement at the left in the
teal is presented here for the clarity and the scale. The dosage of the gene of minor (variant) allele for
a SNP is denoted here by the bar (tall red = Homozygous Minor Allele; short blue = Heterozygous
Minor Allele). Sparsely populated regions present in all four channotypes reflect low frequency novel
SNPs. (B) The histogram for all the individuals by the cohort with total SNP number in individual
plotted here against the total SNP number in heterozygous or homozygous channotype. The affected
and the control cohorts are found to show identical dosages of the allelic with the increasing count of
the SNP. (C) The histogram of all of the individuals within every cohort show the total SNP number
per individual plotted against the nsSNP number contained in the channotype. The nsSNP number in
a channotype increases with the total SNP count increase in both of the populations. The individual
channotypes profiled in A. (A1,A2,C1,C2) are indicated in histograms.
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Figure 8. The known genes population of the monogenic human epilepsy (hEP) with the missense
and the nonsense variants found in cohort. The products of the protein of 12 ion channel genes
known to be causing the monogenic epilepsy have been shown here schematically. The validated
missense, and the nonsense SNPs that are discovered through profiling have been represented here by
circles that mark the nearest amino acid location, determined by the comparative multiple alignment.
The presence of a SNP denoted by the fill pattern (the filled circle = in affected only; open circle = in
controls only; half-filled circle = SNP is present in both of the groups). The nsSNPs in dbSNP have
been colored in black, novel nsSNPs from the study are colored in red, and the nonsense SNPs have
been colored in blue.

5.2. Ion Channel Genetic Variants in Alzheimer’s Disease

Alzheimer’s disease (AD) is known as a heterogeneous genetic disorder that is charac-
terized by early hippocampal atrophy and the cerebral deposition of the Aβ peptide. The
Tissue Info (for screening genes found to get expressed preferentially in the hippocampus,
located in AD linkage regions) was used for discovering a novel gene on 10q24.33, called
CALHM1 [60]. CALHM1 encodes a multipass transmembrane glycoprotein that controls
cytosolic Ca2+ concentrations and Aβ levels. CALHM1 homomultimerizes, shares con-
siderable sequence similarities with the NMDA receptor’s selectivity filter and generates
a considerable Ca2+ conductance across the plasma membrane. It was determined that
the CALHM1 P86L polymorphism (rs2986017) is significantly associated with AD in inde-
pendent case-control studies of 3404 participants (allele-specific OR = 1.44, p = 2 × 10−10).
The P86L polymorphism was found to increase Aβ levels by interfering with CALHM1-
mediated Ca2+ permeability. Thus a conclusion was made that CALHM1 perhaps encodes
an essential cerebral Ca2+ channel component that may control the Aβ levels and the AD
susceptibility.

Dreses-Werringloer and colleagues showed that a CALHM1 structural region shares
the sequence similarities with NMDAR’s selectivity filter and that the N72 residue is a key
determinant in the control of cytosolic Ca2+ levels by CALHM1 [60]. Electrophysiological
study on CALHM1-expressed in Xenopus oocytes and CHO cells was found to reveal
CALHM1 to induce a novel Ca2+ selective cation current across the plasma membrane.
This suggests that CALHM1 may cause the construction of a novel pore/ion channel, for
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details see [60]. In a subsequent study, however, the rare CALHM1 genetic variants got
reported which may lead to the Ca2+ dysregulation and predicted to perhaps contribute
to the risk of EOAD through some mechanism that is independent from the classical
Aß cascade [61]. All CALHM1 coding regions in three independent series comprising
284 EOAD patients and 326 controls were sequenced. 2 mutations in missense, p.G330D
and p.R154H, and a p.A213T in an individual control have been identified. Calcium
imaging analyses revealed that while the mutation found in a control (p.A213T) behaved
as wild-type CALHM1 (CALHM1-WT), a complete abolishment of the Ca2+ influx was
associated with the mutations found in EOAD patients (p.G330D and p.R154H). The
CALHM1 P86L polymorphism was found in another study associated with elevated
cerebrospinal fluid (CSF) Aβ in normal individuals at risk for AD, which indeed support
that CALHM1 controls Aβ metabolism in vitro in cell lines [60] and in vivo in human
CSF [62]. Here despite having crucial molecular level understanding in mentioned various
findings, we indeed wish to elaborate on understanding the genetic mutations in ion
channels concerning AD utilizing Bioinformatics techniques [60].

In ref. [60], the human genome with TissueInfo (a pipeline of bioinformatics that helps
calculate the profile of tissue expression) was studied to annotate the human transcripts
having the expression levels of the tissue derived from the database-expressed sequence
tag database (dbEST) [63]. TissueInfo screen was found to identify 30 transcripts (from
33,249 human transcripts), corresponding to the investigated 12 genes, having hippocam-
pus expression, see Table 7 [60]. These transcripts were found to match either of the two
hippocampus sequenced ESTs. One unknown gene function, which was previously an-
notated as FAM26C, was found to match two ESTs of the hippocampus and found to be
mapped to AD locus on the 10q24.33. This gene CALHM1 (calcium homeostasis modula-
tor 1) is known to encode the open reading frame (ORF) of the amino acids (346 altogether)
and is mainly predicted to have a structure containing 4 hydrophobic domains (HDs;
TMHMM prediction), and 2 N-glycosylation motifs (NetNGlyc 1.0 prediction) (Figure 9A).
the search of the sequence database identified 5 (human) homologs of CALHM1, identified
collectively as the family of FAM26 gene. 2 human homologs CALHM1 with the broader
profiles of the tissue expression, are clustered to next of CALHM1 in the 10q24.33 and des-
ignated CALHM2 having 26% of the identity of the protein sequence, annotated previously
as the FAM26B, and CALHM3 with the identity score 39%, FAM26A (Figure 9A). CALHM1
is conserved across at least 20 species, including mouse and C. elegans (Figure 9A,B).

