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Abstract

MicroRNAs (miRNAs) are known to play critical roles in plant development and stress-

response regulation, and they frequently display multi-targeting characteristics. The

control of defined rice phenotypes occurs through multiple genes; however, evidence

demonstrating the relationship between agronomic traits and miRNA expression profiles

is lacking. In this study, we investigated eight yield-related traits in 187 local rice cultivars

and profiled the expression levels of 193 miRNAs in these cultivars using microarray ana-

lyses. By integrating the miRBase database, the rice annotation project database, and the

miRanda and psRNATarget web servers, we constructed a database (RiceATM) that can

be employed to investigate the association between rice agronomic traits and miRNA ex-

pression. The functions of this platform include phenotype selection, sample grouping,

microarray data pretreatment, statistical analysis and target gene predictions. To demon-

strate the utility of RiceATM, we used the database to identify four miRNAs associated

with the heading date and validated their expression trends in the cultivars with early or

late heading date by real-time PCR. RiceATM is a useful tool for researchers seeking to
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characterize the role of certain miRNAs for a specific phenotype and discover potential

biomarkers for breeding or functional studies.

Database URL: http://syslab3.nchu.edu.tw/rice/

Introduction

Rice is an essential staple food worldwide. To manage

problems stemming from global climate change and

human population growth, breeders and scientists have

been tasked with increasing rice yields. The yield compo-

nents of rice have been identified and are known to be con-

trolled by multiple genes (1–3), and these components have

been utilized to improve rice production (4–6).

Similar to their mammalian homologues, plant

microRNAs (miRNAs) can negatively regulate their target

gene expression levels by perfect or imperfect binding to

mRNAs in coding or untranslated regions. In general,

miRNA can impact multiple genes ranging from a few to

hundreds or even more targets, and it is an ideal regulator

for multi-gene control mechanisms (7–9). These non-

coding small RNAs with a functional sequence of 21–24

nucleotides (10, 11) are known to play important roles in

plant developmental processes and stress-response regula-

tion (12, 13). For example, a study identified 18 cold-

responsive rice miRNAs, including miR167 and miR319,

using a microarray approach on a single variety (14), and

most of the differentially regulated genes were down-

regulated in a cold-treated environment. Moreover, the

rice yield-related gene OsSPL14, which is highly expressed

in the reproductive stage and promotes panicle branching

and higher grain yield, can be suppressed through excision

by miR156 in Nipponbare (5). Almost all of the previous

studies on rice miRNA have focused on one or a few culti-

vars. However, studies performing large-scale testing of

rice cultivars and providing a parallel investigation of their

miRNA expression profiles are not available.

Most of the published plant miRNA databases support

mature and precursor miRNA sequences, miRNA gene co-

ordinates, and miRNA target genes (15, 16). Certain plant

miRNA databases reveal the association with phenotypes.

For example, mirEX provides the miRNA profiles for

seven different development stages (17), and PASmiR cur-

ates over 200 literature reports and indicates the effects of

miRNA regulation under 35 abiotic stresses in 33 plant

species (18, 19). However, the association between agro-

nomic traits and miRNA expression profiles has not been

well documented.

Rice breeding has been performed for over fifty years in

Taiwan. Hundreds of cultivars, including japonica and ind-

ica rice, have been produced and provide the best genetic

materials for breeding and research (http://tris.tari.gov.

tw:8080/). In this study, a customized microarray was used

to profile the expression patterns of 193 miRNAs in 187

rice cultivars with wide-ranging differences in agronomic

traits, and rice agronomic traits and miRNA expression

(RiceATM) platform (http://syslab3.nchu.edu.tw/rice/) was

established to investigate the relationships between miRNA

expression profiles and eight agronomic traits associated

with rice yield. RiceATM allows users to obtain the signifi-

cant miRNAs associated with a specific agronomic trait for

use as biomarkers for breeding or functional studies.

Materials and Methods

Rice variety collection, cultivation and trait

investigation

A total of 187 locally cultivated rice cultivars were col-

lected from rice breeders located in the following four dis-

trict agricultural research stations in Taiwan: Taichung,

Kaohsiung, Taitung and Hualien. These cultivars were

planted at the Agricultural Research Institute in Chia-Yi

during the second crop season of 2009–10. The panicles

were sampled 1–2 days before heading, immediately frozen

in liquid nitrogen, and then stored at �80 �C until the total

RNA could be isolated. The phenotypes after harvest were

investigated according to standard procedures.

