OPEN The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR Received: 27 October 2015 Accepted: 02 February 2016 Published: 25 February 2016 Sarah C. Brennan¹, William J. Wilkinson¹, Hsiu-ErTseng¹, Brenda Finney¹, Bethan Monk¹, Holly Dibble¹, Samantha Quilliam¹, David Warburton², Luis J. Galietta³, Paul J. Kemp¹ & Daniela Riccardi¹ Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluiddriven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of CI--driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca²⁺-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases. During gestation, the developing lung goes from a fluid-filled organ in the fetus to a fully formed, highly mature structure equipped for optimal gaseous exchange from the moment of birth $^{1-3}$. An impairment of the lung developmental programme *in utero* is at the basis of many respiratory diseases 3,4 . Lung development is characterised by five developmental different stages: embryonic, pseudoglandular, canalicular, saccular and alveolar. At the end of the embryonic stage, the lung is almost a compact structure with very small intraluminal volume and poor compliance. During the pseudoglandular stage (E11.5-16.5 in mice, weeks 5-17 in humans) there is a rapid expansion of the conducting airways when the developing lung undergoes stereotypic branching and budding⁵, a process which is driven by fluid secreted into the lung lumen to generate the distending pressure required for normal expansion^{6,7}. Sustained reduction in lung expansion, such as that observed as a secondary consequence of failed closure of the diaphragm during fetal development leading to congenital diaphragmatic hernia8, contributes to fetal lung hypoplasia, which is highly associated with respiratory insufficiency at birth and respiratory distress syndrome during childhood². On the other hand, increasing the intraluminal hydrostatic pressure by tracheal occlusion leads to an increase in lung DNA and protein content, and to lung hyperplasia^{2,3,9,10}. Critical to the generation of the transpulmonary pressure gradient necessary for lung expansion is transepithelial Cl- transport^{7,11-14} which, together with Na⁺ electrodiffusion, drives net water movement as a consequence of the osmotic pressure gradient⁷. Fetal lung development occurs in a relatively hypercalcaemic environment. Free ionized extracellular calcium concentration ([Ca²⁺]₀) in both the human and mice fetus is approximately 1.6–1.7 mM, compared to 1.1–1.3 mM in the adult¹⁵. Recently, we have demonstrated that this relative fetal hypercalcaemia is necessary for optimal prenatal lung fluid secretion¹⁰, an effect which is mediated by the extracellular calcium-sensing receptor (CaSR)^{10,16}, a G protein-coupled receptor (GPCR) whose expression is developmentally regulated and confined to the prenatal ¹School of Biosciences, Cardiff University, CF10 3AX, United Kingdom. ²The Saban Research Institute, Children Hospital Los Angeles, 4650 Sunset Blvd # 83, Los Angeles, CA 90027, +1 323-362-5422, USA. 3Laboratory of Molecular Genetics, Giannina Gaslini Institute, Genoa, Italy. Correspondence and requests for materials should be addressed to S.C.B. (email: BrennanSC@cardiff.ac.uk) or D.R. (email: Riccardi@cardiff.ac.uk) | | Primary
Antibody | Antibody
Concentration | Antigen
Retrieval | Blocking
Solution/
Antibody
dilution | Secondary Antibody | Company | | |---------------------|--|---------------------------------------|----------------------|---|---|--------------------------|--| | CFTR | Polyclonal
rabbit CFTR
(ab59394) | Mouse (1:200)
Human (1:200) | Citrate Buffer | 3% NGS
+ 1% BSA | | | | | TMEM16A | Polyclonal
rabbit
TMEM16A
(ab53212) | Mouse (1:200)
Human (1:200) | Tris/EDTA | 5%
Seablock
+ 1% BSA | Goat anti-rabbit IgG-HRP
(P0448) | | | | Bestrophin-1 | Polyclonal
rabbit
human
Bestrophin
(ab14927) | Mouse (1:200)
Human (1:200) | Tris/EDTA | 5%
Seablock
+ 1% BSA | | Abcam | | | CaSR | Monoclonal
mouse CaSR
(ab19347) | Human (1:200)
FRT cells
(1:100) | Citrate Buffer | 5%
Seablock
in PBS | Rabbit anti-mouse
IgG-HRP (P0260) IgG -
Alex594 (A-11032) | | | | Adenylate Cyclase 1 | Polyclonal
rabbit AC1
(ac38331) | Human fetal
lung (1:200) | Citrate buffer | 5%
Seablock
in PBS | Goat anti-rabbit IgG-HRP | | | | NKCC | Polyclonal
goat NKCC1
(sc21545) | Mouse (1:200)
Human (1:50) | Tris/EDTA | 5%
Seablock
in PBS | Donkey anti-goat IgG-
HRP (sc2020) | | | | CLCA1 | Polyclonal
rabbit
CLCA1
(sc67157) | Human (1:300) | 1% SDS | 5%
Seablock
in PBS | | Santa-Cruz Biotechnology | | | CLCN2 | Polyclonal
rabbit
CLCN2
antibody
(ab49883) | Human (1:200) | Tris/EDTA | 5%
Seablock
+ 1% BSA | Goat anti-rabbit IgG-HRP | | | Table 1. Summary of primary antibody concentration, antigen retrieval solution and blocking solution for each protein. mouse and human distal lungs^{10,17,18}. A number of different chloride channels have been shown to be expressed in fluid-secreting fetal alveolar epithelial cells including members of the chloride channel (CLC) family^{19,20}, the Ca^{2+} -activated chloride channel TMEM16A^{21,22}, bestrophin-1²³ and the cystic fibrosis transmembrane conductance regulator (CFTR)²⁴, but the exact mechanism by which activation of the CaSR leads to chloride-driven fluid secretion in the fetal lung lumen is currently unknown¹. In this study, we sought to examine how activation of the CaSR leads to increased fluid secretion and lung growth within the developing human lung. Because much of the work aimed at testing the contribution of each $\rm Cl^-$ channel to lung fluid secretion has been done using genetically modified mice, initially we compared the expression of a variety of chloride channels in the developing mouse and human fetal lungs using immuno-histochemistry. Subsequently we investigated the effects of pharmacological (calcimimetics) and physiological ($\rm Ca^{2+}_{o}$) CaSR activation on fluid secretion and identified the main $\rm Cl^-$ channels responsible for this process in chemically-defined, serum-free whole mouse and human lung explant cultures. Finally, the signalling machinery involved in CaSR-driven fluid secretion was examined using live imaging in an *in vitro* cell reporter system. #### Methods **Ethical approval.** Wild type C57Bl/6 mice were housed conventionally with a 12h light:dark cycle and had free access to food and water. All animal procedures were approved by the UK Home Office and carried out in the UK in accordance with the Animal (Scientific Procedures) Act 1986. Human fetal tissue was obtained from ethically-consented maternal donor medical termination at 7–11 week of pregnancy following the guidelines of the Polkinghorne and Department of Health reports with approval from South East Wales Research Ethics Committee 25,26 . Upon consent for termination, full written consent for the tissue was obtained from the maternal donor as part of the Medical Research Council (UK)-sponsored South Wales Initiative for Transplantation (SWIFT) program. Gestational age was first assessed by ultrasound and confirmed using morphometric parameters after therapeutic abortion. **Immunohistochemistry and immunofluorescence.** Human fetal (7–11 week post conception) or E12.5 mouse lungs were fixed in formalin overnight and subsequently embedded in paraffin. 5μm thick sections were deparaffinised in xylene and rehydrated using a decreasing alcohol-water series (100%, 90%, 75% ethanol), followed by washing in distilled water. Fischer rat thyroid (FRT) cells stably transfected with CFTR were grown on sterilized glass coverslips of 13 mm diameter in 24 well plates. The culture medium was removed and the cells were fixed in 4% (w/v) PFA in PBS for 15 minutes. The immunohistochemical protocol used was established and optimised for each species and antibody (see Table 1). Briefly, permeabilization with 1% SDS or heat-induced epitope retrieval was perform with either citrate buffer pH 6 or Tris/EDTA buffer, pH 9 to recover the antigenicity of the tissue. Endogenous peroxidase activity was quenched by incubating the tissue with 1% hydrogen peroxide in methanol. Non-specific antibody binding was prevented by incubating the slides with blocking solution for 1 hour at room temperature. Primary antibodies were diluted in blocking solution and applied to slides overnight at 4°C. Negative controls were carried out through substitution of the primary antibody with either