Table 7. Tissue Info expression screen 1.

Chromosome Band Ensembl
Transcript ID Hit(s) Hit(s) in

Hippocampus 2
Tissue

Summary Gene Name/Other ID

1 p34.3 ENST00000319637 2 2 hippocampus EPHA10
2 p21 ENST00000306078 2 1 hippocampus KCNG3
2 q37.1 ENST00000313064 2 1 hippocampus C2orf52
6 q15 ENST00000303726 3 1 hippocampus CNR1
6 q25.3 ENST00000308254 1 1 hippocampus Retired in Ensembl 46
6 q27 ENST00000322583 1 1 hippocampus NP_787118.2 (Link)
9 q21.33 ENST00000298743 3 1 hippocampus GAS1
10 q24.33 ENST00000329905 3 2 hippocampus CALHM1 (FAM26C)
11 q24.1 ENST00000354597 3 1 hippocampus OR8B3
17 q25.3 ENST00000326931 2 1 hippocampus Q8N8L1_HUMAN
19 p12 ENST00000360885 1 1 hippocampus Retired in Ensembl 46
X q27.2 ENST00000298296 1 1 hippocampus MAGEC3

1 One transcript is shown for each gene identified in the screen. Genomic location and number of hit(s) in dbEST are reported for each
transcript. 2 Hit(s) in hippocampus indicates how many ESTs matching the transcript were sequenced from a cDNA library made from the
hippocampus. Link: https://www.ncbi.nlm.nih.gov/protein/NP_787118.2 (26 June 2021).

https://www.ncbi.nlm.nih.gov/protein/NP_787118.2
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Figure 9. The alignment and the phylogeny of the CALHM1. (A) the alignment of the sequence of
the human CALHM3, CALHM2, and CALHM1, and of the murine and the C. elegans CALHM1.
The conserved sequences have been highlighted with blue and the sequence conservation has been
mapped with a gradient of color, the darkest color is used to represent the sequences having absolute
level of identity and the lighter colors to represent the sequences having weaker level conservation.
The boxes are to denote the hydrophobic domains 1–4 (HD1–4). Stars, the predicted sites of N-
glycosylation on the human CALHM1. (B) the phylogenetic tree that include the human CALHM1,
denoted as ‘hCALHM1′.

CALHM1 maps to the chromosomal region that is associated with the LOAD sus-
ceptibility, tested to see if CALHM1 SNPs could be found associated with the disease
development risks.

2 non-synonymous SNPs have been found in databases, rs2986017 (+394 C/T; P86L)
and rs17853566 (+927 C/A; H264N). Dreses-Werringloer and colleagues did sequence the
entire ORF of CALHM1 with the use of the genomic DNA considered in 69 individuals,
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that include 46 (autopsy-confirmed) AD disease cases and 23 (age-matched) controls [60].
rs17853566 SNP has not been observed here, rs2986017 SNP presence has been confirmed,
having an over-representation potential of T allele in the AD subjects (with AD account for
36% and controls 22%), presented in Table 8, details in ref. [60]. rs2986017′s impact on the
AD developing in 4 other (independent) control-case populations (2043 Ads, 1361 controls
combined, presented in Table 8) was then tested. The distribution of the T allele was
increased for ADs over that for controls for all studies, having the odds ratios (ORs) to
range between 1.29–1.99 (here OR = 1.44 and p = 2 × 10−10 for combined population). The
association has been found highly homogeneous among all tested case-control studies,
tested for the heterogeneity: p = 0.59 and I2 = 0%. T allele frequency in (autopsy-confirmed)
ADs was found similar to the values observed for the probable populations of the AD case
(Table 8). For combined population, CT or TT genotypes have both been found associated
with the enhanced risk of AD development (ORCT vs. CC ranges between 1.18–1.64 with
OR = 1.37, p = 3 × 10−5 for the combined case of population, and ORTT vs. CC between
1.44–4.02 with OR = 2.03, p = 2 × 10−7 in combined population). APOE status wasn’t
considered in all observations (Table 8, and p with interaction = 0.26).

Table 8. Allele and genotype distributions of the CALHM1 P86L polymorphism (rs2986017) in AD
case and control populations.