Total and small RNA extraction

The panicle (5 g) was ground into powder in liquid nitro-

gen, and total RNA was isolated with extraction buffer as

previously described. Total RNA was dissolved in distilled

diethyl pyrocarbonate (DEPC) water and quantitated using

a NanoDrop 1000 spectrophotometer V3.7 (Thermo

Fisher Scientific; Wilmington, DE, USA) and then stored at

�80�C until miRNA isolation. Small RNAs were isolated

using the PureLink miRNA Isolation Kit (K1570-01;

Invitrogen/Thermo Fisher Scientific; Waltham, MA USA)

according to the manufacturer’s instructions and quanti-

tated by the NanoDrop system.

miRNA microarray analysis

Because of the early initiation time of this study, we could

only collect 193 miRNAs, and the identities were updated
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using the latest version of the miRBase database (version

21). The mature miRNA sequences and six control probes

(four positive and two negative) were used to produce the

customized rice miRNA microarray (Combimatrix

Custom Array 4 � 2 K, CA, USA). Each miRNA probe

was supplied in triplicate on the microarray, and each con-

trol probe contained five copies. For each rice cultivar,

2 lg of the purified small RNAs was employed to prepare

the fluorochrome-labeled miRNAs (Cy5 Labeling Kit;

Mirus Bio LLC, Madison, WI, USA) according to the

manufacturer’s instructions. Subsequently, the customized

miRNA microarray was hybridized with the Cy5-labeled

miRNAs in a 42�C oven with slow microarray rotation for

4 h. After hybridization, the microarray was washed with a

SSPE buffer series with 0.05% Tween-20 according to the

manufacturer’s protocol (Combimatrix) and then sub-

jected to image scanning and digitization using a GenePix

4000B scanner and GenePix 4.0 software (Molecular

Devices) for further data analysis.

Framework of RiceATM database

We integrated the data for 8 agronomic traits and the ex-

pression of 193 mature miRNAs in 187 rice cultivars into

a MySQL database on a CentOS system then used Java

and the jQuery program to build the RiceATM platform,

which can identify the associations between agronomic

traits and miRNA expression profiles. The main steps for

using the RiceATM platform are as follows (Figure 1):

Step 1. Select the phenotype of interest. This database

provides the data on 8 reinvestigated agronomic traits in

187 locally cultivated rice cultivars for an association ana-

lysis. Users can select an interesting agronomic trait and

determine the miRNAs that are associated with the trait.

Step 2. Define the high- and low-quantity groups of

rice. To obtain a significant association between an agro-

nomic trait and a miRNA expression profile, we provide

users with the option to only obtain miRNA data from the

highest and lowest quantity groups of cultivars for further

analysis. The cut-off values for the high and low groups

can be defined by the user or selected by the k-means algo-

rithm. For example, if the user input 0.9 and 0.1 in the

‘High cumulative percentage’ and ‘Low cumulative per-

centage’ boxes, respectively, the database will automatic-

ally select the data for the two groups of sorted cultivars

including percentages of 0.9–1 and 0–0.1, respectively.

Step 3. Microarray data pretreatment. In this step, the

raw microarray data selected above can be subjected to

quantile normalization (20), floor value assignment, and

clipping values (min and max) according to the user’s

selection.

Step 4. Identification of miRNAs associated with an

agronomic trait. RiceATM utilizes ANOVAs and Student’s

t-tests to identify the significantly differential expression of

miRNAs between the two groups of cultivars. The false

discovery rate (Q-value) of the test is estimated using the

previously reported method (21).

Step 5. Target gene prediction of identified miRNA.

The mature miRNA and mRNA sequences are down-

loaded from the miRBase database (version 21) (15) and

the rice annotation project database (version 7.0) (22), re-

spectively. The miRanda (ver. miRanda-Aug2010) (23)

and psRNATarget web servers (24) are employed to pre-

dict the miRNA target genes with scores � 160 and expect-

ations � 0, respectively. To visualize the relations between

miRNAs and the target genes, the web server provides net-

work user-interface using the selected miRNAs and their

targets from the result of psRNATarget.