rabbit or goat serum. Protein immunoreactivity was detected using a horseradish-peroxidase conjugated secondary antibody (Dako UK, Cambridgeshire, U.K.; 1:200) applied for 1 hour at room temperature. Antigen-antibody binding was visualized with diaminobenzidine (Sigma-Aldrich), after which the slides were counterstained with haematoxylin. The slides were dehydrated using an increasing alcohol series (30 s in 75% ethanol, 4 min in 100% ethanol) and finally cleared in xylene before being mounted using DPX mounting medium (Depex-Polystyrene in xylene, Timstar laboratory Suppliers, Ltd, Marshfield Bank, U.K.). Slides were left to dry overnight and then photographed using a microscope attached to an Infinity 2-2C CCD camera (Lumenera, Ottawa, Canada) and/or scanned using a slide scanner (MIRAX SCAN, Carl Zeiss MicroImaging GmbH, Göttingen, Germany). $5\,\mu m$ thick, paraffin embedded week 10 human fetal lungs were dewaxed and rehydrated as described above. Samples for immunofluorescence were washed in $50\,m M$ NH $_4 Cl$ in PBS to quench free aldehyde groups remaining from the fixation step. Permeabilization and/or heat-induced epitope retrieval was performed as described above. Non-specific antibody binding was prevented by incubating the slides with blocking solution for 1 hour at room temperature. Primary antibodies were diluted in blocking solution and applied to slides overnight at 4 °C. After washing in PBS, primary antibody binding was visualized using Alexa Fluor 594 fluorescence-dye coupled secondary antibodies in blocking buffer. Nuclei were counterstained with Hoechst 34580. Coverslips with adhering cells were then mounted on standard glass slides using ProLong Gold® (Life Technologies), while human lung slide were mounted in DPX after dehydration. Negative controls were carried out through substitution of the primary antibody with either rabbit or goat serum. Slides and cells were left to dry overnight and then epifluorescence images of immunostained tissues and cells were analysed and photographed with an Olympus BX61 automated microscope equipped with a 100 W high pressure mercury lamp, using AnalySIS software (Olympus Microscopy, Essex, U.K.). **Lung explant culture.** Lungs explanted from 7–9 week human fetal tissue and E12.5 mice were cultured for 48–72 hours according to previous published protocols^{10,27–29}. Human fetal lungs were separated into two halves with the trachea alternatively kept with the left or right lung in the same experimental series, a manoeuvre which did not affect lung growth. Timelapse images were captured at 0, 24, 48 and 72 hours with a dissecting microscope equipped with a digital camera (Leica Microsystems, Milton Keynes, U.K.). For the fetal Ca^{2+}_{o} conditions, $[Ca^{2+}]_{o}$ in the DMEM-F12 medium was increased from 1.05 mM $[Ca^{2+}]_{o}$ to 1.70 mM $[Ca^{2+}]_{o}$ using 1 M $CaCl_{2}$ (Sigma-Aldrich, Gillingham, U.K.). Inhibitors of chloride-transporting mechanisms included the wide-spectrum anion exchange inhibitor 4,4′-Diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS) (Sigma-Aldrich) and the CFTR specific inhibitor Inh-172 (Tocris) and the loop diuretic, bumetanide (Sigma-Aldrich). All chloride channel inhibitors were dissolved in DMSO, which has previously been shown not to affect lung explant growth¹⁰. Vehicle control experiments were performed by adding the equivalent amount of DMSO to the lung cultures. Measurements of lung fluid secretion. Transepithelial electrical potential difference (PD), indicative of anion-driven fluid secretion into the lumen of the developing lung, was recorded as previously described¹⁰ after 48 or 72 hours for lung explant cultures for mouse and human lung, respectively. Briefly, lung explants attached to filters were placed in a recording chamber mounted on an Olympus CK41 inverted microscope (Olympus, Southall, U.K.) and secured using a slice anchor (Warner Instruments, Hamden, CT, USA). The recording chamber was filled with a solution containing (in mM): 135 NaCl, 5 KCl, 1.2 MgCl₂, 1 CaCl₂, 5 HEPES, 10 glucose, pH 7.45. A 2–3 MΩ borosilicate glass electrode (World Precision Instruments, Stevenage, U.K.) was filled with a solution containing a 0.4% trypan blue/0.85% saline solution (Invitrogen). Electrodes were slowly pushed into a terminal lumen whilst maintaining positive pressure, with the presence of trypan blue in the lumen being indicative of successful access to the lumen. Once access to the lumen had been achieved, positive pressure was immediately removed and the PD was recorded after a 5 min equilibration period. E12.5 mouse lungs were cultured for 48 h in the presence of 1.05 mM or 1.70 mM Ca²⁺_o in the presence or absence of the wide-spectrum anion exchange inhibitor which blocks Ca²⁺-activated chloride channels including TMEM16A and bestrophin, 4,4'-Diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS)^{1,30,31}, of the loop diuretic bumetanide, or of the selective CFTR inhibitor (Inh-172). Unless stated otherwise, transepithelial PD measurements were expressed as percentage of 1.05 mM Ca²⁺_o control. **Measurements of CFTR activation using a halide-sensitive reporter system.** CaSR-dependent activation of CFTR was measured by single cell imaging of Fischer rat thyroid (FRT) cells stably transfected with the human CFTR channel and a halide sensitive YFP (YFP-H148). The FRT-CFTR-YFP cell line has previously been used for high-throughput screening for the identification of CFTR modulators³². FRT-CFTR-YFP cells were maintained in Coon's modification of F12 (Sigma-Aldrich) supplemented with sodium bicarbonate (3.2 mM), 2 mM glutamine, 100 U/mL penicillin, $100\,\mu\text{g/mL}$ streptomycin and 10% fetal bovine serum (Invitrogen). Cells were plated on to 13 mm glass coverslips 48 h before being placed in the light path of an inverted microscope (Olympus IX71, Southend-on-Sea, U.K.). A Xenon arc fluorescence light source was used to excite the intracellular YFP at 470 nm and visualise emission at 520 nm. Cells were equilibrated using standard Dulbecco's PBS (137 mM NaCl, 2.7 mM KCl, 8.1 mM Na $_2$ HPO $_4$, 1.5 mM KH $_2$ PO $_4$, 1 mM CaCl $_2$ and 0.5 mM MgCl $_2$, pH 7.4) in presence of pharmacological agents including the adenylate cyclase activator forskolin ($20\,\mu$ M), the specific CaSR allosteric activator NPS-R568 ($1\,\mu$ M), the CFTR inhibitor Inh-172 ($10\,\mu\text{M}$) and the adenylate cyclase inhibitor MDL-12330A ($25\,\mu\text{M}$). During the experiments cells were pre-incubated with Dulbecco's PBS in the presence and absence of various activators and inhibitors for at least 5 min before being perfused with Iodide-rich Dulbecco's PBS ($137\,\text{mM}$ NaI, $2.7\,\text{mM}$ KCl, $8.1\,\text{mM}$ Na $_2$ HPO $_4$, $1.5\,\text{mM}$ KH $_2$ PO $_4$, $1\,\text{mM}$ CaCl $_2$ and $0.5\,\text{mM}$ MgCl $_2$, pH 7.4) while YFP fluorescence was imaged. Iodide influx quenches the cells YFP fluorescence with a rate that is dependent on the halide permeability of the cell, and therefore on the activity of the CFTR channel. Quenching rates were calculated by fitting the YFP fluorescence decay with a one-phase exponential decay function using GraphPad Prism 6.01 (GraphPad Software, La Jolla, CA, USA). **Data analysis and statistics.