Allele Distribution (%) Genotype Distribution (%)

n C T CC CT TT

USA screening sample 1,2

Controls 23 36 (0.78) 10 (0.22) 14 (0.61) 8 (0.35) 1 (0.04)
Autopsied AD cases 46 59 (0.64) 33 (0.36) 20 (0.44) 19 (0.40) 7 (0.16)

France I 3,4

Controls 565 907 (0.80) 223 (0.20) 370 (0.65) 167 (0.30) 28 (0.05)
AD cases 710 1051 (0.74) 369 (0.26) 410 (0.58) 231 (0.32) 69 (0.10)

France II 5,6

Controls 483 716 (0.74) 250 (0.26) 271 (0.56) 174 (0.36) 38 (0.08)
AD cases 645 888 (0.69) 402 (0.31) 303 (0.47) 282 (0.44) 60 (0.09)

UK 7,8

Controls 205 320 (0.78) 90 (0.22) 127 (0.62) 66 (0.32) 12 (0.06)
AD cases 365 504 (0.69) 226 (0.31) 193 (0.53) 118 (0.32) 54 (0.15)

Autopsied AD cases 127 169 (0.66) 85 (0.34) 57 (0.45) 55 (0.43) 15 (0.12)
Italy 9,10

Controls 85 131 (0.77) 39 (0.23) 52 (0.61) 27 (0.32) 6 (0.07)
AD cases 150 210 (0.70) 90 (0.30) 74 (0.49) 62 (0.41) 14 (0.09)

Combined studies 11,12

Controls 1361 2110 (0.77) 612 (0.23) 834 (0.61) 442 (0.32) 85 (0.06)

AD cases 2043 2881 (0.71) 1205 (0.29) 1057
(0.52) 767 (0.37) 219 (0.11)

1 p = 0.10; 2 p = ns; 3 p = 0.0002; 4 p = 0.001; 5 p = 0.006; 6 p = 0.01; 7 p = 0.0002; 8 p = 0.00002; 9 p = 0.10; 10 p = ns;
11 p = 2 × 10−10; 12 p = 7 × 10−9; OR (CT vs. CC) = 1.37, 95% CI [1.18–1.59], p = 3 × 10−5; OR (CT vs. CC) = 1.27,
95% CI [1.08–1.50], p = 0.004 adjusted for age, gender, APOE status, and center; OR (TT vs. CC) = 2.03, 95% CI
[1.56–2.65], p = 2 × 10−7; OR (TT vs. CC) = 1.77, 95% CI [1.33–2.36], p = 9 × 10−5 adjusted for age, gender, APOE
status, and center; ns, non-significant.

In the report, a compelling piece of evidence is revealed that rs2986017 SNP in
CALHM1, which results in the substitution of the P86L, is actually associated with
the increased risk for LOAD and significant Ca2+ homeostasis dysregulation and APP
metabolism. The P86L polymorphism was found to impair the permeability of the Ca2+ in
the plasma membrane, reduces the cytosolic Ca2+ level, affects the production of sAPPα,
and cause concomitant derepressing of CALHM1′s effects on the Aβ accumulation. Indeed,
these results help progress in understanding AD involving ion channel malfunctions due to
specific genetic mutations, thanks partially to bioinformatics techniques, the establishment
of various databases, and the development of advanced algorithms.
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6. Deep Learning Models Explain Ion Channel Features

Earlier we have addressed how ML can help understand crucial ion channel aspects.
Here we wish to familiarize the role of another popular technique Deep Learning (DL)
in understanding ion channels. Application of ML algorithms (e.g., in ion channel un-
derstanding) almost always requires structural (e.g., ion channel protein) data, while DL
networks rely on layers of artificial neural networks. Both ML and DL are actually forms of
AI, although DL is considered a specific kind of ML. Both of these AI techniques start with
the training, and test the data and a model, then proceed with the process of optimization
to ultimately search for the weights which make this model fit best to the data. In this
section, we wish to see how DL may assist us in a developed understanding of ion channels.
We must keep in mind that ion channel understanding using this new AI technique is just
celebrating its beginning. So readers, though will get an introduction, may not get any
fully conclusive scenario related to crucial ion channel structural and functional aspects.

6.1. Deep Learning Model Idealizes Single Molecular Activity of Ion Channels

A DL model considering the convolutional neural networks and the long short-term
memory architecture has just been found. It automatically idealizes the complex activity
of the single-molecule with enhanced accuracy and that the process is pretty fast, for
details see ref. [64]. The critical first step in understanding the electrophysiology technique
recorded ion channel current traces lies in event detection, which is the so-called “idealiza-
tion”. Here the (noisy) raw data have been are turned to the discrete protein movement
trends [65,66]. But till today enormous practical limitations are faced in the idealization of
the patch-clamp data. The highly acceptable, or quality idealization is found typically quite
laborious, becomes infeasible, subjective with the complex biological data that contain
various distinct native (single-ion channel) proteins’ simultaneous gatings. In the DL model
of Celik and colleagues, there are no parameters to set; baseline, channel amplitude or
numbers of channels for example. This DL model may therefore be useful in getting an
unsupervised and automatic detection of the transition events of the single molecules.

Both the fluorescence resonance energy transfer (FRET) and the patch-clamp elec-
trophysiology on single-molecule research are known to provide real-time data on the
molecular protein state with high resolution. But the data analysis is usually very time-
consuming, laborious, and requires expert-level supervision. Celik and colleagues have
demonstrated that an automated event detection in patch-clamp data is possible using the
deep neural network, and Deep-Channel, combining recurrent and convolutional layers.
This relatively easier method is found to work with enhanced accuracy over a considerable
amount of input datasets.