Figure 1. Architecture of the RiceATM platform. Step 1: Eight agronomic traits are represented in the RiceATM web server. The user can select an

interesting trait and identify the associated miRNAs. Step 2: After selecting the agronomic trait, the user must fill in the ‘High cumulative percentage’

and “Low cumulative percentage” fields to identify the high- and low-quantity groups. The miRNA expression data on these two groups are selected

for analysis. Step 3: In the microarray data pretreatment step, the user can select quantile normalization and data adjustment to normalize the micro-

array data. Step 4: To identify the miRNAs associated with the agronomic trait in the two groups of cultivars, RiceATM supports Student’s t-tests or

ANOVAs. Step 5: Finally, the user can select the miRanda or psRNATarget algorithm to predict the target genes of the associated miRNAs.
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miRNA reverse transcription and quantitative

real-time PCR

For each reverse-transcription reaction, 2 lg of total RNA

was reverse transcribed into cDNA using a miRNA-

specific reverse transcription primer reverse transcriptase

(Superscript III; Invitrogen, Carlsbad, CA) as previously

described in (25). The miRNA expression level was de-

tected using a real-time PCR reagent (FastStart SYBR

Green Master, Roche) in a Rotor-Gene Q thermocycler

(Corbett Research, Australia). The thermocycling program

for the real-time PCR assay was as follows: 95 �C for

15 min (DNA polymerase activation), followed by 40

cycles of 94 �C for 15 s, 60 �C for 30 s and 72 �C for 30 s.

Actin-11 was used as the internal control (26). The candi-

date miRNA expression that was normalized to the internal

control expression was calculated as �DCT¼�[CTmiRNA-

Actin]. The differences in the relative expression of the

miRNA among cultivars were calculated using the 2–DCT

method. The PCR assays were performed in triplicate.

Statistical analysis

All of the statistical tests in this study were performed

using ANOVAs or Student’s t-tests with a two-tailed distri-

bution in the software SAS 9.0 (version 9.1.3; SAS

Institute, Cary, NC, USA). A P value < 0.05 was con-

sidered statistically significant. Where appropriate, the re-

sults are presented as the mean 6 SD.

Results

Statistical data on the investigated agronomic

traits

Two types of rice cultivars were used in this study: japon-

ica, n ¼ 155, and indica, n ¼ 32. These cultivars were culti-

vated in Chai-Yi County, and the mature panicles were

sampled for further microarray or real-time PCR analysis.

Three single plants of each cultivar were used to calculate

the data for eight traits associated with rice yield, including

the heading date, plant height, panicle number, panicle

length, panicle weight, spikelet number, seed-set %, and

1000-seed weight. The collected data show the wide-

ranging differences among the collected cultivars (Table 1).

For example, the heading dates differ by one month be-

tween the earliest (56 days) and the latest (82 days) culti-

var. Moreover, 2-fold differences occurred between the

maximum and minimum values in the seven remaining

traits. We sorted the measurements of each agronomic trait

and plotted the line charts (Figure 2) and found that all of

the line charts from the 8 agronomic traits among the 187

cultivars showed a similar ‘N’ shape, which indicates that

a proportion of the cultivars fell within the middle of the

distribution for certain phenotypes.

miRNA profiles of rice cultivars by microarray

Microarray images were obtained using fixed scanning

conditions (wavelength: 635 nm; PMT gain: 550; reso-

lution: 5 lm pixel size) to avoid over-saturation and then

digitized for subsequent analysis. The expression intensities

of each miRNA were derived from the mean of triplicate

probes. Thus, a total of 193 distinct measurements were

obtained for each cultivar. After quantile normalization,

the maximum and minimum values were 33428.4 and

73.3, respectively, which suggest significant differences

occurred among the data in this database (see the down-

load dataset). In addition, to measure the reproducibility

of the miRNA microarrays, replicates of the miRNA

probes were used to calculate the coefficient of variation

(CV). The CV for the three replicates of each miRNA was

11.1 6 4.8%, which was averaged over 193 miRNAs and

187 cultivars. The raw data were then employed to con-

struct the RiceATM platform as described in the Methods

section.