** Data are expressed as mean \pm SEM. Significance was determined using a Student's t test or one-way ANOVA with Tukey's post-test. Statistical analyses were run in GraphPad Prism 6.01 and observations were deemed to be significantly different for p value < 0.05. #### Results Expression of Cl⁻ channels in the developing mouse and human fetal lungs. Our previous studies have demonstrated that CaSR expression is developmentally regulated in the fetal mouse and human lung, with expression peaking at around E12.5–13.5 for the mouse and weeks 8–11 in humans, during the pseudoglandular stage of lung development^{10,18}. We have also shown previously that, in intact mouse pseudoglandular lungs, CaSR activation leads to Cl⁻-driven fluid secretion by unknown mechanisms¹⁰. However, the relevance of these findings to human lung development and the molecular mechanisms underpinning this process are unknown. To answer these queries, we investigated the expression of key Cl⁻ channels putatively involved in anion-driven fluid secretion in the developing mouse and human lung *in vivo* during gestational stages of maximal CaSR expression. Immunohistochemistry carried out on serial sections of E12.5 mouse (Fig. 1, left panels) and in human (Fig. 1, right panels) fetal lungs at 9–11 week gestation demonstrated that in both species the airway epithelium expresses the Ca²⁺-regulated Cl⁻ secretory channels, anoctamin-1/transmembrane member 16A (TMEM16A), bestrophin-1 and the cystic fibrosis transmembrane conductance regulator (CFTR). TMEM16A expression was detected apically in mouse fetal lungs (Fig. 1, left panel, block arrow) while in human fetal lungs TMEM16A appeared to be expressed predominantly at the basolateral domain of the pulmonary airways (Fig. 1, arrowhead) although modest staining was observed apically in small airways (Fig. 1, block arrow). Bestrophin-1 expression was detected apically in the airway epithelia of mouse and human fetal lungs (Fig. 1, middle panels, block arrow). In the human lung, bestrophin-1 was also expressed in a sub-population of cells in the mesenchyme. Based on their arrangement and elongated appearance, these appear to be smooth muscles cells (Fig. 1, open arrow). Strong apical CFTR expression was found in the developing mouse pulmonary airways (Fig. 1, bottom left panel, block arrow). Consistent with previous findings in human fetal lungs^{24,33}, CFTR immunoreactivity was found apically and basolaterally in the pulmonary airways of human fetal lung at 10 week gestation (Fig. 1, bottom right panel, arrowhead). CFTR was also found in a discrete population of cells encircling the primitive lumen. These cells may be airway smooth muscle cells according
to their arrangement and appearance, which is flattened and elongated (Fig. 1, left panel, open arrow). For all the antibodies tested negative controls, performed in serial sections, yielded no signals, as shown in the insets. In the developing lung, basolateral Cl^- entry is mediated largely via the $Na^+/K^+/2Cl^-$ co-transporter 1, NKCC1^{31,32}, and indeed NKCC1 immunoreactivity was found at the basolateral side of the developing mouse and human lung (Fig. S1)^{34,35}. In humans, NKCC1 immunoreactivity was detected in the columnar and cuboid epithelial cells lining the smaller airways. Furthermore, NKCC1 was present in the mesenchyme cells surrounding the human developing airways. Together, these results indicate that, in both human and mouse, bestrophin and/ or CFTR are the most likely candidates for apical Cl^- -driven fluid secretion. TMEM16A could also contribute to this process in the developing mouse, but not in the human lung. The apical Cl $^-$ channels, TMEM16A and bestrophin-1, do not contribute to Ca $^{2+}_{o}$ -stimulated lung fluid secretion in the mouse fetal lung. To elucidate which mechanisms are involved in CaSR-mediated fluid secretion, we measured transepithelial potential difference (PD) as a surrogate for anion-driven fluid secretion. Thus, E12.5 mouse lungs were cultured in the presence of blockers of those Cl $^-$ channels found to be expressed at the apical membrane of lung lumen epithelial cells of the developing mouse lung, namely TMEM16A and bestrophin-1. Lungs cultured for 48 hours in the presence of medium containing 1.05 mM Ca $^{2+}_{o}$ in the absence or presence of DIDS ($100\,\mu\text{M}$) appeared to be comparable in morphology and transepithelial PD (Fig. S2, $100\pm44\%$ in control conditions, $95\pm27\%$ in the presence of DIDS, n=5-11, ns). Culturing E12.5 mouse lungs for 48 hours in the presence of medium containing 1.70 mM Ca $^{2+}_{o}$ led to an increase in transepithelial PD to $181\pm29\%$ (Fig. S2, n=6, p<0.01 vs. $1.05\,\text{mM}$ Ca $^{2+}_{o}$ control). DIDS did not significantly alter the transepithelial PD when added to medium containing $1.70\,\text{mM}$ Ca $^{2+}_{o}$ (Fig. S2, $225\pm43\%$, n=6, not significant (n.s.), p>0.05). Figure S2 also shows that DIDS did not affect fluid secretion of mouse lungs cultured in the presence of ether $1.05\,\text{mM}$ Ca $^{2+}_{o}$ or $1.70\,\text{mM}$ Ca $^{2+}_{o}$. This result suggests that neither TMEM16A nor bestrophin-1 significantly contribute to Ca $^{2+}_{o}$ -stimulated fetal mouse lung fluid secretion. Furthermore, we tested the contribution that CaSR makes to the regulation of basolateral Cl $^-$ entry by measuring transpetithelial PD in lungs cultured in the presence of the loop diuretic bumetanide, an NKCC1 blocker. Lungs cultured in medium containing 1.05 mM Ca $^{2+}_{o}$ showed a decrease in luminal PD to increasing concentrations of bumetanide, with luminal PD reduced by ~50% compared to 1.05 mM Ca $^{2+}_{o}$ alone (Fig. S3 n = 16–23, p < 0.001). Similar to that which we have reported previously 10 , culturing E12.5 lung in medium containing fetal Ca $^{2+}_{o}$ concentrations (i.e., 1.70 mM) increased transepithelial PD compared to lungs cultured in the presence of Figure 1. Expression of chloride channels in the developing mouse lungs and human fetal lungs. Paraffinembedded, $5\,\mu$ m-thick sections from E12.5 mouse (left panel) and week 9–11 human fetal lungs (right panel) were dewaxed and used for immunohistochemistry. Expression of the Ca²⁺-activated chloride channels TMEM16A, bestrophin-1 and CFTR were visualised using DAB (brown straining) in the lung epithelium. Sections were counterstained with Harris' hematoxylin (blue staining). Negative controls were carried out in serial sections form the same lungs by substituting the primary antibody with an isotype control (inset). Block arrows show apical expression in the epithelium, arrowheads show basolateral expression and open arrows show expression in the mesenchyme. Scale bar = $100\,\mu$ m. medium containing 1.05 mM Ca $^{2+}_{o}$ control (Fig. S3, 124 \pm 13% vs. 100 \pm 15%, n = 23–29, p < 0.001). Culturing these lungs in the presence of bumetanide (30 μ M) led to decreases in luminal PD to ~75% of the 1.70 mM Ca $^{2+}_{o}$ control (92 \pm 10% vs. 124 \pm 13%, n = 17–29, p < 0.001). These results suggest that basolateral Cl $^-$ entry is not regulated by CaSR/Ca $^{2+}_{o}$. CFTR mediates CaSR-induced fluid secretion in the mouse and human fetal lung. The expression studies reported previously suggest that CFTR might be involved in CaSR-stimulated apical Cl $^-$ -secretion. To test this hypothesis further, we performed electrophysiological recordings of mouse and human lung explant cultured in the presence or absence of the specific CaSR allosteric activator 36 , NPS-R568, with or without the CFTR inhibitor, Inh-172. Culturing E12.5 mouse lungs for 48 h in the presence of low (i.e., $1.05\,\mathrm{mM}$) Ca $^{2+}_{\,\,0}$ medium containing NPS-R568 (10 nM) led to a significant increase in transluminal PD from $100\pm13\%$ (n = 9) to $184\pm19\%$ (Fig. 2a; n = 9, p < 0.01). Addition of the CFTR inhibitor Inh-172 (10 $\mu\mathrm{M}$) 37 significantly blocked this increase (Fig. 2a; $86\pm17\%$, n = 9, p < 0.001). These results suggest that, in mouse lungs, CaSR promotes fluid secretion via activation of CFTR. To examine whether, in the developing human lung, activation of the CaSR is also involved in this $Ca^{2+}{}_{o}$ -driven fluid secretion via activation of CFTR, we performed two sets of paired experiments using right and left lobes of the same