
Research Article
Study of Track Irregularity Time Series Calibration and
Variation Pattern at Unit Section

Chaolong Jia,1 Lili Wei,2 Hanning Wang,3 and Jiulin Yang4

1 School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2 Chongqing Public Security Bureau, Chongqing 401147, China
3 State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
4China National Tendering Center of Mach. & Elec. Equipment, Beijing 100142, China

Correspondence should be addressed to Chaolong Jia; jiachaolong@bjtu.edu.cn

Received 15 July 2014; Accepted 5 October 2014; Published 4 November 2014

Academic Editor: Xiaobei Jiang

Copyright © 2014 Chaolong Jia et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Focusing on problems existing in track irregularity time series data quality, this paper first presents abnormal data identification,
data offset correction algorithm, local outlier data identification, and noise cancellation algorithms. And then proposes track
irregularity time series decomposition and reconstruction through the wavelet decomposition and reconstruction approach.
Finally, the patterns and features of track irregularity standard deviation data sequence in unit sections are studied, and the changing
trend of track irregularity time series is discovered and described.

1. Introduction

Time series [1–3] is a statistical method of econometrics.
Time series studies the changes showed by observation values
of a certain variable in the system in chronological order
during a given period and tries to find out the characteristics,
future trends and laws over time and the laws are often the
consolidated results of impacts by a variety of other factors.
Time series does not study the interdependence causality
between things, and the study is based on the assumption
that some of the informationwhich comes from the historical
data can be used to explain the current situation and to
predict the future of time series. This reflects an inertia of the
development of things with time.

Generally, there are four changing features such as trend
[4], periodicity [5], randomness [6], and synthesis [7] in time
series and three types of time series prediction including
point prediction which offers prediction values, range pre-
diction which offers prediction value within one interval,
and density prediction which offers the complete probability
distribution of the prediction value.

Time series forecasting is an active study area, and there
are a lot of literature on it. In the researching methods of
time series forecasting, collection and analysis of historical

observations are used to determine the model and to capture
the generating process of underlying data, and then the
model is used to make prediction. This predictive method
is very important in many fields and is widely used in the
business, economic [8, 9], industrial [10, 11], engineering [12–
14], science [15–21], and other communities. Scholars around
the world have been committed to the development and
improvement of time series forecasting model in the past few
decades.

In the study of time series data, there are some pre-
requisites for time series modeling in order to make sure
the results are accurate and the model is effective. These
prerequisites include studying the characteristics of the object
data, selecting representative data for study, controlling data
quality by means of data correction, analyzing data compo-
sition in-depth internally, and discovering implied rules and
characteristics in data. All these need to be further studied.

Railway network undertake the important task of passen-
ger and freight traffic; its performance will play an important
role for rail transport [22–25].The railway track states directly
determine the safety of train operation. The regularity of the
track is not only an important indicator of the track state but
also the basis for evaluation of train running quality. Where
there is track irregularity, speed limit should be paid attention
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to; otherwise, in some extreme occasions, overturning might
occur. As a result, it is urgent for railway departments to
study the law of track irregularity changes so as to master
trends of track state changes and to take preventionmeasures
[26, 27]. Various tracks state that inspection data is the most
important resource and the accuracy of the data can not only
truly reflect the state of the track but also is the basis for
modeling and forecasting. Based on the importance of data,
this paper identifies abnormal data and calibrates offset data
and segment data in order to study track irregularity change
trends. In this context, this paper analyses track irregularity
data, explores the underlined rules of track irregularity
change, predicts future trends, and, ultimately, provides data
and models support of track state changes to relevant railway
departments, to ensure railway transportation safety.

In this study, track irregularity data is provided by State
Key Laboratory of Rail Traffic Control and Safety, Beijing
Jiaotong University.

2. Abnormal Data and Offset Data

The track irregularity inspection data cannot be found
through long-term, continuous monitoring at a certain fixed
monitoring site but through the inspection data of various
subsections. A single detected data is not time series data,
but repeated inspection data is. Meanwhile, each inspection
point corresponding to the inspection data will have some
offset, which is mainly caused by the inspection device. Since
the inspection is dynamic, mileage offset exists in inspection
data, so it requires manual correction for every 10 km during
the operation of track inspection car. However, there are
errors in manual correction, and, according to on-site work
experience, this error range is essentially within 50m, which
is still a great error.

Track geometric irregularity data on the timeline at
each measuring point should be a time-series data, but in
real inspection process, the actual mileage and the mileage
measured by track inspection car does not remain the same,
and in some occasions the previous measuring points do not
correspond to each other, so the result will be as follows: time
series data should be constituted by the track irregularity data
at the same location but at different time; however, in reality
it is constituted by track irregularity data at different time and
at different location.