Case studies

To demonstrate the RiceATM functions, we used the agro-

nomic trait heading date as an example to test the pipeline

(Figure 3A) (Supplementary Materials 1.2). After selecting

the trait, we input four clusters in the k-means clustering al-

gorithm to automatically identify the high- and low-quantity

groups of cultivars (Figure 3B). The data from the selected

Table 1. Statistical data on the 8 investigated agronomic traits

in 187 rice cultivars

Average Minimum Maximum Max./Min.

Heading date1 69.0 56.0 82.0 1.5

Plant height2 97.4 48.7 145.7 3.0

Panicle numbers3 12.5 5.3 34.0 6.4

Panicle length4 19.5 11.4 25.6 2.3

Panicle weight5 2.2 0.3 4.0 14.9

Spikelet numbers6 100.3 19.1 181.9 9.5

Seed-set%7 72.2 4.8 93.8 19.7

1000-seeds weight8 25.4 14.7 33.4 2.3

1Units: days after transplanting;
2centimeters;
3panicles per single plant;
4centimeter;
5grams;
6spikelet numbers per panicle;
7ratio of matured seeds number to total spikelet numbers;
8grams.
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microarrays were pretreated using the quintile method to nor-

malize the data, and the minimum value was clipped at 800

(recommended by the chip manufacturer) (Figure 3C).

Subsequently, an ANOVA was performed to identify signifi-

cantly different miRNAs (P � 0.05) between the two groups

of cultivars. The RiceATM platform then output the miRNA

signature associated with the heading date, including osa-

miR172d-3p, osa-miR818c etc., sorted by P value (Table 2).

To obtain the miRNA-regulatory network, we selected the

psRNATarget algorithm (24) to predict the miRNA targets

(Figure 3D). However, because miRanda predicted >100 tar-

get genes for each miRNA, its prediction results were not

suitable for generating the network in this study. Users can in-

put a miRNA ID or a RNA sequence to search the associated

agronomic traits. When users input a RNA sequence, the

web server will perform BLAST search to find the best match

miRNAs, and then report the associated agronomic traits

(Supplementary Materials 1.3).

In addition to the case of heading date mentioned

above, two additional examples related to panicle

Figure 2. Line charts of 8 agronomic traits among 187 cultivars. (A) Heading data indicate the days after transplanting to paddy field. (B) Plant height

indicates the average length from the bottom at the soil surface to the top of a single plant. (C) Panicle number indicates the average tiller number of

a single plant. (D) Panicle length indicates the average length from the node of the panicle neck to the topmost single grain. (E) Panicle weight indi-

cates the average weight of a single panicle. (F) Spikelet number indicates the average flower number of a single panicle. (G) Seed-set % indicates

the percentage representing the ratio of developed seeds to total spikelets. (H) Thousand-seed weight indicates the total weight of 1000 rice grains.
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development were provided to prove the usefulness of

RiceATM. The miR397 has been reported to downregulate

OsLAC expression, leading to increase in 1000-seed

weight (27). Through the pipeline we built and the use of

selection parameters (k-mean: 4; sample: all; default data

pretreatment; and ANOVA), miR397 was identified as one

of the significant miRNAs under the trait of 1000-seed

weight (Supplementary Materials 2.1). Furthermore, the

previous study revealed that miR156 is involved in panicle

number regulation through targeting OsSPL14 (5). By

using the parameters we set (k-mean: 5; sample: all; default

data pretreatment; and ANOVA), miR156 was identified

as one of the significant miRNAs associated with the pan-

icle number (Supplementary Materials 2.2).

Validation of the selected miRNAs associated with

heading date by quantitative real-time PCR

To confirm the accuracy of the RiceATM analysis and

microarray data, a quantitative real-time PCR analysis was

performed for the candidate miRNAs associated with

heading date in eight cultivars, which included the 4

cultivars with the earliest heading date and the four culti-

vars with the latest heading date. The four miRNAs with

positive fold changes identified above (Table 2; miR172d-

3p, miR818c, miR820c and miR399f) were subjected to an

expression-level analysis of the mature sequence. The re-

sults showed that the expression of these four miRNAs

was significantly higher in the early heading date group

than in the late heading date group (P < 0.05) (Figure 4),

which is consistent with the microarray data.