A hybrid recurrent convolutional neural network (RCNN) model [64,67] is introduced
to idealize the records of ion channels, up to 5 channel events that occur simultaneously.
For training and validating the models, another analog-synthetic ion channel record sys-
tem generator was developed and it has been found that the our Deep-Channel model,
involving long short-term memory (LSTM) and convolutional neural network (CNN) lay-
ers, idealizes rapidly with high accuracy, or detects the experimentally recorded single
molecular events without the necessity of the human supervisions.

Figure 10 illustrates the data generation workflow and Figure 11 illustrates the Deep-
Channel architecture [64]. Whilst the LSTM models were found to give a good level of
performance, its combination with the time-distributed CNN was found to give higher or
increased performance. This RCNN was so-called Deep-Channel by Celik and colleagues.
Following the training and the model development, see methods in ref. [64], 17 generated
new datasets were used, unseen previously by the Deep-Channel, thus uninvolved in
training processes. Authentic channel data, see Figure 10b, have been generated. Two
kinetic schemes, the so-called first (M1) having low ion channel opening probability, and
the so-called second (M2) having a high channel opening probability were applied, and
thus an average of the approximately 3 channels open at a time was obtained (Figure 12b).
Examples of the data, with the ground truth and the Deep-Channel idealization, have
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been shown in Figure 13 [64]. All of the Deep-Channel results described here have been
achieved without requiring any human intervention beyond providing the script with the
correct name of the file or the path.

Illustrates their overall model designing and the testing workflow. The provided
Supplementary Information [64] includes training metrics from the initial validation point
and the main text shows the performance metrics that were acquired from the 17 ex-
periments having novel datasets. In training datasets, there were typically contained
millions of sample points, and the 17 benchmarking experiments were sequences of the
100,000 samples each.

For channels having a relatively low channel-opening probability (see stochastic
gating model M1, Figure 12a), the data idealization process is found to get close to a binary-
detection problem (see Figure 13a), having the channel events’ type closed/open, labels
“0”/“1”, respectively. Here, the so-called receiver operating characteristic (ROC) curve,
applied for the classification of the channel events for open and closed state detections
exceeds a high level of 96%. In low channel open probability case of experiments, the
Deep-Channel was found to return a macro-F1 of 97.1 ± 0.02%, but the segmented-k
means (SKM) method in the software package QuB was found to result in a macro-F1 of
95.5 ± 0.025%, and 50% threshold method in QuB gave a macro-F1 of 84.7 ± 0.05%, n = 10.

For datasets including the highly active ion channels (from the model M2), we get it
to becoming a multi-class problem of comparison, hence the Deep-Channel was found to
outperform both 50% threshold-crossing and the SKM methods in QuB quite considerably.
The Deep-Channel macro-F1 was 0.87 ± 0.07, however SKM macro-F1 in QuB, without
the manual-baseline corrections, was found to drop sharply to a value 0.57 ± 0.15, and the
50% threshold-crossing macro-F1 was found to fall to a value of 0.47 ± 0.37 (the student’s
paired t-test between methods, p = 0.0052).

Figure 10. The workflow-diagram: the artificial analogue datasets generation. (a) the training, the
validation and the benchmarking, the data got generated first as the fiducial records with having
authenticated kinetic-models using MATLAB (Figure 11); the data have then been played out via
a CED digital-to-analogue converter to the amplifier of a patch clamp sending the signal into a
(model) cell, and then recorded the signal back (simultaneously) to a hard disk having the CED Signal
software through a CED analogue-to-digital converter. The noise degree got altered by moving the
headstage of the patch-clamp closer to, or a bit further from PC. Raw patch-clamp data produced
in these described methods are found indistinguishable from the genuine patch-clamp data. For
illustrating the point, this shows a standard work-up analysis for an experiment having (b) raw data,
followed by it’s analyses with QuB: kinetic analyses of (c) channel-open and (d) closed dwell times.
They finally show (e) all the points amplitude histogram (f).
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Figure 11. The data of the input time series were fed to the layer of the 1D Convolution (1D-CNN)
including 1D convolution, and max pooling layers. Then the data was flattened to next network
layer shape, an LSTM. 3 LSTM layers got stacked, each containing 256 LSTM units. The dropout
layers got appended with all of the LSTM layers, having the value 0.2 to reduce overfitting. This
returned features from the stacked LSTM layers. For additional details of the flowchart readers may
go through the ref. article.