lungs and compared 1.05 mM $Ca^{2+}{}_{o}$ vs. 1.05 mM $Ca^{2+}{}_{o}+100$ nM R568 (to test for CaSR-mediated activation of fluid secretion); and another comparing 1.05 mM $Ca^{2+}{}_{o}+100$ nM R568 vs. v Figure 2. CaSR activation drives fluid secretion in fetal mouse and human lungs. (a) E12.5 lungs were cultured for 48 hours in the presence of medium containing either 1.05 mM, 1.05 mM Ca²⁺ $_{\rm o}$ + the calcimimetic NPS-R568 or 1.05 mM Ca²⁺ $_{\rm o}$ + NPS-R568 + the CFTR blocker, Inh-172, before measurement of transluminal potential differences were carried out. Pharmacological CaSR activation almost doubled the PD from $100\pm13\%$ to $184\pm19\%$, effect which was completely abolished by Inh-172. Data were pooled from 3–4 separate isolations, n = 9, for all conditions and are presented as mean (as a percentage of 1.05 mM Ca²⁺ $_{\rm o}$ control) \pm SEM. **p < 0.01, one-way ANOVA with Tukey post-test. (b) Human lung rudiments were separated into two halves and then kept in culture for 72 h in medium containing either 1.05 mM Ca²⁺ $_{\rm o}$ in the presence or absence of 100 nM NPS-R58 (n = 4), or 1.05 mM Ca²⁺ $_{\rm o}$ + 100 nM NPS-R568 (n = 4) in the presence or absence of $10\,\mu M$ Inh-172. Culturing human fetal lungs rudiments in the presence of $1.05\,m M$ Ca $^{2+}_{o}+100\,n M$ NPS-R568 induced an increase in transluminal potential difference compared to its paired lung half cultured in $1.05\,m M$ Ca $^{2+}_{o}$ alone. Furthermore, culturing fetal lung halves in the presence of medium containing $1.05\,m M$ Ca $^{2+}_{o}+100\,n M$ NPS-R568 $+10\,\mu M$ Inh-172 decreased transluminal potential difference in comparison to its paired $1.05\,m M$ Ca $^{2+}_{o}+100\,n M$ NPS-R568 lung half. Data are presented as mean difference from $1.05\,m M$ Ca $^{2+}_{o}+100\,n M$ R568 \pm SEM. **p<0.01, paired t-test. (c) CaSR and CFTR are co-localised in the human fetal lung epithelium. Week 10 gestation human fetal lungs were obtained from maternal donors. Sections from ethically consented week 10 human fetal lungs were incubated with anti-CFTR (1:200) or anti-CaSR antibodies (1:200) and immunoreactivities were detected using Alexa Fluor 594 goat anti-rabbit secondary antibodies (1:200). Staining indicates that both CFTR and CaSR are present in the columnar and cuboidal epithelium cells of the primitive airways of human fetal lung. experiments, transepithelial PD was normalised against the $1.05\,\mathrm{mM}$ Ca²⁺ $_0$ + $100\,\mathrm{nM}$ R568 condition. Human lung rudiments cultured in medium containing $1.05\,\mathrm{mM}$ Ca²⁺ $_0$ showed significantly reduced transepithelial PD compared to those cultured in $1.05\,\mathrm{mM}$ Ca²⁺ $_0$ + $100\,\mathrm{nM}$ R568 (Fig. 2b, $56\pm10\%$ vs. 100% (n = 4), p < 0.05) indicative that pharmacological CaSR activation almost doubled Cl⁻ fluid secretion also in the human fetal lung. This CaSR-mediated increases in transluminal PD was blunted in the presence of Inh-172 (Fig. 2b, 100% vs $68\pm9\%$, p < 0.05), confirming that CaSR activation induces an increase in fluid secretion via activation of CFTR in human fetal lung. Immunofluorescence microscopy of pseudoglandular human fetal lung sections revealed that both CaSR and CFTR were co-expressed at the apical membrane of the bronchial epithelium, suggesting the possibility of a close functional interaction between these two proteins (Fig. 2c). Physiological fetal hypercalcemia activates the CaSR leading to an increase in CFTR-driven fluid secretion in the human, but not in the mouse fetal lung. The fetus is relatively hypercalcemic compared to the mother, reaching Ca^{2+}_{0} concentrations of ~1.7 mM, at which the CaSR is maximally active and that would lead to CaSR-mediated CFTR activation during developmental periods in development when the receptor is expressed. To test directly the hypothesis that fetal hypercalcemia, acting on the CaSR, provides a physiological stimulus for lung fluid secretion, we cultured E12.5 mouse lungs for 48 hours in medium containing either 1.05 mM or 1.70 mM Ca^{2+}_{0} in presence or absence of Inh-172 (10 μ M), before measurements of transepithelial PD were conducted. Lungs cultured for 48 hours in medium containing 1.70 mM Ca²⁺₀ exhibited the expected increase in luminal PD to $221 \pm 17\%$ (Fig. 3a, n = 9, p <
0.05). However the addition of Inh-172 did not inhibit Ca^{2+}_{0} -mediated changes in transepithelial PD (Fig. 3b, $217 \pm 38\%$, n = 10, n.s., p > 0.05). In paired human fetal lungs (i.e., one lung per condition from the same donor), lung rudiments cultured in medium containing 1.05 mM Ca^{2+}_{o} showed a reduced transepithelial PD compared to 1.70 mM Ca^{2+}_{o} (Fig. 3b, $40 \pm 5\%$ vs 100 (n = 4), p < 0.01). However, in stark contrast to what we observed in mouse, the addition of Inh-172 blocked this increase, as evidence by the drop in transepithelial PD from 100 to $50 \pm \%$ (Fig. 3b, n = 19, p < 0.001). Together, these results suggest that physiological fetal hypercalcemia stimulates fluid secretion via the CaSR in the developing human lung, a process which does not occur in the developing mouse lung, where hypercalcaemia drives anion-driven fluid secretion through channels other than CFTR. **CaSR-mediated activation of CFTR requires adenylate cyclase.** Having ascertained that, in the human fetal lung, CaSR and CFTR are functionally coupled, we investigated further the cellular mechanisms underpinning CaSR-mediated CFTR activation using an *in vitro* system previously used in high-throughput screening for identification of CFTR modulators³². Specifically, Fischer Rat Thyroid (FRT) cells, which here show to express endogenously the CaSR (Fig. 4a) were stably transfected with human CFTR and a halide-sensitive YFP probe (FRT-CFTR-hsYFP). Perfusion of iodide-rich PBS across FRT-CFTR-hsYFP cells led to a slight quenching of YFP fluorescence during the first three minutes due to the inherent halide permeability of the cell at a rate of $k = 0.42 \pm 0.02$ (Fig. 4b, Table 2, N = 7, n = 197). When FRT cells were pre-incubated with forskolin to evoke an increase in intracellular cAMP levels³⁸, a stimulus known to open CFTR³² (thereby acting as a positive control) the introduction of the iodide-rich DPBS led to a sharp decrease in YFP fluorescence at a rate of $k = 1.76 \pm 0.05$ to $46 \pm 2\%$ (Fig. 4b, Table 2, N = 10, n = 150, rate: p < 0.001 vs. time control), indicating that the opening of CFTR led to an increase in the halide permeability of the FRT-CFTR-hsYFP cells. To examine the effect of pharmacological CaSR activation on CFTR, FRT-CFTR-hsYFP cells were pre-incubated with the calcimimetic NPS R-568 (1 μ M) before addition of the iodide-rich PBS. Pre-incubation with NPS R-568 led to a significant increase in the rate of YFP quenching compared to control, quenching YFP fluorescence to 61 \pm 3% at a rate constant of $k=1.31\pm0.03$ (Fig. 4b, Table 2, rate: p<0.001 vs. time control, N=9, n=168). Next, we determined whether this CaSR-mediated increase in halide permeability was due to opening of CFTR by pre-incubating the cells with NPS-R568 + Inh-172. This manoeuvre prevented CaSR-mediated activation of CFTR (Fig. 4b, Table 2, $k=0.42\pm0.03$, p<0.001 vs. $1\,\mu$ M NPS-R568, n.s. vs. time control, N=8, n=132). Similarly, cell pre-incubation with medium containing NPS-R568 + MDL-12330A, a pan-inhibitor of adenylate cyclase, also significantly reduced YFP quenching rates (Fig. 4b, Table 2, $k=0.56\pm0.05$, p<0.001 vs $1\,\mu$ M NPS-R568, N=6, n=93), demonstrating that the CaSR-mediated activation of CFTR requires activation of adenylate cyclase. Classically CFTR is activated by cyclic AMP (cAMP)-dependent activation of protein kinase A (PKA). However, intracellular calcium ion (Ca^{2+}_{ij}) -mobilising agonists are known to couple to Ca^{2+} -activated chloride channels³⁹. However, recently Ca^{2+}_{i} -mobilising agonists activate CFTR by a mechanism involving Ca^{2+}_{i} -dependent activation of adenylyl cyclase