Specifically, mileage offset can be divided into two cases.
In the first case, in a single inspection, inspection data and
mileage measuring point position correspond to each other
accurately, but there are differences between the correspond-
ing measuring points of each time inspection data. In the
second case, position of the measuring point corresponding
to the inspection data does not correspond with the actual
distance, and the actual data is the data corresponding to a
position before or after the measuring point. In practice, it is
difficult to distinguish these two cases and they can coexist.

3. Identify Abnormal Data

Data deviated from the normal value is commonly referred as
abnormal data or outliers. In track state inspection process,
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Figure 1: Pedigree chart of clustering.
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Figure 2: Results of gauge irregularity cluster.

abnormal inspection data values easily occur due to inspec-
tion equipment, locomotives working conditions, and other
factors. The anomalies of track irregularity data include two
types: overall anomalies and local anomalies.

3.1. Overall Abnormal. The track inspection data between
October 22, 2007 to June 11, 2008, Beijing-Kowloon line,
K500+000–K500+100 unit section is selected as the study
object. Outlier curve and normal curve are separated through
cluster analysis, and two cluster centers clustering results can
be obtained, and outliers track state is detected.

Pedigree chart of previous gauge irregularity inspection
waveform data by cluster analysis is shown in Figure 1.

Gauge irregularity cluster results are shown in Figure 2.
The following chart is normal data, and the previous chart
shows the abnormal value.

3.2. Local Anomaly. There will be local phenomenon outliers
in track inspection data. In this case, the abnormal data often
accounts for a small portion of all the data, but there is a larger
difference in amplitude than other normal data.

In recognition of abnormal data, this paper proposes the
ratio of difference between track irregularity values at adja-
cent measuring points to difference between interval lengths
at adjacent measuring points (usually roughly 0.25m). It is
defined as an abnormal degree in this paper, and abnormal
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Figure 3: Schematic diagram of track irregularity abnormal state
change.

degree is used to determine and identify outliers’ values. The
abnormal degree formula is shown as follows:

𝑑
𝑖
=

𝑠
𝑖
− 𝑠
𝑖−1

𝑚
𝑖
− 𝑚
𝑖−1

. (1)

In the formula, 𝑑
𝑖
is abnormal degree, 𝑠

𝑖
is track irregular-

ity value at measured point 𝑖, 𝑠
𝑖−1

is track irregularity value at
measured point 𝑖 − 1,𝑚

𝑖
is mileage values of measuring point

𝑖, and𝑚
𝑖−1

is mileage values of measuring point 𝑖 − 1.
The geometric form of formula (1) is shown in Figure 3.

In the formula, abnormality degree is the tangent (𝑡𝑔𝛼) in
Figure 3. The judgment of track irregularity outlier’s recog-
nition is shown in the following.

(1) Normal Value. When 𝑡𝑔𝛼 < 𝑘, it indicates that the state of
track irregularity amplitude variations is among the normal
range of variation, and in this case, some injuries such as
broken rail will not appear.

(2) Outlier Value. When 𝑡𝑔𝛼 ≥ 𝑘, it indicates that the track
irregularity state change has exceeded the normal variation
amplitude range, and in this case, the track may have serious
injuries, such as broken rail.

In Figure 3, 𝑡𝑔𝛼 = 𝑘 is the turning point of state exception
changes.

The inspection data of Beijing-Kowloon line in 459 km-
460 km mileage section in February 2009 is selected for the
study, and the presence of local outliers can be found. The
abnormal value of inspection data is shown in Figure 4.

By studying a large number of data, it can be found
that, under normal circumstances, most distribution of 𝑑

𝑖
is

[−0.02, 0.02]; that is, the range can be set to [−0.02, 0.02].
The reasons of the occurrence of abnormal data can

be grouped into two categories after analysis: inspection
equipment problems (when track inspection car is in abnor-
mal situation, abnormal data will occur); the difference of
inspection objects, such as data, when track inspection car
through the main line is different from that through turnout.

Abnormal data causes mutations and it must be elim-
inated. Restoration and correction to abnormal data can
improve the effectiveness of the data in analysis, except for
the interference of outliers, and then accurate characteristics
of track state changing trends can be discovered.
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Figure 4: Local outlier values of inspection data in February 23,
2009.
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Figure 5: Comparison between revised local outliers data and
original value in February 23, 2009.

4. Abnormal Data Treatment

In case of outliers, there are two measures for treatment:
amendment and abandoned.

Deprecated case refers to the situation when data is
covered by outliers in large area and the actual value is
difficult to be restored and thus has to be abandoned in
study. Usually, abandonment is seldom to be seen, and only
exception data occurs sometimes. As long as the abnormal
data is corrected, it can still be used for research.

As the track is continuous physically and spatially, track
geometry irregularity changes along mileage direction show
continuous features. According to this continuity character, it
can be corrected by linear interpolation abnormal data. After
correction of outliers, the comparison between the original
data and revised local anomaly value in inspection data in
February 23, 2009 is shown in Figure 5.

Local details of correction data are shown in Figure 6.