Figure 12. “Patch-clamp” data were produced from two different stochastic models. (A,C) The
Markovian models simulating the ion channel data. Ion channels move between closed (0 conduc-
tance) and open (unitary-conductance, g) states. In many cases, there are many open and closed states
(“O1”–“O3”, or “C1”–“C3”, respectively). The central dogma of ion channel research is that the g
will be the same for O1, O2, or O3. Although substates have been identified in some situations, these
are beyond the scope of our current work. (A) Model M1; the stochastic model from ref. [68] and its
output. (B) It has a low open probability, so the data is a representation of the 0 or a channel openning
state. (C) Model M2; the stochastic model, and an output data (D) since the open probability is high,
the signal is found to be largely composed of 3 or more ion channels that are simultaneously open.
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Figure 13. The qualitative performance of the Deep-Channel with (previously) unseen data. (a–c)
represent examples of Deep-Channel classification performance with ion channels having low activity
(data from model M1, Figure 13a,b): (a) raw semi-simulated data of the channel event (in black). (b)
ground truth idealisation/annotation labels (in blue) from the raw data in (a). (c) Deep-Channel
predictions (in red) for the raw data (a). (d–f) representative examples of Deep-Channel classification
performance with five ion channel openings simultaneously (datafrom model M2, Figure 13c,d). (d)
semi-simulated raw channel events data (black). (e) ground truth idealisation/annotation labels (in
blue) using raw data in (d). (f) the Deep-Channel label predictions (in red) for raw data (d).

6.2. Deep Learning to Classify the Ion Transporters and the Channels from the Membrane Proteins

Recently, an article was published proposing a DL method for automatic classification
of the ion transporters or pumps and the ion channels from the membrane proteins [69].
This technique is proposed through training the deep neural networks and by using the
position-specific scoring matrix profile used as the input.

From structural and behavioral perspectives ion channels are found to differ signifi-
cantly from ion transporters, see ref. [69] (reproduction of the figure is not granted). The
DL method of Taju and Ou is dedicated to distinguishably classifying these two struc-
tural events. Three-stage approaches have been adopted, where 5 techniques of data
normalization have been used; the next 3 imbalanced data techniques have been applied
for the minority classes, then 6 classifiers have been compared to the method proposed
here, for details see original article [69]. We shall present here a brief of the results and
interpretations.

The goal here is to find a method that will be able to automatically classify the ion
transporters and the ion channels from a set of membrane proteins through training the
deep neural networks (DNNs) that uses a convolutional neural network (CNN) as its
selected algorithm capturing the hidden pattern of information in the set of data. The
hidden feature that is extracted in the position-specific scoring matrix (PSSM) from the
data set of proteins is thus expected to be the best feature producing the relevant evolution
information related to the sequences of the proteins. More importantly, the feature obtained
here should be applicable to versatile problems in the fields of bioinformatics and ML, with
considerable and promising outcomes or results, when compared to other available feature
extraction methods. Firstly, all protein data representation in the format of FASTA (stands
for fast-all) is changed into another PSSM profiles’ format. Secondly, DL, demonstrated by
the use of such representation will be able for accurately classifying some proteins separated
from the data for training. Lastly, for validating this approach, 5 cross-validations are used
and test the proposed method’s modeling.

The guidelines of the 5-step rule [70] are followed for making following 5 steps clearly:
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- the method of constructing or selecting a valid benchmark data set for training and
testing the predictor;

- the method of formulating biological-sequence samples with the help of any effective
mathematical expression which can accurately reflect their intrinsic correlation to the
to-be-predicted target;

- the way on introducing or developing a powerful algorithm or engine for operating
the prediction;

- the way on properly performing the tests for cross-validations for objective evaluation of
the anticipated predictor accuracy;

- the way on establishing a friendly to the users’ web server for predictor which will be
accessible to the mass public.

For details on all these five steps, readers may see ref. [69]. In ref. [69] (reproduction of
the figure is not granted), a schematic representation of the membrane protein classification
prediction steps has been provided. The dataset used is collected from the database of the
Universal Protein Knowledgebase (UniProtKB) (accessed on 14 April 2018) (UniProt, 2016)
(see Table 9).

Table 9. The data sets used in this experiment. Due to copyright issues, the table is reconstructed
using data from ref. [69].

Sets of Data The Original
Data

Similarity, Less
than 20% Testing Data Training Data

Ion channel 845 301 60 241

Ion transporter 1051 351 70 281

Membrane protein 8295 4263 850 3413

Total 10,191 4915 980 3935

We avoid elaborating on the detailed techniques. To represent the input data, a PSSM-
based feature extractor was applied here and a 20 × 20 matrix was produced. Initially,
the Position-Specific Iterative Basic Local Alignment Search Tool (PSI-BLAST) [28] against
(ftp://ftp.ncbi.nih.gov/blast/db/FASTA/) (31 August 1997) was used for generating the
PSSM profiles. The PSI-BLAST is a method for searching the protein sequence profile and
the PSSM is the matrix generated utilizing a protein query that can perform PSI-BLAST
search for finding its similarity from biological databases, and thus creates the (position-
specific) matrix. For every query of protein, PSSM can produce N × 20 matrix having
a component of the profile, where N denotes the protein sequence length and columns
represent the scores for the substitution of the amino acids in the protein. For details, see
ref. [69].