I (AC1) and cAMP/PKA signaling in human bronchial epithelial Figure 3. Fetal hypercalcaemia drives fluid secretion via activation of CFTR in the fetal human, but not mouse lung. (a) Inh-172 is a specific inhibitor for the CFTR channel. E12.5 lungs were cultured for 48 hours in the presence of medium containing $1.70\,\mathrm{mM}$ Ca²⁺ $_{\mathrm{o}}$ with or without Inh-172, before measurements of transepithelial potential differences were carried out. Culturing E12.5 mouse lungs in the presence of Inh-172 did not significantly alter transepithelial potential differences in lungs cultured in medium containing $1.70\,\mathrm{mM}$ Ca²⁺ $_{\mathrm{o}}$. (b) Human lung rudiments were separated into two halves and then kept in culture for 72 h in medium containing either $1.05\,\mathrm{mM}$ or $1.70\,\mathrm{mM}$ Ca²⁺ $_{\mathrm{o}}$ in the presence or absence of the CFTR inhibitor, Inh-172. Culturing human lung rudiments in medium containing $1.70\,\mathrm{mM}$ Ca²⁺ $_{\mathrm{o}}$ induced an increase in transluminal potential difference that was inhibited by Inh-172. Data are pooled from 4–6 different lungs for all conditions. Data are presented as mean difference from $1.70\,\mathrm{mM}$ Ca²⁺ $_{\mathrm{o}}$ ± SEM. **p < 0.01, ***p < 0.001, paired t-test. cells³⁹. We have previously demonstrated in the developing mouse lung that CaSR activation leads to Ca^{2+}_{i} mobilisation¹⁰ and therefore suggest that, in the human fetal lung, AC1 could also be involved in CaSR-mediated activation of CFTR. Indeed, AC1 is expressed within the columnar and cuboidal epithelial cells of the human fetal lung (Fig. S4). Therefore, CaSR activation, which yields an increase in Ca^{2+}_{i} , would be expected to activate AC1, an effect which would result in opening of CFTR. ### Discussion Fluid secretion into the lumen of the fetal lung is essential for optimal lung development as it provides the mechanical stress necessary for lung expansion, cell division and tissue remodelling^{7,40}. Defective fluid secretion in the fetal lung leads to drastic changes in the developing organ structure³, with decreases in fluid secretion leading to hypoplastic lungs accompanied by alterations in lung morphology, whilst excessive fluid secretion produces hyperplastic and over-distended fetal lungs^{41,42}, both of which are associated with long-lasting morbidity³. Previously, we have shown that physiological fetal hypercalcemia is an important environmental cue regulating many aspects of lung development¹⁰. Here we demonstrate that fetal hypercalcemia, acting through the CaSR, promotes human fetal lung growth and expansion via CFTR. Apical Cl⁻ secretion results as a consequence of transepithelial Cl⁻ movements mediated by basolateral entry, raising its intracellular concentration above equilibrium facilitating its luminal exit through apical chloride channels⁴³, in addition to isoosmotic transport of water⁷. Basolateral Cl⁻ entry occurs via NKCCl^{7,44} and inhibition of a Figure 4. CaSR activation leads to opening of CFTR: involvement of a calcium-activated adenylate cyclase. (a) Fischer Rat Thyroid FRT cells, which endogenously express the CaSR, were engineered to express the CFTR channel and a halide-sensitive YFP as an indicator of channel opening. FRT cells were fixed with 4% paraformaldehyde before undergoing CaSR immunostaining. Primary antibody binding was detected using DAB (brown straining, right panel). Sections were counterstained with Harris' hematoxylin (blue staining). Negative controls were carried out through the substitution of the primary antibody with an isotype control (left panel). Scale bar = $1000 \,\mu m$. (b) FRT cells were pre-incubated for at least 2 min with NPS-R568 ($1 \,\mu M$) in the presence or absence of either the CFTR specific inhibitor, Inh-172 (10 µM) or the adenylate cyclase inhibitor, MDL-12330A (25 µM). 20 µM forskolin was used as a positive control, and pre-incubation with Dulbecco's PBS was used as the time control. After 2 min the cell are perfused with iodide-rich Dulbecco's PBS and the fluorescence of the halide-sensitive YFP is quenched at a rate dependent upon the halide permeability of the cell and therefore the activity of anion channels or transporters. The calcimimetic R568 quenched YFP fluorescence, demonstrating that CaSR activation in FRT cells leads to increased halide permeability of the cell. Inhibition of adenylate cyclase by MDL-12330A or CFTR by Inh-172 brought YFP quenching to levels similar to that of the time control - demonstrating that the increased halide permeability was due to activation of both adenylate cyclase and CFTR. (b) shows average traces of YFP quenching (\pm SD) over time from N = 6-13 separate experiments (n = 48-232 cells). NKCC1 by the loop diuretic bumetanide inhibits lung liquid secretion in distal lung explants, an effect not seen in NKCC1 knockout mice 35 . Our study shows that NKCC1 is expressed on the basolateral membrane of columnar and cuboid epithelial cells in both developing mouse and human lungs and that, while bumetanide inhibited fetal lung fluid secretion by approximately 50%, this effect was insensitive to changes in Ca^{2+}_{o} concentration, suggesting that this process is constitutively active and not regulated by the CaSR. Our immunohistochemical observations indicate that apical Cl^- exit might be facilitated by TMEM16A, bestrophin-1 and CFTR in the developing mouse and human fetal lung. Additional channels and associated proteins involved in mediated calcium-activated chloride conductance - CLCN2 and CLCA1 - are also expressed in the developing human fetal lung at the basolateral membrane of epithelial cells and, as such, not likely to contribute directly to apical Cl^- exit (Fig. S5). Previous studies have suggested that TMEM16A and bestrophin-1 may play important roles in generating the baseline fluid secretion^{22,23,45}. However, the presence of DIDS in the growth medium had no effect on | | Rate of Quenching (k) | Significance vs
Control | Significance vs
NPS-R568 | Quench
after 5 min
(%) | Significance vs
Control | Significance vs
NPS-R568 | | |---
-----------------------|----------------------------|-----------------------------|------------------------------|----------------------------|-----------------------------|-------------------| | Control | 0.42 ± 0.02 | | | 78 ± 3 | | | N=7, n
=197 | | 1 μM NPS-R568 | 1.31 ± 0.03 | p < 0.001 | | 61±3 | p < 0.001 | | N=9,
n=168 | | $\frac{1~\mu\textrm{M NPS-R568}+10~\mu\textrm{M}}{\textrm{Inh-172}}$ | 0.42 ± 0.03 | NS | p < 0.001 | 83 ± 1 | NS | p < 0.01 | N = 8,
n = 132 | | $\begin{array}{l} 1~\mu\textrm{M NPS-R568} + 25~\mu\textrm{M} \\ \textrm{MDL-12330A} \end{array}$ | 0.56 ± 0.05 | p < 0.001 | p < 0.001 | 78±3 | NS | p < 0.01 | N=6,
n=93 | | 20 μM Forskolin | 1.76 ± 0.05 | p < 0.001 | p < 0.001 | 46±2 | p < 0.001 | p < 0.001 | N=10,