5. Data Correction

Thepractice of usingmileage offset data to analyze track state
at specified measuring point not only brings large deviation
and does not reflect the true state but also is of no significance.
So offset correction is needed.

There are two types of data correction: absolute correction
and relative correction.

(1) Absolute correction refers to the situation when the
mileage that each measuring point corresponds to
after correction is the accurate mileage. As is shown
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Figure 6: Details of the correction data.

in Figure 7, the actual mileage data is set for the
reference point data, and other data corrects the
mileage referring to it. In practice, it needs to know
the precise mileage data of the measuring points in
precise calibration, but it is difficult to be realized
in fact, and it has little significance to research and
practical application.

(2) The relative correction refers to the situation that all
measuring points of each inspection data after correc-
tion are pointing at the same mileage. As is shown in
Figure 8, each inspection data takes 𝑡

1
mileage point

data as the reference data, and other data corrects the
mileage referring to it. But themileage pointmay shift
with the actual mileage points.

Both data after the above two types of correction can be
used to do the time series data analysis, and there is little
difference in practice. The latter is used in this paper.

The goal of mileage correction is to find each measuring
point track irregularity status trends over time. Without
mileage correction, the correspondent mileage of the all
previous inspection data at each correspondent point is not
the same with the actual mileage. This is similar to the
practice that using the time series data consisted of data at
different points to analyze the state changes of a certain point,
and this will inevitably lead to inaccurate results.

In this paper, the idea of track space irregularitywaveform
similarity matching is applied to track irregularity mileage
correction of sections. Typically, similarity distance is used to
judge the similarity between two sequences. Euclidean dis-
tance and non-Euclidean distance are two types of methods
to measure the distance.

Because Euclidean distance needs strict correspondence
between all points of the sequence in the process of comput-
ing, and as a result, the following situation will appear: even
a slight shift in the mileage of the inspection data will also
make Euclidean distance between the two sections become
large. Hence the deficiencies of Euclidean distance needs to
be overcome.

In order to solve the problems of drift and noise data in
track inspection car mileage data, this paper presents time
series correction method based on trend similarity level.

The gauge inspection data in February 20, 2008, to
November 13, 2008, Beijing-Kowloon line, section of
K500+000–K500+075 km is selected for the study. The
distribution of gauge inspection data of two adjacent sections
before correction is shown in Figure 9.

The distribution of gauge irregularity inspection data
details between two inspections on July 24, 2008, and August
16, 2008, is shown in Figure 10.

As can be seen from Figure 10, the gauge data have a
certain offset compared to the corresponding mileage data.

There are three types of changing trends in adjacent track
irregularity time series data elements: rising, falling, and flat.
While 𝑥

𝑗,𝑡𝑖
> 𝑥
𝑗,𝑡𝑖−1

(1 ≤ 𝑖 − 1 < 𝑖 ≤ 𝑛), the data changing
trend is upward; while 𝑥

𝑗,𝑡𝑖
< 𝑥
𝑗,𝑡𝑖−1

(1 ≤ 𝑖 − 1 < 𝑖 ≤ 𝑛), the
data changing trend is downward; while 𝑥

𝑗,𝑡𝑖
= 𝑥
𝑗,𝑡𝑖−1

(1 ≤

𝑖−1 < 𝑖 ≤ 𝑛), the data changing trend is flat. As the research is
carried out on the same section repeatedly, all inspection data
should reflect similar trends of the track irregularity state.

According to the idea of similar trends, data correction
on track irregularity time series is done. There are four steps
of data correction.

First Step: TrendDataTransformation. Gauge irregularity data
is selected for the study. Assume the inspection time series
data, whose length is 𝑛, consisted of 𝑛measurement points in
the unit section as follows:
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(2)

In this formula, 𝑋
𝑗
is inspection sequence data formed

of the 𝑗th inspection of the section and 𝑋
𝑗+1

is inspection
sequence data formed of the 𝑗 + 1th inspection of the
section. As there is mileage offset in track inspection data,
inconsistencies exist in mileages of the measuring points
corresponding to the two sequences.

Trend processing methods of data are as follows.
First, define the trend series 𝑋



𝑗
, 𝑋
𝑗

= (𝑥


𝑗,𝑡1
, 𝑥


𝑗,𝑡2
,

. . . , 𝑥


𝑗,𝑡𝑖
, . . . , 𝑥



𝑗,𝑡𝑛−1
).

Then, series𝑋
𝑗
is transformed into a series trend𝑋



𝑗
.

When 𝑥
𝑗,𝑡𝑖+1

> 𝑥
𝑗,𝑡𝑖

(1 ≤ 𝑖 ≤ 𝑛 − 1), 𝑥
𝑗,𝑡𝑖

= 1.

When 𝑥
𝑗,𝑡𝑖+1

< 𝑥
𝑗,𝑡𝑖

(1 ≤ 𝑖 ≤ 𝑛 − 1), 𝑥
𝑗,𝑡𝑖

= −1.