The 20 amino acids composition analysis, the n-gram analysis, the sequence motif
visualization with the use of the word cloud technique have been shown. The 20 amino
acid residues variance has been computed considering the 3 protein data set classes. The
experiments compared the DL model performance against 5 different techniques of data
normalization and 3 techniques for oversampling. The model was evaluated using the
k-fold cross-validation. The best performance of the model was then compared with a few
classifiers, such as the Perceptron Gaussian Naïve Bayes, the Random Forest, the Nearest
Neighbors, the SVM, and the Nearest Centroid classifiers with the use of independent
test data for examining different algorithms’ effects. The analysis of the sequence got
performed on the platform of the training data for finding a little information on the amino
acids and base pair of the residue patterns at the important motifs in the sets of the data. In
ref. [69] (reproduction of the figure is not granted), we see the amino acids having letter
Ala (A), Gly (G), Leu (L), Ser (S), and Val (V) have been dominant and also important, as
we see in amino acid composition figure or the amino acids occurrence frequency in all of
the proteins. The 20 amino acid residues variance across ion channels, ion transporters,
membrane proteins have been computed. The variance analysis got used for measuring

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/
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the data spreading distance away from the overall average value. Amino acids Leu (L), Ser
(S), Ala (A), Val (V), Gly (G), Glu (E), Ile (I), Arg (R), and Thr (T) with high frequencies in
analysis top frequent motifs showed a variance value below 0.005, and Cys (C), Lys (K),
and Trp (W) showed a variance value above 0.005 of 0.013, 0.012, and 0.032, respectively.

The datasets were then classified to distinguish three classes, namely ion channels
(class A), ion transporters (class B), and other proteins (class C) using the following tech-
niques, for details (not presented here) see ref. [69]:

- Comparative results were extracted using different techniques for feature normalization
- Comparative results on different techniques for the imbalanced data set

To evaluate the predictor model performance, 5-fold cross validations have been
applied in training data sets. Table 10 reports the results of the fivefold cross-validation
technique that was applied in the training data, which is a challenging step to find the best
model prediction of independent test sets. The performance is seen to reach the highest Sen
(89.20%), Spec (84.89%), Overall Acc (87.05%), and MCC (0.75) for class A. Class B achieves
Sen (86.76%), Spec (88.23%), Overall Acc (87.49%), and MCC (0.75), and performance of
Sen (92.50%), Spec (96.19%), Overall Acc (94.35%), and MCC (0.89) are seen for class C.

Table 10. Comparison of the performance on the classification of the ion transporters and the ion
channels from a set of the membrane proteins utilizing 5-fold techniques of the cross validation. Due
to copyright issues, the table is reconstructed using data from ref. [69].

Data Sets Sen Spec Acc MCC

Ion channels (class A) 89.20 84.89 87.05 0.75

Ion transporters (class B) 86.76 88.23 87.49 0.75

Other proteins (class C) 92.50 96.19 94.35 0.89

The application of all these Deep-Channel algorithms and models has been found
possible, though with limitations, for the case of biological data on ion channels. We have
presented here basically two example studies where DL algorithms have been utilized to
demonstrate various ion channel features. The effectiveness of Deep-Channel to detect
events in the single-molecule datasets has been mainly demonstrated. The method is
exclusively applicable not only for patch-clamp experimental data, but it has potential for
the deep learning convolution or LSTM networks for tackling other related biological data
analysis problems. The ion channel, ion pump, and other membrane protein classification
using DL algorithms and modeling has been found quite impressive and time and resource
saving initiative. Over the next decade, we may see an exponential increase in use of AI,
ML, and DL in understanding natural status and mutated conditions of ion channels of
biological cells.

7. ML in Ion Channel Engineering

AI techniques are found helpful in ion channel engineering. Recently, ML is reported
to help in designing the membrane hosted channelrhodopsins (ChRs) for the eukaryotic
expression and the plasma membrane localization efficiently [14]. Here a predictive ML
approach has been used that can capture the complexity and facilitates successfully the MP
design and engineering. The application of ML on the training sequences that are made
by the structure-guided SCHEMA recombination enables to predict accurately the rare
sequences in a library of pretty diverse members of channelrhodopsins (ChRs), expressed
and localized to the mammalian cells’ plasma membranes.

In protein engineering, membrane protein (MP) sequence changes, influencing ex-
pression and membrane localization, are highly context-dependent. That means what
changes are found to eliminate localization in one sequence context may have almost no
effect in another. Subtle amino acid changes may have dramatic effects [14,71]. It is conclu-
sive that the MP sequence determinants of expression and membrane localization are not
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necessarily captured by ordinary rules as applied in studies [72] providing information
on signal peptide sequence having positive charge at the membrane–cytoplasm interface
“positive-inside” rule [73], and an enhanced hydrophobicity in transmembrane domains.

Considering all available knowledge, it is clear that any accurate atomistic models
considering physics principles relating a sequence to its expression and plasma membrane
localization levels aren’t available due to advanced level stochasticity and large scale
complexity of the biological process. Statistical models, offering an alternative, are useful
to predict the outcomes of any complex processes, because they do rely on energetics of
the system (e.g., for ion channels see ref. [17,18]) and not require any prior knowledge of
underlying mechanisms. Empirical data such as expression or localization values of MPs’
known sequences can be used to train statistical models. While training, this model infers
input/output relationships between the sequence as input and expression or localization
as output. These relationships are then used to make predictions on the properties of the
unmeasured sequence variants. The process of the use of empirical data for training and
selecting optimal statistical models is referred to as ML [14].