Discussion

miRNA has conserved functions in plant stress responses

and developmental progression and is involved in regulat-

ing in multiple target genes in plants and animals (13, 23).

Furthermore, miRNA signatures consisting of multiple

miRNAs have been used to predict the clinical outcomes of

lung cancer (28) and breast cancer (29) patients. In plant

sciences, several studies have discussed the roles and influ-

ences of miRNAs on the organogenesis and traits of rice

(9, 11, 13, 14); however, studies related to the relation-

ships between phenotypes and miRNA expression profiling

Figure 3. Example of browsing the RiceATM platform. (A) Eight agronomic traits affecting yield are represented in RiceATM, including the heading

date, plant height, panicle number, panicle length, panicle weight, spikelet number, seed-set %, and 1000-seed weight. Here, we select ‘Heading Date’

as a demonstration. (B) RiceATM includes 187 rice cultivars: 155 japonica and 32 indica. The user can select total (japonica plus indica), japonica or

indica cultivars to analyse by checking the ‘Variety’ box. In this example, we select the k-means clustering algorithm to select the high and low head-

ing date groups for the total cultivars. (C) In the data pretreatment step, we use quantile normalization and then clip the minimum value at 800 to nor-

malize the microarray data. (D) Differentially expressed miRNAs are evaluated by ANOVA and then subjected to target gene prediction by the

psRNATarget algorithm. Thus, RiceATM shows the regulatory miRNA network. Large orange circles, miRNAs with high expression in the high-quan-

tity group; large green circles, miRNAs with high expression in the low-quantity group; small blue circles, targeted mRNAs.
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have not been published. It is generally believed that cer-

tain quantitative traits, such as heading date and panicle

numbers, are controlled by multiple genes, and multi-

targeting is one of the characteristics of miRNA. Thus, it is

reasonable to assume that manipulating a small number of

miRNAs would have the ability to modulate quantitative

traits without requiring the control of multiple genes.

To our knowledge, previous reports have not shown the

relationships between miRNA expression profiles and rice

phenotypes in a large number of cultivars. Therefore, to

build these relationships, we first investigated the eight

agronomic traits associated with rice yield in 187 cultivars.

Interestingly and unsurprisingly, all of the investigated

phenotypes displayed a similar N-shaped pattern

(Figure 2), implying that there extreme differences do not

occur among approximately half of the cultivars. This phe-

nomenon can also be observed in the agronomic trait data

from the Taiwan Rice Information System (a database con-

taining historical records of the phenotypes of cultivated

rice in Taiwan). To effectively identify the differentially ex-

pressed miRNAs and eliminate the interference from distri-

bution patterns of phenotypes, the RiceATM pipeline

provides two options for isolating the high- and

low-quantity groups: user-defined selection and k-means

algorithm selection. The results of these selections are then

subjected to significant difference analyses, such as t-tests

and ANOVAs.

In general, plant miRNAs with similar mature se-

quences are grouped into the same family and may be

involved in similar regulation pathways (10, 11).

Therefore, only one primer set was designed for the quanti-

tative real-time PCR analysis to verify the expression level

of the miRNA if more than one member of a certain

miRNA family was selected by the microarray screening.

For instance, following the suggested operation procedures

(Figure 3), the results indicated that 33 miRNAs were sig-

nificantly associated with heading date (Table 2). The three

top-ranked miRNAs with fold changes >1, namely

miR172d, miR818c and miR820c, were selected for the

real-time PCR validation. In addition, we found that the

expression trends of the miR399 family members were ex-

tremely diverse; therefore, only miR399f, which presented

a fold changes > 1, was selected for validation. Our data

revealed that these four miRNAs were expressed more

highly in the cultivars with late heading dates. This report

is the first to identify the phenotype-related miRNAs from

a large panel of cultivars with wide-ranging differences in

agronomic traits. However, the action mechanisms and

functional roles of these miRNAs in the regulation of head-

ing date or rice yield require further investigation.