When 𝑥
𝑗,𝑡𝑖+1

= 𝑥
𝑗,𝑡𝑖

(1 ≤ 𝑖 ≤ 𝑛 − 1), 𝑥
𝑗,𝑡𝑖

= 0.
The process of sequence𝑋

𝑗+1
is the same with𝑋

𝑗
.

Here, 𝑥
𝑗,𝑡𝑖

is the element of the trend series 𝑋
𝑗
, and the

length of trend series𝑋
𝑗
is (𝑛−1). Elements of the trend series
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data𝑋
𝑗
and𝑋



𝑗+1
after conversation are composed of 1, 0, −1,

such as

𝑋


𝑗
= (1, 1, 1, −1, 1, −1, −1, 0, . . .) ,

𝑋


𝑗+1
= (1, 1, −1, −1, 1, −1, 1, 0, . . .) .

(3)

Graphical representation of the process of sequence trend
transformation is shown in Figure 11.

Step Two: Calculate the Similarity of Trend Sequences. To
evaluate the similarity of the trend sequences𝑋

𝑗
and𝑋

𝑗+1
, the

idea is as follows. When the number of equal corresponding
elements between the trend sequences 𝑋

𝑗
and 𝑋



𝑗+1
is larger,

the similarity of trends sequences𝑋
𝑗
and𝑋



𝑗+1
is higher.

Similarity Level Calculation.The resulting tendency sequence
subtracts from each other to form a new sequence:

𝐻 = 𝑋


𝑗+1
− 𝑋


𝑗
. (4)

Assume the number of elements in the sequence 𝐻 is
𝑛 and the number of 0 elements is ℎ, and then define the
similarity level between the trends sequences𝑋

𝑗
and𝑋



𝑗+1
as

𝑙 =
ℎ

𝑛
× 100%. (5)

The larger the number of 0 elements in sequence𝐻 is, the
greater the value 𝑙 is and the higher the similarity of trends

sequences 𝑋


𝑗
and 𝑋



𝑗+1
is. This is the sequence’s similarity

level before correction.

Third Step: The Sequence Translation Transformation. Trans-
lation transformation includes left and right translation
transformation, in which both left and right are relative to
the reference sequence. Take 𝑋



𝑗
as reference sequence, left

and right translation transformation are carried out. The
translation distance is the distance of m measuring and
translation distance is set as 0.25m each time.

(1) Left Translation Transformation. Each time when 𝑋


𝑗+1

is moved left for a measuring point distance, the operation
would amputate the first element of 𝑋



𝑗+1
and the last

element of𝑋
𝑗
. In this case, after elements truncation, the two

sequences𝑋
𝑗
and𝑋

𝑗+1
are of equal length. After one step shift

operation, elements of the two sequences are corresponding
to each other. Next, do the subtraction on the two new
sequences, and then calculate the number of zero elements
in the sequence formed by subtraction and then calculate the
similarity level after the first left translation transformation.

The above process is repeated until 𝑚 measuring points
are moved left, and𝑚 similarity level values are achieved.

(2) Right Translation Transformation. The ideological of right
translation transformation process is the same with the left.
𝑀 similarity level values can be obtained after 𝑚 times of
right translation transformation.

Step Four: Data Correction. Trend similarity level values
between the original trend sequences before the translation
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Figure 9: Distribution of gauge irregularity inspection data from
February 2, 2008, to June 11, 2008, before mileage correction.

transformation and the similarity level values after 𝑚 left
and 𝑚 right translation transformation are selected, and the
maximum value of 2𝑚+1 similarity level values is selected as
correction criterion, which is as follows in detail.

(1) If the trend similarity level before the translation
transformation is the maximum, then the sequence
needs no correction.

(2) When 𝑙
𝑙𝑘

(𝑘 steps left) is the maximum value of
similarity level in 𝑚 similarity level (𝑙

𝑙1
, 𝑙
𝑙2
, . . . , 𝑙
𝑙𝑚
)

of the left translation transformation, then 𝑋


𝑗+1
and

𝑋


𝑗
have the greatest similarity when 𝑋



𝑗+1
moves

the distance of 𝑘 measuring points to the left. Since
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and 𝑋



𝑗
are obtained by transformation of 𝑋

𝑗+1

and 𝑋
𝑗
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the maximum coherence after 𝑋
𝑗+1

moves the dis-
tance of 𝑘 measuring points to the left, and data
mileage between 𝑋

𝑗
and 𝑋

𝑗+1
is corrected to be

aligned with each other.

(3) When 𝑙
𝑟𝑝

(𝑝 steps right) is the maximum value of
similarity level in 𝑚 similarity level (𝑙
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of the left translation transformation, then 𝑋
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are obtained by transformation

of 𝑋
𝑗+1

and 𝑋
𝑗
, therefore, the position of 𝑋

𝑗
and

𝑋
𝑗+1

has the maximum coherence after 𝑋
𝑗+1

moves
the distance of 𝑝 measuring points to the right, and
data mileage between 𝑋

𝑗
and 𝑋

𝑗+1
is corrected to be

aligned with each other.