In predicting protein properties such as solubility [74], crystallization propensity,
periplasm trafficking [75], and general functions [76] ML has been found useful. Although
these models can identify protein sequence elements that are predicted to contribute to
specific property of interest in the respective studies, they are not generally useful to
identify subtle sequences and features, such as amino acids or their interactions. Specific
condition of expression and pinpointed localization for any certain class of any related
sequences (e.g., of ChRs) aren’t identifiable with confidence. The common reason behind
this is that the ML models utilized here are trained using many protein classes and utilizing
large data sets that are composed of literature/published data from various sources having
almost no standardization on the versatile experimental conditions, and trained using
many protein classes. Bedbrook and colleagues focused on a model building on ChRs,
utilizing training data that are collected from a considerable range of ChR sequences and
under standardized conditions [14]. Here the Gaussian process (GP) classification has been
applied and the regression followed from ref. [77] to build ML models that are able to
predict expression and localization of ChR directly from the data. Sitting on a background
of their earlier work where GP models were found to successfully predict a few biophysical
conditions such as the thermal stability, binding affinity, enzyme kinetics, etc. [78]. In
this work Arnold group asked whether GP models could successfully predict mammalian
expression and heterologous integral membrane localization of ChRs, and to do so the
amount of experimental data might be required. To generate a training set, SCHEMA
recombination chimeras were used, which are useful for producing large scale libraries
of quite diverse, functional chimeric sequences from parent protein homologues [79].
Synthesis and measurements of expression and localization were made for a small subset
(0.18%) of the sequences from the recombination library of ChR. These data were used to
train GP classification and regression models and predict the expression and localization
properties of ChR sequences.

The strategy on development of the predictive ML models is illustrated in Figure 14 [14].
In Figure 14 (1) we see that the structure-guided recombination SCHEMA is for selecting the
block boundaries. This is done for the purpose of shuffling the sequences of the protein and
generate any library for sequence-diverse ChRs by starting with 3 ChRs parents, referring to
3 colors (red, green, and blue). In Figure 14 (2), we present a library subset which will serve
as the set for the training. The genes of the chimeras have been synthesized and cloned into
the mammalian expression vector, transfected cells being assayed for ChR expressions and
localizations. In Figure 14 (3), 2 models, classification and regression, are trained with the
utilization of the training data and then verified. The model for classification here is used
for exploring the diverse sequences that are predicted to show ‘high’ level of localizations.
The model for regression here is used for designing the ChRs having the optimal level of
localizations to plasma membranes.
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Figure 14. Generalized approaches to the ML of the protein (ChR) structure-function relationships.
Here the diversity generation, the measurements on a set for training, and the modeling have been
demonstrated.

Figure 15 explains various features on building GP classification models of ChR
properties, for details including data sets used see ref. [14]. In Figure 15, the plots of the
predicted probability versus the measured properties have been divided into many sec-
tions, the ‘high’ performer represented by the white background, and the ‘low’ performer
represented by the gray background, for each property: expression and localization. In
Figure 15A,D, the predicted probability vs. measured properties for the training set (see
gray points) and the exploration set (see cyan points). LOO cross-validation was utilized for
predictions for training and exploration sets. In Figure 15B,E, the predicted probabilities vs.
measured properties for the verification set are presented. A model trained on the training
and exploration sets was utilized for predictions. In Figure 15C,F, the predicted probability
of the ‘high’ expression, and the localization for all chimeras in the recombination library
(having 118,098 chimeras) that is made by the use of the models, trained on data taken
from the training and the exploration sets. All the library contained chimeras are shown
by the gray lines; the gray, cyan, purple, and yellow points indicating the sets for training,
exploration, verification, and the parents, respectively. Figure 15A–C Show the expression
and D–F the localization.

Figure 15. The GP binary classification models for the ChR expression and the ChR localization.
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Multi-block-swap sequences (from the training set) mostly did not localize to the
membrane. The model for the localization classification was used for identifying the
multi-block-swap chimeras of the library, having a pretty high probability of prediction,
>0.4, falling into a ‘high’ localizer category (see previous Figure 15D). Among the multi-
block-swap chimeras having the predicted ‘high’ localization, a 16 diverse chimeras set
(having average of 69 mutations in amino acids) of the closest parent have been chosen and
then named as ‘exploration’, see ref. [14]. Bedbrook and colleagues synthesized and tested
these chimeras, and found that the model had accurately predicted chimeras showing
good localization (Figures 15 and 16). 50% of the exploration set was found to show ‘high’
localization compared to just 12% of the multi-block-swap sequences from the original
training set, although both have similar levels of mutation, data shown in [14]. Exploration
set chimeras to have on average 69 ± 12 amino acid mutations from the closest parent
versus 73 ± 21 for multi-block-swap chimeras in the training set.

Figure 16. The comparison among all of the measured localizations in the membrane for every set of
data. The swarm plots for the measurements of the localizations for each data set compared to the
parents: the set of the training, the exploration, the verification, and the optimization.