Among the heading date-related miRNAs, miR172 has

been reported to be conserved and involved in flowering

time and floral patterning by targeting AP2-like transcrip-

tion factors across the monocotyledons and dicotyledons

(30–32). In rice, miR172 was found to be highly expressed

in the late vegetative stages and developing panicles. The

overexpression of miR172b delayed the transition from

spikelet meristem to floral meristem, thereby leading to de-

fects in floral and seed development (33). Furthermore, a

previous study indicated that the increased expression of

miR172d resulted in the decreased expression of its target

genes, SNB and OsIDS1, in phytochrome mutants

as well as a delayed heading date in rice (34). In addition,

several miR169 family members with fold changes

< 1 were also selected by RiceATM screening. Although

Table 2. Gene list of miRNAs associated with the heading

date phenotype as analysed by the RiceATM platform

Rank Accession Fold change

(Hmean/Lmean)

P value Q value

1 osa-miR172d-3p 1.201 1.534E-4 2.961E-2

2 osa-miR818c 1.304 7.608E-4 7.341E-2

3 osa-miR820c 1.136 6.240E-3 4.014E-1

4 osa-miR397a 1.200 6.451E-3 3.113E-1

5 osa-miR443 1.143 8.990E-3 3.470E-1

6 osa-miR438 1.203 9.988E-3 3.213E-1

7 osa-miR169c 0.757 1.054E-2 2.907E-1

8 osa-miR171h 1.252 1.060E-2 2.558E-1

9 osa-miR820b 1.161 1.169E-2 2.506E-1

10 osa-miR169i-5p.1 0.728 1.281E-2 2.472E-1

11 osa-miR821a 1.324 1.353E-2 2.374E-1

12 osa-miR172b 1.184 1.476E-2 2.374E-1

13 osa-miR395f 1.155 1.482E-2 2.201E-1

14 osa-miR440 1.201 1.520E-2 2.095E-1

15 osa-miR818b 1.087 1.679E-2 2.161E-1

16 osa-miR395y 1.051 1.838E-2 2.217E-1

17 osa-miR399h 1.199 2.016E-2 2.289E-1

18 osa-miR419 1.142 2.518E-2 2.700E-1

19 osa-miR395u 1.145 2.576E-2 2.617E-1

20 osa-miR415 1.159 2.623E-2 2.531E-1

21 osa-miR156e 0.807 2.715E-2 2.495E-1

22 osa-miR171c-5p 1.159 2.848E-2 2.498E-1

23 osa-miR812b 1.143 2.856E-2 2.397E-1

24 osa-miR399e 0.840 2.883E-2 2.318E-1

25 osa-miR418 1.172 3.206E-2 2.475E-1

26 osa-miR397b 1.118 3.291E-2 2.443E-1

27 osa-miR399f 1.198 3.426E-2 2.449E-1

28 osa-miR160b-5p 1.136 3.667E-2 2.528E-1

29 osa-miR171e-3p 1.120 3.935E-2 2.619E-1

30 osa-miR396a-5p 1.104 4.053E-2 2.608E-1

31 osa-miR169f.1 0.778 4.248E-2 2.645E-1

32 osa-miR156c-5p 0.834 4.613E-2 2.782E-1

33 osa-miR396b-5p 1.031 4.962E-2 2.902E-1

Hmean, mean miRNA expression in the high-quantity group (early heading

date); Lmean, mean miRNA expression in the low-quantity group (late heading

date).
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they were not used for validation in this study, several re-

ports have shown that miR169 expression might

be involved in changes to the root architecture (35) and

the promotion of stress-induced flowering (36) by

targeting the NF-YA transcription factor in Arabidopsis

thaliana.

In summary, we utilized local rice cultivars with wide-

ranging phenotypic differences and applied population

genetics concepts to build the RiceATM platform, which

has the potential to improve investigations into the correl-

ations between miRNA expression levels and yield-related

phenotypes in rice. For example, miR172, miR397 and

miR156 that were previously discovered to associate with

certain agronomic traits could also be identified in this

database. RiceATM also has the potential to identify the

role of certain miRNAs in specific phenotypes, and help re-

searchers to focus their investigations, as and offer new

tools to breeders researching breeding processes for trait

improvement. However, the major limitation of RiceATM

is the small number of miRNAs (only 193) used to con-

struct the microarray, which may decrease the power of

the results for gene screening on the whole-genome scale.

Further updates and improvements, perhaps using next-

generation sequencing approaches, are needed to increase

the power of analysis.
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Supplementary data are available at Database Online.
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