According to experience, the value range of𝑚 is generally
set from 40 to 100.

Two adjacent inspections sequences can be calibrated by
translation transformation through finding the position of
the maximum value of the similarity level of two adjacent
sequences. If the overall mileage data of 𝑛 times inspection
data at section is calibrated, a certain time inspection data can
be set as a reference data sequence (generally first inspection
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Table 1: Statistics table of similarity level and mileage correction distance.

Number Adjacent inspection
time

The maximum
similarity level

Translational
direction Translation distance Overall translation

distance

1 2008-02-20 and
2008-03-06 235/299 Left 2 Left 2

2 2008-03-06 and
2008-03-23 270/299 Right 1 Left 1

3 2008-03-23 and
2008-04-09 267/299 Left 1 Left 2

4 2008-04-09 and
2008-04-24 264/299 Right 1 Left 1

5 2008-04-24 and
2008-05-26 243/299 Inalienable 0 Left 1

6 2008-05-26 and
2008-06-11 247/299 Left 1 Left 2

7 2008-06-11 and
2008-06-26 256/299 Left 1 Left 3

8 2008-06-26 and
2008-07-07 239/299 Left 1 Left 4

9 2008-07-07 and
2008-07-24 231/299 Right 2 Left 2

10 2008-07-24 and
2008-08-16 220/299 Left 19 Left 21

11 2008-08-16 and
2008-08-26 232/299 Inalienable 0 Left 21

12 2008-08-26 and
2008-09-08 254/299 Inalienable 0 Left 21

13 2008-09-08 and
2008-09-24 254/299 Right 4 Left 17

14 2008-09-24 and
2008-10-10 260/299 Left 1 Left 18

15 2008-10-10 and
2008-11-13 234/299 Inalienable 0 Left 18

16 2008-11-13 and
2008-12-12 246/299 Inalienable 0 Left 18

17 2008-12-12 and
2008-12-25 244/299 Inalienable 0 Left 18

data is selected), and other sequences do translation trans-
formation according to the position of the maximum value
of the similarity level of two adjacent inspection sequences
data. The statistics table of similarity level and translation
transformation distance is shown in Table 1.

After calibration, the distribution of two adjacent gauge
inspection data of sections is shown in Figure 12.

Distribution of gauge irregularity data of July 24, 2008 and
August 16, 2008 is shown in Figure 13.

It should be noted that the mileage offset correction
in this study here is a relative correction, because the first
inspection sequence is set as a reference sequence in the
correction process, and the mileage data is assumed to be
with no offset. But the reality is that there is also mileage
offset of the reference sequence compared to real mileage
data. Therefore, this calibration process belongs to relative
correction, but each inspection data is aligned with each
other after calibration, which will provide a data base for

the research of each measurement point or smaller section
within the time track status changes in the following studies.

6. Track Irregularity Time Series Data
Wavelet Decomposition-Reconstruction

The wavelet transform [28–31] is a new rapidly evolving
field of applied mathematics and engineering disciplines;
it is a new branch of mathematics, which is the perfect
crystal of functional analysis, Fourier analysis, sample trans-
fer analysis, and numerical analysis. Data process or data
series is converted into stages data series to find similar
spectrum characteristics based on some special functions in
the wavelet transform, so as to achieve a data processing.
Wavelet transform is local transformation of space (time) and
frequency, and it can effectively extract information from the
signal anddomultiscale detailed analysis to function or signal
through stretching and panning arithmetic.
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Figure 12: Distribution of gauge irregularity inspection data from
February 20, 2008, to June 11, 2008, after mileage correction.

“Wavelet” means the waveform with a small area, the
limited length and 0 mean, in which “small” refers to the
wavelet with decay, “wave” refers to its volatility, and its
amplitude shocks in alternating positive forms and negative
forms. Compared with the Fourier transform, wavelet trans-
form is the localized analysis of the time (space) frequency.
It does multistage subdivision gradually through stretch-
ing shift operation on the signal (function) and ultimately
achieves time segments at high frequency and frequency
segments at low frequency and can automatically adapt to
the requirements of time-frequency signal analysis, and then
can focus on any detail of the signal and thus can solve
the difficult problem of Fourier transform. It has become a
major breakthrough in the scientific method since Fourier
transform, so wavelet transform is even called “mathematical
microscope”.

0 50 100 150 200 250 300

0

0.5

1

1.5

Inspection point number

G
au

ge

2008-07-24
2008-08-16

−2.5

−2

−1.5

−1

−0.5

Figure 13: Distribution of details of correction of gauge irregularity
inspection data between July 24, 2008, and August 16, 2008.