Although the model for the classification predicts the probability of any sequence
that falls into the ‘high’ localizer category, it may lack in giving a necessary quantitative
prediction. The designing of the chimera sequences having the optimal localization has
then been made [14]. For optimal localization, one has to be at or above the CsChrimR level,
which is the best localizing parent [80]. A regression model for the localization of ChR
in the plasma membrane is required to help predict sequences with optimal localization.
A GP regression model is presented which utilized the localization data from training
and exploration sets [14]. While developing the GP regression model for the localization,
L1-regularized linear regression was used to identify a limited set of sequences and specific
structural features that are known to strongly influence the ChR localization. The features
include inter-residue contacts and individual residues, and help to offer insight into the
structural determinants for the ChR localization. While mapping onto the C1C2 structure,
these features can highlight parts of the ChR sequence and the structural contacts which
are important for ChR’s plasma membrane localization, see Figure 17 [14]. Both beneficial
and deleterious features are distributed throughout the protein, with no single feature
dictating localization properties (Figure 17).
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Figure 17. Sequencial and structuralal contact features are important for the prediction of the ChR
localizations.

In Figure 17, the features with the positive (A) and the negative (B) weights have been
displayed on the crystal structure of C1C2 (in grey color). The features can be the residues
(see spheres) or the contacts (sticks) from the ChRs parents. The CsChrimR features have
been shown in color ‘red’, the features from the C1C2 are presented in color ‘green’, and the
features from the CheRiff are presented in color ‘blue’. For cases where any feature appears
in 2 parents, the color priorities have been used differently, as follows: the red above
and the green above the blue. Sticks are shown to connect beta carbons of the contacting
residues (or specifically the alpha carbon for the glycine). The spheres’ size and the sticks’
thickness have been used as proportional to the weights of the parameter. 2 contact residues
can either be from the same or different parents. The Single-color contacts occur as both
contributing residues appear from the same parent. The occurrence of multi-color contacts
happens when residues from different parents come in contact. N-terminal domain (NTD),
C-terminal domain (CTD), seven transmembrane helices (TM1-7) are labeled.

GP regression model as briefed here can be utilized to engineer novel sequences
that localize better [14]. Bedbrook and colleagues chose a nonfunctional natural ChR
variant, CbChR1, expressed in HEK cells and neurons, but does not localize to the plasma
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membrane [80]. Being distant from three parental sequences CbChR1 is only 60% identical
to CsChrimR and 40% to CheRiff and C1C2. CbChR1 was optimized by introducing
minor changes in amino acids, predicted by the localization regression model might be
beneficial for membrane localization. To enable CbChR1 localization measurements with
the SpyTag-based labeling method, the N-terminus of CbChR1 was substituted with the
CsChrimR N-terminus that contains the SpyTag sequence downstream of the signal peptide
to make the chimera CsCbChR1 [81]. This block swap was not found to cause any change
in CbChR1′s membrane localization properties, see Figure 18C.

Figure 18. GP regression model that enables the engineering of the localization in CbChR1.

Figure 18A presents the blocks’ identities in CsCbChR1 chimeras-each row is rep-
resenting a chimera. Yellow color representation for the CbChR1 parent and red color
representation for the CsChrimR parent. The Chimeras 1c, 2n, and 3c contain 4, 21, and
17 mutations, respectively with respect to the CsCbChR1. In Figure 18B, the plot repre-
sents the measured CsCbChR1 localization, compared to 3 CsCbChR1 single-block-swap
chimeras and CheRiff parent. In Figure 18C, 2 cell images of mKate expression in CbChR1
and CsCbChR1 compared with top-performing CsCbChR1 single-block-swap chimeras
showing the differences in the ChR localization properties–the chimera 2n and the chimera
3c localize to the plasma membrane. The bar of the scale here is 20 µm.

The classification and the models of the regression models of the GP were trained using
the expression and the localization data that were collected from the 218 ChR chimeras,
which were chosen from the library of 118,098 variants designed using the SCHEMA
recombination of three ChRs parents. The GP models were used for identifying the ChRs,
which were expressed and well-localized, showing that these models elucidate the sequence
and the structure elements important for the processes.

Bedbrook and colleagues have successfully detailed the steps in building ML models
and highlighted these artificial techniques’ power in predicting certain protein properties
considering a specific ion channel protein ChR [14]. Combining recombination-based li-
brary design with statistical modeling methods, they could scan a highly functional portion
of protein sequence space through training on only a few sequences. Model developments
have yielded a tool having been used to not only predict optimally performing chimeric
proteins but also be applied to improve related ChR proteins that are outside the library.
These ML methods may appear as powerful tools for general protein engineering in general.
As shown here for ChR these ML models may also be found applicable to regulate any ion
channel functions by engineering the channel proteins.

8. Conclusions

The understanding of the ion channels has historically been made using mostly
biological, biochemical, and biophysical principles and techniques. Both bioinformatics
and genomics of ion channels have recently appeared as important areas of research
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that often attract the applications of artificial intelligence techniques including machine
learning and deep learning models, and algorithms. The easy analysis of huge amounts
of data explaining various ion channel features, such as channels’ structures, functions,
classification, channel subunit protein evolution, mutations, etc. has thus been found
possible. Application of artificial intelligence techniques in biological systems [82,83],
e.g., ion channels, requires the development of specific algorithms and models capable of
connecting with the complex, dynamic, and fluctuating natures of biomolecules involved
in channel structures. An in-depth analysis in this regard has been provided. This review
article has made important guidelines that will hopefully help the ion channel research
scientists working towards further developments. Thus the article may be considered an
unavoidable reference for subsequent studies.
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