n=150 | Table 2. Rate of YFP Quenching and Quenching (%) for FRT-CFTR-hsYFP cells. Figure 5. Proposed model for CaSR-mediated increase in fetal lung fluid secretion. In both the mouse and human activation of the CaSR via the calcimimetic NPS R-568 leads to an increase in cytosolic Ca^{2+} through activation of the PI-PLC pathway and release of Ca^{2+} from intracellular stores. This rise in cytosolic calcium leads to an increase in intracellular cAMP level via a Ca^{2+} -stimulated adenylate cyclase (AC1), and in turn activation of the cAMP-dependent enzyme protein kinase A (PKA). Phosphorylation of the CFTR's regulatory 'R'-domain by PKA allows opening of the channel and conductance of Cl^{-} ions through the channel. A similar pathway also appears to be in place in response to fetal hypercalcemia in the human fetal lung, however this is not the case in the mouse where as yet unknown pathway, not involving an apical CFTR channel, appears to induce this increase in fluid secretion. Ca^{2+}_{o} -mediated increases in fluid secretion suggesting that TMEM16A and bestrophin-1, as well as other DIDS sensitive Cl^{-} channels, do not appear to be involved in Ca^{2+}_{o} -activated fluid secretion. These observations led us to conclude that CFTR is the primary apical Cl⁻ channel candidate functionally coupled to the CaSR. A role for CFTR in fetal lung development has been questioned because of conflicting findings between observations carried out in human and mouse lungs. On one hand, CFTR^{-/-} mice are born with apparently normal lungs⁴⁶, suggesting either that CFTR plays no role in fetal lung fluid secretion or that there is functional redundancy. On the other hand, accumulating evidence in humans suggests that lungs of new-borns with cystic fibrosis (CF), an autosomal recessive disease caused by mutations leading to an inactive CFTR, have a number of functional and structural abnormalities^{47,48}. These observations are consistent with the species differences seen in the current study. Of note, in humans CaSR and CFTR expression are developmentally regulated, both showing strongest expression within the pulmonary epithelium during the pseudoglandular stage of development ^{18,49,50}, the period critical for the formation of the conductive airways, corroborating the idea that the stimulatory role of the CaSR on fluid secretion could, indeed, be mediated by CFTR. CFTR is insensitive to DIDS⁵¹. Therefore, we examined the effect of a specific CFTR inhibitor on CaSR-mediated fluid secretion in both human and mouse fetal lungs. The presence of Inh-172 in the growth medium suppressed increases in human and mouse fetal lung fluid secretion due to pharmacological CaSR activation. In human fetal lungs Inh-172 also suppressed Ca²⁺_o-mediated increases in fluid secretion, suggestive that CaSR regulation of CFTR is the primary mechanism driving ${\rm Ca^{2+}}_{\rm o}$ -mediated increase in fetal lung fluid secretion in humans. Importantly, inhibition of CFTR had no effect on ${\rm Ca^{2+}}_{\rm o}$ -mediated increases in fluid secretion in the mouse fetal lung, suggestive that an alternative mechanism could account for ${\rm Ca^{2+}}_{\rm o}$ -sensitive fluid secretion in mice, which could account for the species-dependent gating behaviour in murine and human CFTR^{52,53}. Conventionally CFTR is activated by cAMP and PKA whereas Ca^{2+} -activated chloride channels are activated by Ca^{2+} -i-mobilising agonists like UTP. Furthermore, classical CaSR signalling is preferentially coupled to $G\alpha_i$ leading to a decrease in intracellular cAMP⁵⁴, which seems at odds with our finding that activation of CaSR leads to activation of CFTR⁵⁵. Using co-immunoprecipitation pull-downs we found no evidence that the CaSR and CFTR have a biochemical interaction in either E12.5 mouse or 8 week human fetal lungs (*data not shown*). However, pharmacological approaches demonstrated that the calcimimetic NPS R-568 induced opening of CFTR that was dependent on adenylate cyclase. Of the nine G-protein–responsive transmembrane adenylyl cyclase (AC1-9) isoforms identified, AC1 can be stimulated by Ca^{2+}_i /calmodulin in contrast to many other ACs, which are either Ca^{2+} -insensitive or Ca^{2+} -inhibited. In addition, Namkung *et al.* have showed that, in human bronchial cells, the Ca^{2+}_i mobilising agonist, UTP, can stimulate CFTR opening through AC1³⁹. In conjunction with our previous findings in fetal mouse epithelial buds¹⁰ that activation of the CaSR leads to Ca^{2+}_i mobilisation, we propose that, in the developing human lung epithelium, CaSR activation by NPS R-568 and/or fetal hypercalcemia leads to an increase in Ca^{2+}_i , attendant activation of AC1 and opening of CFTR. A potentially similar mechanism has been described in duodenal epithelial cells, where CaSR agonists induce bicarbonate secretion via CFTR, through activation of PLC and increase in Ca^{2+}_i . Newborns with CF were long considered to be born with normal lungs⁵⁷, with progressive structural abnormalities developing later⁴⁸, suggestive that CFTR does not play a crucial role in lung developmental process. However, more recent studies have demonstrated that transient *in utero* disruption of CFTR leads to progressive changes in lung function and structure that appear to predispose to adult lung disease^{58,59}, possibly due to interference in stretch-induced differentiation through inflammatory expression changes in smooth muscles proteins and/or the effects of a constitutive inflammatory process^{58,60,61}. On the basis of our current findings, we suggest that mutations, which affect expression and/or function of CFTR, would lead to a reduction of increases in fluid secretion induced by fetal hypercalcemia via CaSR activation. In addition, respiratory problems, such as chronic and interstitial lung disease and reduction in gas exchange, observed in some patients with inactivating or activating mutations of the CaSR⁶²⁻⁶⁶ could also be caused by altered fluid secretion in the developing lung, which permanently compromises lung morphology and structure. In conclusion, we have demonstrated that during the pseudoglandular stage of lung development fetal hyper-calcemia of a magnitude similar to that seen physiologically in the prenatal period activates the CaSR leads to an increase in Ca²⁺, which in turn activates the Ca²⁺-stimulated AC1, inducing opening of CFTR within the apical membrane of the developing pulmonary epithelium (Fig. 5). This does not occur in mice, which goes some way to explaining why human CF patients demonstrate persistent lung growth and developmental abnormalities while CFTR null mice do not. Finally, lung hypoplasia can result as a consequence of a wide variety of aetiologies. As catch up growth does not occur and damage to the lung developmental programme is permanent, stunted lung development is associated with long-lasting, deleterious effects and may predispose to many respiratory diseases. While fetal endoscopic tracheal occlusion has been used to reverse lung growth deficits², it is only recommended in the most severe cases⁶⁷, and shows partial success. Owing to their ability to promote CaSR-driven fluid secretion in the developing human lung, locally delivered calcimimetics could be used to increase the transmural pressure gradient and therefore offer the potential to rescue impaired growth in hypoplastic lungs *in utero*. # References - 1. Warburton, D. et al. Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr Res 57, 26R–37R, doi: 10.1203/01.PDR.0000159570.01327.ED (2005). - 2. Harding, R. & Hooper, S. B. Regulation of lung expansion and lung growth before birth. J Appl Physiol (1985) 81, 209-224 (1996). - 3. Warburton, D. et al. Lung organogenesis. Curr Top Dev Biol 90, 73-158, doi: 10.1016/s0070-2153(10)90003-3 (2010). - 4. Souza, P., Obrodovich, H. & Post, M. Lung Fluid Restriction Affects Growth but Not Airway Branching of Embryonic Rat Lung. *Int J Dev Biol* 39, 629–637 (1995). - 5. Whitsett, J. A., Wert, S. E. & Trapnell, B. C. Genetic disorders influencing lung formation and function at birth. *Hum Mol Genet* 13 Spec No 2, R207–215, doi: 10.1093/hmg/ddh252 (2004). - 6. Alcorn, D. et al. Morphological effects of chronic tracheal ligation and drainage in the fetal lamb lung. J Anat 123, 649–660 (1977). - 7. Olver, R. E. & Strang, L. B. Ion fluxes across the pulmonary epithelium and the secretion of lung liquid in the foetal lamb. *J Physiol* 241, 327–357 (1974). - 8. Butler, N. & Claireaux, A. E. Congenital diaphragmatic hernia as a cause of perinatal mortality. Lancet 1, 659-663 (1962). - 9. Fewell, J. E. & Johnson, P. Upper airway dynamics during breathing and during apnoea in fetal lambs. J Physiol 339, 495-504 (1983). - Finney, B. A. et al. Regulation of mouse lung development by the extracellular calcium-sensing receptor, CaR. J Physiol 586, 6007–6019, doi: 10.1113/jphysiol.2008.161687 (2008). - 11. Zeitlin, P. L., Loughlin, G. M. & Guggino, W. B. Ion transport in cultured fetal and adult rabbit tracheal epithelia. Am J Physiol 254, C691–698 (1988). - 12. McCray, P. B. Jr. & Welsh, M. J.