The decomposition of the function into the representa-
tion of a series of simple basis functions has an important
significance both in theory and in practice. In this paper,
Daubechies wavelet [32, 33] is used to do decomposition
in track irregularity time series data, which is the general
term for a series of binary proposed by the French scholar
Daubechies, and multiscale wavelet decomposition of the
signal can be done by it.

Assume a known signal

𝑓 (𝑥) = ∑𝑎
𝑗,𝑘
𝜙
𝑗,𝑘 (𝑥) , 𝑓 (𝑥) ∈ 𝑉

𝑗
. (6)

The coefficients {𝑎
𝑗,𝑘
, 𝑘 ∈ 𝑍} are known in the formula.

Now 𝑓(𝑥) is decomposed into two components of space
𝑉
𝑗−1

and space𝑊
𝑗−1

:

𝑓 (𝑥) = ∑𝑎
𝑗−1,𝑘

𝜙
𝑗−1,𝑘 (𝑥) +∑𝑑

𝑗−1,𝑘
𝜓 (𝑥) . (7)

In a given situation of sequence {𝑎
𝑗,𝑘
}, respectively, the (𝐽−

1)th approximate level sequence {𝑎
𝑗−1,𝑘

} and (𝑗 − 1)th details
level sequence {𝑑

𝑗−1,𝑘
} can be calculated. According to two

scale relations, it can be known that

𝜙
𝑗−1,𝑘

= 2
(𝑗−1)/2

𝜙 (2
𝑗−1

𝑥 − 𝑘)

= 2
(𝑗−1)/2√2∑

𝑠

ℎ
𝑠
𝜙 (2 (2

𝑗−1
𝑥 − 𝑘) − 𝑠)

= ∑

𝑠

ℎ
𝑠
2
𝑗/2

𝜙 (2
𝑗
𝑥 − (2𝑘 + 𝑠)) = ∑

𝑠

ℎ
𝑠
𝜙
𝑗,2𝑘+𝑠 (𝑥) .

(8)

Similarly, it can be calculated that

𝜓
𝑗−1,𝑘 (𝑥) = ∑

𝑠

𝑔
𝑠
𝜙
𝑗,2𝑘+𝑠 (𝑥) . (9)
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Figure 14: Process of wavelet decomposition.

It can be inferred according to the above relation that

𝑎
𝑗−1,𝑘

= ⟨𝑓 (𝑥) , 𝜙𝑗−1,𝑘 (𝑥)⟩

= ⟨𝑓 (𝑥) ,∑

𝑠

ℎ
𝑠
𝜙
𝑗,2𝑘+𝑠 (𝑥)⟩

= ∑

𝑠

ℎ
𝑠
⟨𝑓 (𝑥) , 𝜙𝑗,2𝑘+𝑠 (𝑥)⟩

= ∑

𝑠

ℎ
𝑠
𝑎
𝑗,2𝑘+𝑠

= ∑𝑎
𝑗,𝑛
ℎ
𝑛−2𝑘

= 𝑎
𝑗
× ℎ

(2𝑘) .

(10)

In the formula, ℎ
𝑘
= ℎ
−𝑘
.

Similarly, it can be calculated that

𝑑
𝑗−1,𝑘

= 𝑎
𝑗
× 𝑔

(2𝑘) , 𝑔



𝑘
= 𝑔
−𝑘
. (11)

The second level decomposition {𝑎
𝑗−2,𝑘

} and {𝑑
𝑗−2,𝑘

} can
be obtained after doing decomposition on the approximate
sequence {𝑎

𝑗−1,𝑘
} resulted from the first stage of decomposi-

tion results again, and the third level decomposition {𝑎
𝑗−3,𝑘

}

and {𝑑
𝑗−3,𝑘

} can be obtained after doing decomposition on
the approximate sequence {𝑎

𝑗−2,𝑘
} resulted from the second

stage of decomposition results, and so on, until themultiscale
wavelet is decomposed into a specified stage.

The decomposition process is called Mallat Pyramidal
algorithm as shown in Figure 15. Mallat algorithm is inspired
by the famous Pyramidal algorithm [34] for image decompo-
sition and combinedwithmultiresolution analysis, proposing
signal tower multiresolution decomposition and synthesis
algorithms. It is named after the data structure which is a
tower structure in decomposition process. Decomposition
and reconstruction process is shown in Figures 14 and 15.

s
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cd2 ca2

cd3 ca3

cd4 ca4

···

g∗

g∗

g∗

g∗

h∗

h∗
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Figure 15: Process of wavelet reconstruction.
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Figure 16: Original waveform signal of track irregularity.

𝑆 is the original signal in figure, 𝑐𝑑1 and 𝑐𝑎1 are detail
sequence and approximate sequence after level 1 decomposi-
tion, and 𝑐𝑑2 and 𝑐𝑎2 are detail sequence and approximate
sequence after level 2 decomposition, and so on.

Standard deviation reflects changes of the deviation from
mean of track irregularity. When distribution of irregularity
around the mean value is more discrete, the representation
of average is poorer, and track irregularity will be in poorer
state. Conversely, the smaller the standard deviation is, the
smaller the variation between the track irregularity values
is, the denser the irregularity distribution around the mean
value is, and the better the representation of the mean and
track state is.

Changes of track irregularity standard deviation series
data of the Beijing-Kowloon line K449+000–K450+000 sec-
tions within 44 times inspection are selected as the research
object, and the original signal is shown in Figure 16.

Daubechies wavelet is chosen in signal decomposition of
track irregularity standard deviation time series data, with
the decomposition depth 3. Mallat tower algorithm is used
for decomposition and reconstruction of track irregularity
standard deviation time series. After wavelet decomposition,
1, 2, and 3 layers are the waveform signal (high frequency)
of details, respectively, represented by 𝐷1, 𝐷2, and 𝐷3; and
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Figure 17:The first layer detail waveform signal of track irregularity
(HF).
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Figure 18: The second layer detail waveform signal of track
irregularity (HF).
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Figure 19: The third layer detail waveform signal of track irregular-
ity (HF).

approximate sequence waveform signal (LF) of layer 3 is
represented by 𝐴3.

The results of specific decomposition are shown in Fig-
ures 17, 18, 19, and 20.

All layers waveform signals after decomposition are
reconstructed with a weight of 1, and the reconstruction
formula is as follows:

𝑠 = 𝑐𝑎3 + 𝑐𝑑3 + 𝑐𝑑2 + 𝑐𝑑1. (12)

Reconstruction results are shown in Figure 21.
Error analysis is shown in Figure 22.
Error analysis showed that when reconstruction is used

by weight of 1, the order of error will be 10
−12, which is

basically negligible.
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Figure 20: The third layer approximation waveform signal of track
irregularity (LF).
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Figure 22: Data error.

It is very important to study the wavelet decomposition-
reconstruction of track irregularity data. After wavelet
decomposition, track irregularity time series data can be
transformed into multifeature smooth sequence from non-
stationary characteristics, which is an effective data prepro-
cessing method in time series modeling with the premise
for a smooth sequence. By wavelet decomposition, further
clarification can be done to the characteristics of data changes
and thus can provide a basis for classification, clustering, and
pattern recognition. Meanwhile, by modeling and analysis
on data at each layer, respectively, optimal fit and predictive
models can be obtained, and then we can carry out weighted
calculation to models of all layers and then get fit and
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Figure 24: Cross level status trends at unit section of K449+200–
K449+225.

predicted values of the original track irregularity time series
data.

7. Change Mode of Unit Section

It is less meaningful to study track state changes of a fixed
inspection point; based on the tools and interval of data
collection, it is of great significance to study the state changes
of the overall length of certain sections.

Track Irregularity inspection data appears near zero
mean, positive and negative phases alternatively. There is a
strong stochastic changing characteristic of each measuring
point in track irregularity state inspection process. Character
of track irregularity state in a single measuring point position
showed that track irregularity track geometry data fluctuate
on the standard values, but this variable is a random process,
with the direction and the size changing from time to time,
and the real trend of track state changes cannot be reflected.
Therefore, irregularity size change in a single direction and
magnitude of a single track geometry measurement points
should not be seen as the basis in the study. The distribution
deviating from the normal value and the rate of development
of the unit section should be used tomeasure changes of track
irregularity values.

In summary, to study the features of a certain length
of section track irregularity state changes, the standard
deviation of track irregularity inspection data can be used as
the object in study.

Take the 44 times’ inspection data of the cross level
and longitudinal track irregularity, Beijing-Kowloon line
K449+000–K450+000 section, in 884 days, between Febru-
ary 20, 2008, and July 23, 2010, as the study data. The section
is divided into 40 unit sections, and each data contain 100
measure points, and the track state changes of each unit
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Figure 25: Left longitudinal level status trends at unit section of
K449+675–K449+700.

section are studied. The way of data selection is shown in
Figure 23.

𝑆
𝑖−1

, 𝑆
𝑖
, and 𝑆

𝑖+1
are division of unit section in study in

figure, 1 km is selected as the length of unit section in this
paper, and 𝑢

1
, 𝑢
2
, . . . are unit sections divided in the study.

According to the data selection methods above, track
irregularity standard deviation data of some unit sections is
shown in Figures 24 and 25.

There are two types of changing modes presented in the
standard deviation curve in the changing process over time
from the analysis of Figures 24 and 25.