Developing fetal alveolar epithelial cells secrete fluid in primary culture. Am J Physiol 260, L494–500 (1991) - 13. Gatzy, J. T. Mode of chloride secretion by lung epithelia. Am Rev Respir Dis 127, S14–16 (1983). - 14. Olver, R. E., Walters, D. V. & S, M. W. Developmental regulation of lung liquid transport. *Annu Rev Physiol* 66, 77–101, doi: 10.1146/annurev.physiol.66.071702.145229 (2004). - 15. Kovacs, C. S. & Kronenberg, H. M. Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. *Endocr Rev* 18, 832–872 (1997). - 16. Finney, B. *et al.* An exon 5-less splice variant of the extracellular calcium-sensing receptor rescues absence of the full-length receptor in the developing mouse lung. *Exp Lung Res* **37**, 269–278, doi: 10.3109/01902148.2010.545471 (2011). - 17. Brown, E. M. et al. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. *Nature* **366**, 575–580, doi: 10.1038/366575a0 (1993). - Riccardi, D. & Kemp, P. J. The calcium-sensing receptor beyond extracellular calcium homeostasis: conception, development, adult physiology, and disease. Annu Rev Physiol 74, 271–297, doi: 10.1146/annurev-physiol-020911-153318 (2012). - Blaisdell, C. J. et al. Inhibition of CLC-2 chloride channel expression interrupts expansion of fetal lung cysts. Am J Physiol Lung Cell Mol Physiol 286, L420–426, doi: 10.1152/ajplung.00113.2003 (2004). - 20. Murray, C. B. et al. CIC-2: a developmentally dependent chloride channel expressed in the fetal lung and downregulated after birth. Am J Respir Cell Mol Biol 12, 597–604, doi: 10.1165/ajrcmb.12.6.7766424 (1995). - Rock, J. R. & Harfe, B. D. Expression of TMEM16 paralogs during murine embryogenesis. Dev Dyn 237, 2566–2574, doi: 10.1002/ dvdy.21676 (2008). - 22. Rock, J. R., Futtner, C. R. & Harfe, B. D. The transmembrane protein TMEM16A is required for normal development of the murine trachea. *Dev Biol* 321, 141–149, doi: 10.1016/j.ydbio.2008.06.009 (2008). - 23. Clin Exp ImmunolBarro-Soria, R., Schreiber, R. & Kunzelmann, K. Bestrophin 1 and 2 are components of the Ca(2+) activated Cl(-) conductance in mouse airways. *Biochim Biophys Acta* 1783, 1993–2000, doi: 10.1016/j.bbamcr.2008.06.016 (2008). - McCray, P. B., Jr., Bettencourt, J. D., Bastacky, J., Denning, G. M. & Welsh, M. J. Expression of CFTR and a cAMP-stimulated chloride secretory current in cultured human fetal alveolar epithelial cells. Am J Respir Cell Mol Biol 9, 578–585, doi: 10.1165/ajrcmb/9.6.578 (1993) - 25. Department of Health. (Department of Health, London, UK, 1995). - 26. Polkinghorne, J. (Her Majesty's Stationary Office, London, UK, 1989). - 27. De Langhe, S. P. et al. Dickkopf-1 (DKK1) reveals that fibronectin is a major target of Wnt signaling in branching morphogenesis of the mouse embryonic lung. *Dev Biol* 277, 316–331, doi: 10.1016/j.ydbio.2004.09.023 (2005). - 28. Del Moral, P. M. et al. VEGF-A signaling through Flk-1 is a critical facilitator of early embryonic lung epithelial to endothelial crosstalk and branching morphogenesis. Dev Biol 290, 177–188, doi: 10.1016/j.ydbio.2005.11.022 (2006). - Del Moral, P. M. & Warburton, D. Explant culture of mouse embryonic whole lung, isolated epithelium, or mesenchyme under chemically defined conditions as a system to evaluate the molecular mechanism of branching morphogenesis and cellular differentiation. *Methods Mol Biol* 633, 71–79, doi: 10.1007/978-1-59745-019-5_5 (2010). - Duran, C., Thompson, C. H., Xiao, Q. & Hartzell, H. C. Chloride channels: often enigmatic, rarely predictable. Annu Rev Physiol 72, 95–121, doi: 10.1146/annurev-physiol-021909-135811 (2010). - 31. Liu, Y. et al. Characterization of the effects of Cl(-) channel modulators on TMEM16A and bestrophin-1 Ca(2+) activated Cl (-) channels. Pflugers Arch 467, 1417–1430, doi: 10.1007/s00424-014-1572-5 (2015). - 32. Pedemonte, N., Zegarra-Moran, O. & Galietta, L. J. High-throughput screening of libraries of compounds to identify CFTR modulators. *Methods Mol Biol* **741**, 13–21, doi: 10.1007/978-1-61779-117-8_2 (2011). - 33. Marcorelles, P., Montier, T., Gillet, D., Lagarde, N. & Ferec, C. Evolution of CFTR protein distribution in lung tissue from normal and CF human fetuses. *Pediatr Pulmonol* 42, 1032–1040, doi: 10.1002/ppul.20690 (2007). - 34. Thom, J. & Perks, A. M. The effects of furosemide and bumetanide on lung liquid production by *in vitro* lungs from fetal guinea pigs. *Can J Physiol Pharmacol* **68**, 1131–1135 (1990). - 35. Gillie, D. J., Pace, A. J., Coakley, R. J., Koller, B. H. & Barker, P. M. Liquid and ion transport by fetal airway and lung epithelia of mice deficient in sodium-potassium-2-chloride transporter. *Am J Respir Cell Mol Biol* 25, 14–20, doi: 10.1165/ajrcmb.25.1.4500 (2001). - Nemeth, E. F. et al. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci USA 95, 4040–4045 (1998). - 37. Ma, T. et al. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J Clin Invest 110, 1651–1658, doi: 10.1172/JCI16112 (2002). - de Souza, N. J., Dohadwalla, A. N. & Reden, J. Forskolin: a labdane diterpenoid with antihypertensive, positive inotropic, platelet aggregation inhibitory, and adenylate cyclase activating properties. Med Res Rev 3, 201–219 (1983). - 39. Namkung, W., Finkbeiner, W. E. & Verkman, A. S. CFTR-adenylyl cyclase I association responsible for UTP activation of CFTR in well-differentiated primary human bronchial cell cultures. *Mol Biol Cell* 21, 2639–2648, doi: 10.1091/mbc.E09-12-1004 (2010). - 40. Moessinger, A. C., Harding, R., Adamson, T. M., Singh, M. & Kiu, G. T. Role of lung fluid volume in growth and maturation of the fetal sheep lung. *J Clin Invest* 86, 1270–1277, doi: 10.1172/JCI114834 (1990). - 41. Carmel, J. A., Friedman, F. & Adams, F. H. Fetal Tracheal Ligation and Lung Development. Am J Dis Child 109, 452-456 (1965). - 42. Lanman, J. T., Schaffer, A., Castella.R., Ogawa, Y. & Herod, L. Distensibility of Fetal Lung with Fluid in Sheep. *Pediatr Res* 5, 586, doi: 10.1203/00006450-197111000-00002 (1971). - 43. McCray, P. B., Jr., Bettencourt, J. D. & Bastacky, J. Secretion