(1) Jump. In the adjacent inspection time 𝑡
𝑖−𝑛

, . . . , 𝑡
𝑖
, 𝑡
𝑖+1

,
. . . , 𝑡
𝑖+𝑚

, 𝑠𝑑
𝑖−𝑛

, . . . , 𝑠𝑑
𝑖
, 𝑠𝑑
𝑖+1

, . . . , 𝑠𝑑
𝑖+𝑚

are track irregularity
standard deviations corresponding to them, when

𝑠𝑑𝑖+1 − 𝑠𝑑
𝑖

 ≫
𝑠𝑑𝑖 − 𝑠𝑑

𝑖−1

 ,

𝑠𝑑𝑖+1 − 𝑠𝑑
𝑖

 ≫
𝑠𝑑𝑖−1 − 𝑠𝑑

𝑖−2

 ,

.

.

.

𝑠𝑑𝑖+1 − 𝑠𝑑
𝑖

 ≫
𝑠𝑑𝑖+2 − 𝑠𝑑

𝑖+1

 ,

𝑠𝑑𝑖+1 − 𝑠𝑑
𝑖

 ≫
𝑠𝑑𝑖+3 − 𝑠𝑑

𝑖+2

 ,

.

.

.

(13)

This phenomenon of standard deviation curves is considered
to be showing jump change in the adjacent time 𝑡

𝑖
, 𝑡
𝑖+1

.
The reason for the jump changes in the time 𝑡

𝑖
is that track

state degradation reaches a critical value of maintenance, and
the maintenance operation is imminent; the track condition
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Figure 26: Cycle decomposition of cross level trend at unit section of K449+800–K449+825.

is significantly becoming better in time 𝑡
𝑖+1

, showing that
the track has undergone maintenance operations. This jump
change is the demarcation point of track status cycle change.

(2)GradualVariation. In the adjacent inspection time 𝑡
𝑖−𝑛

, . . .,
𝑡
𝑖
, 𝑡
𝑖+1

, . . . , 𝑡
𝑖+𝑚

, 𝑠𝑑
𝑖−𝑛

, . . . , 𝑠𝑑
𝑖
, 𝑠𝑑
𝑖+1

, . . . , 𝑠𝑑
𝑖+𝑚

are track irreg-
ularity standard deviations corresponding to them, when

𝑠𝑑𝑖+1 − 𝑠𝑑
𝑖

 ≈
𝑠𝑑𝑖 − 𝑠𝑑

𝑖−1

 ,

𝑠𝑑𝑖+1 − 𝑠𝑑
𝑖

 ≈
𝑠𝑑𝑖−1 − 𝑠𝑑

𝑖−2

 ,

.

.

.

𝑠𝑑𝑖+1 − 𝑠𝑑
𝑖

 ≈
𝑠𝑑𝑖+2 − 𝑠𝑑

𝑖+1

 ,

𝑠𝑑𝑖+1 − 𝑠𝑑
𝑖

 ≈
𝑠𝑑𝑖+3 − 𝑠𝑑

𝑖+2

 ,

.

.

.

(14)

This phenomenon of standard deviation curves is considered
to be showing gradual changes in the adjacent time 𝑡

𝑖
, 𝑡
𝑖+1

.
The reason for the gradual change is that the track changes
in a steady state at the moment of 𝑡

𝑖
and the adjacent time,

indicating that track changes are in a maintenance cycle
currently.

It can be considered that the changes of cross level stan-
dard deviation and left longitudinal level standard deviation
show a periodic growth pattern through the curve geometric
features in Figures 24 and 25. Take the changes of cross level
standard deviation state at K449+800–K449+825 unit section
as the example; the changing trend of track irregularity state
characters in 884 days is divided by the two jump models at

268th days and 835th days into three cycles. Among this, it
is a complete changing cycle between the 268th days and the
835th days. The cycle is shown in Figure 26 periodically.

Cyclical characteristics result from the operation of rail-
way maintenance. Due to regular track irregularity main-
tenance and repair work, as well as the timely remediation
repair in cases of overrun, the trend curve of track irregularity
often shows a number of jumping phenomena. Also, since
this maintenance and repair work are conducted at specific
locations, for example, they are operated within tens of
meters, a few hundred meters, and even several kilometers
and the difference of irregularities and targets in remediation
operations, for example, one or a number of remediation to
cross level and longitudinal level, thus in the specific object
section study, the cyclical nature of the state reflected by each
single irregularity inspection will be different.

8. Conclusions

Thecharacteristics of track irregularity data are systematically
analyzed in this paper. Targeted on the problems of data
quality, data offset correction algorithm is proposed based
on trends similarity, as well as the outlier identification and
noise cancellation algorithms based on the abnormal degree,
so as to do treatment on data. Next, the paper proposes track
irregularity time series decomposition and reconstruction
by using the wavelet decomposition and reconstruction
approach. Finally, since the data of track geometry irregu-
larity reflect dynamic changing characteristics of the track
state, as a result, through the research on pattern features of
track irregularity standard deviation data series of the section,
the changing trends of data is discovered and described.
The model proposed in this paper is a general model and
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model can be used in most cases. The results can provide a
theoretical basis for subsequent track condition predictions.
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