of lung fluid by the developing fetal rat alveolar epithelium in organ culture. *Am J Respir Cell Mol Biol* **6**, 609–616, doi: 10.1165/ajrcmb/6.6.609 (1992). - 44. Walters, D. V. & Olver, R. E. Liquids in the lung. Respir Physiol Neurobiol 159, 245–246, doi: 10.1016/j.resp.2007.10.003 (2007). - 45. Gallos, G. et al. Functional expression of the TMEM16 family of calcium-activated chloride channels in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 305, L625–634, doi: 10.1152/ajplung.00068.2013 (2013). - 46. Wallace, H. L., Connell, M. G., Losty, P. D., Jesudason, E. C. & Southern, K. W. Embryonic lung growth is normal in a cftr-knockout mouse model. Exp Lung Res 34, 717–727, doi: 10.1080/01902140802389719 (2008). - 47. Larson, J. E. & Cohen, J. C. Developmental paradigm for early features of cystic fibrosis. *Pediatr Pulmonol* 40, 371–377, doi: 10.1002/ppul.20169 (2005). - 48. Long, F. R., Williams, R. S. & Castile, R. G. Structural airway abnormalities in infants and young children with cystic fibrosis. J Pediatr 144, 154–161, doi: 10.1016/j.jpeds.2003.09.026 (2004). - Broackes-Carter, F. C. et al. Temporal regulation of CFTR expression during ovine lung development: implications for CF gene therapy. Hum Mol Genet 11, 125–131 (2002). - 50. Tizzano, E. F., Chitayat, D. & Buchwald, M. Cell-specific localization of CFTR mRNA shows developmentally regulated expression in human fetal tissues. *Hum Mol Genet* 2, 219–224 (1993). - 51. Schwiebert, E. M., Flotte, T., Cutting, G. R. & Guggino, W. B. Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents. *Am J Physiol* **266**, C1464–1477 (1994). - 52. Scott-Ward, T. S. et al. Chimeric constructs endow the human CFTR Cl⁻ channel with the gating behavior of murine CFTR. Proc Natl Acad Sci USA 104, 16365–16370, doi: 10.1073/pnas.0701562104 (2007). - 53. Lansdell, K. A. *et al.* Comparison of the gating behaviour of human and murine cystic fibrosis transmembrane conductance regulator Cl⁻ channels expressed in mammalian cells. *J Physiol* **508** (Pt 2), 379–392 (1998). - 54. Brennan, S. C. & Conigrave, A. D. Regulation of cellular signal transduction pathways by the extracellular calcium-sensing receptor. *Curr Pharm Biotechnol* **10**, 270–281 (2009). - Gadsby, D. C. & Nairn, A. C. Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. *Physiol Rev* 79, S77–S107 (1999). - 56. Xie, R. *et al.* Molecular mechanisms of calcium-sensing receptor-mediated calcium signaling in the modulation of epithelial ion transport and bicarbonate secretion. *J Biol Chem* **289**, 34642–34653, doi: 10.1074/jbc.M114.592774 (2014). - 57. Sobonya, R. E. & Taussig, L. M. Quantitative aspects of lung pathology in cystic fibrosis. Am Rev Respir Dis 134, 290–295 (1986). - 58. Hudak, J. J., Killeen, E., Chandran, A., Cohen, J. C. & Larson, J. E. Adult onset lung disease following transient disruption of fetal stretch-induced differentiation. *Respir Res* 10, 34, doi: 10.1186/1465-9921-10-34 (2009). - 59. Cohen, J. C. & Larson, J. E. Pathophysiologic consequences following inhibition of a CFTR-dependent developmental cascade in the lung. *BMC Dev Biol* 5, 2, doi: 10.1186/1471-213X-5-2 (2005). - 60. Cohen, J. C. & Larson, J. E. Cystic fibrosis transmembrane conductance regulator (CFTR) dependent cytoskeletal tension during lung organogenesis. *Dev Dyn* 235, 2736–2748, doi: 10.1002/dvdy.20912 (2006). - 61. Zhang, W. K. et al. Mechanosensitive gating of CFTR. Nat Cell Biol 12, 507-512, doi: 10.1038/ncb2053 (2010). - 62. Demedts, M. et al. A new missense mutation in the CASR gene in familial interstitial lung disease with hypocalciuric hypercalcemia and defective granulocyte function. Am J
Respir Crit Care Med 177, 558–559, doi: 10.1164/ajrccm.177.5.558 (2008). - 63. Hu, J. et al. Autosomal dominant hypocalcemia in monozygotic twins caused by a de novo germline mutation near the aminoterminus of the human calcium receptor. J Bone Miner Res 19, 578–586, doi: 10.1359/JBMR.040106 (2004). - Fox, L. et al. Neonatal hyperparathyroidism and pamidronate therapy in an extremely premature infant. Pediatrics 120, e1350–1354, doi: 10.1542/peds.2006-3209 (2007). - 65. Auwerx, J., Boogaerts, M., Ceuppens, J. L. & Demedts, M. Defective host defence mechanisms in a family with hypocalciuric hypercalcaemia and coexisting interstitial lung disease. *Clinical and experimental immunology* **62**, 57–64 (1985). - 66. Auwerx, J., Demedts, M., Bouillon, R. & Desmet, J. Coexistence of hypocalciuric hypercalcaemia and interstitial lung disease in a family: a cross-sectional study. European journal of clinical investigation 15, 6–14 (1985). - 67. Ruano, R. et al. A randomized controlled trial of fetal endoscopic tracheal occlusion versus postnatal management of severe isolated congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 39, 20–27, doi: 10.1002/uog.10142 (2012). # Acknowledgements This work was supported by a Marie Curie Initial Training Network "Multifaceted CaSR" (to DR and PJK), the BBSRC (BB/D01591X to DR and PJK), and the Webb Foundation (to DW). The authors wish to thank Mr Samwise Holden for initial experiments of CFTR localization in human kidney, Professors Anne Rosser, Professor Stephen Dunnett and Mrs Caroline Scherf for collection of human fetal tissue on behalf of the Cardiff Fetal Tissue Bank (CFTB) and SWIFT project. ## **Author Contributions** D.R. designed the experiments. S.C.B., W.J.W., H.T., B.F., B.M., H.D. and S.Q. performed the experiments and analysed the data. S.C.B. and H.T. prepared the figures. S.C.B., D.R., P.J.K., D.W. and L.J.G. wrote the manuscript. All authors have reviewed the manuscript. # **Additional Information** **Supplementary information** accompanies this paper at http://www.nature.com/srep **Competing financial interests:** The authors declare no competing financial interests. How to cite this article: Brennan, S. C. et al. The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR. Sci. Rep. 6, 21975; doi: 10.1038/srep21975 (2016). This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/