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Article

Psychological tests are widely used to assess individuals in 
clinical and educational contexts. The test scores are often 
expressed as normed scores (Mellenbergh, 2011). Normed 
scores allow for an interpretation relative to the scores of 
the reference population, as defined for the test involved. 
For instance, the reference population of an intelligence test 
usually is the general population in the same country and of 
the same age as the testee involved. Normed scores are 
transformed versions of the raw scores, where the ordering 
within the reference population remains preserved. Popular 
examples include percentiles, normalized z scores and nor-
malized IQ scores. The transformation rules to achieve 
normed scores can be directly obtained from the raw score 
distribution in the reference population. When norming a 
specific test, the population distribution is estimated based 
on scores from a normative sample that represents the refer-
ence population.

If the reference population depends on a continuous vari-
able as age then, strictly speaking, there exists an infinite 
number of reference populations, within the age range of 
the test involved. Traditionally, the norms were derived for 
various successive age intervals (e.g., Wechsler Intelligence 
Scale for Children–III; Wechsler, 1991). In traditional 
norming, it is thus implicitly assumed that the test score dis-
tribution is the same across the whole age interval consid-
ered, and that this distribution changes as a step function of 

age. By noting that the performance on the intelligence test 
WAIS-R gradually changed with age rather than in a step-
wise way, Zachary and Gorsuch (1985) considered the use 
of age intervals as suboptimal. Such gradual changes in test 
scores with age can be seen in developmental tests (e.g., van 
Baar et al., 2014), intelligence tests (e.g., Grob et al., 2018) 
and neuropsychological tests (e.g., Rommelse et al., 2018). 
Decreasing the width of the interval does not solve the 
issue, since the test score distribution estimates are then 
based on a smaller sample size per interval (Van Breukelen 
& Vlaeyen, 2005). Both issues with traditional norming are 
circumvented using the continuous norming approach.

Continuous Norming

Continuous norming (e.g., Lenhard et al., 2018; Oosterhuis, 
2017; Zachary & Gorsuch, 1985), unlike traditional norm-
ing, explicitly builds on the assumption that test score dis-
tributions change smoothly with age. It is thus more 
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appropriate than traditional norming for those psychologi-
cal tests that show this gradual change in test performance 
with age. The assumption of smoothly changing test score 
distributions is incorporated using regression modeling, in 
which the raw test score distribution is modeled as a func-
tion of predictor(s), as age. Because all observations within 
the normative sample—rather than subgroups—are used, 
continuous norming is more efficient than traditional norm-
ing (Oosterhuis et al., 2017). The approach to model a dis-
tribution as a function of a predictor is well-known from a 
standard linear regression analysis, assuming a normal dis-
tribution conditional on the predictor. For those conditional 
distributions that are nonnormal and/or heteroscedastic, 
more general regression models can be used to estimate 
normed scores. This can be done in nonparametric (Lenhard 
et al., 2018) and parametric ways.

A parametric regression framework that appeared useful 
in continuous norming of psychological tests (e.g., Grob 
et al., 2018; Tellegen & Laros, 2017; van Baar et al., 2014) 
are the generalized additive models for location, scale, and 
shape (GAMLSS; Rigby & Stasinopoulos, 2005). GAMLSS 
are regression models that include many different distribu-
tion types (Rigby et al., 2017). Their key feature is that the 
parameters that define the conditional distribution, can be 
modelled as a function of age. The four possible GAMLSS 
distribution parameters pertain to the location, scale, skew-
ness, and kurtosis, while each specific distribution type is 
associated with a specific set of parameters. Both the distri-
bution type, and the type(s) of relationships between the 
distributional parameters and age need to be selected before 
analysis. The distribution type fully determines the possible 
forms of the modeled distribution per age, and thus the 
nature of the transversal modeling. The type(s) of relation-
ships fully determine the possible changes across age, and 
thus the nature of the longitudinal modeling. Because both 
aspects can be captured in many different ways, many dif-
ferent models can be created, varying from restricted mod-
els—with many and strict model assumptions—to flexible 
models—with few and loose assumptions.

The availability of many different models offers flexibil-
ity, yet makes model selection difficult. With flexibility we 
mean the possible range of data characteristics that can be 
captured by the estimated model. In the current context, the 
flexibility relates to both the transversal model (i.e., the dis-
tribution type) and the longitudinal model (i.e., the type(s) 
of relationships between age and the distributional parame-
ters). In empirical norming with GAMLSS, one selects a 
candidate distribution by matching the nature of the raw test 
score distribution (i.e., considering the score range, their 
discrete or continuous character, and possible floor and ceil-
ing effects), and candidate relationship(s) (e.g., considering 
their presumed smooth relationship). For a detailed strategy 
to regression-based norming with GAMLSS, we refer to 
Timmerman et al. (2019).

A central question in model selection is the amount of 
desired flexibility. Flexible models have the potential 
advantage of better fitting observed data than their restricted 
versions, because flexible models have a larger possible 
range of data characteristics that can be covered. However, 
to achieve the same precision of estimate (as reflected by 
e.g., the standard error [SE]), they require a larger sample 
size; further they are at the risk of overfitting (Hastie et al., 
2009). In continuous test norming, it is unknown what the 
costs are of using a too restricted model versus the costs of 
using a too flexible model. A too restricted model means 
that the model contains too few parameters to adequately 
capture the population characteristics, and a too flexible 
model that it contains more parameters than strictly 
necessary.

Standard Linear Regression Model

The standard linear regression model is a—rather 
restricted—variant of the GAMLSS models. Because this 
model forms the basis for more flexible models and is actu-
ally applied in continuous norming (e.g., Grober et  al., 
2015), we discuss its key features. The model is based on 
four assumptions: linearity, normality, homoscedasticity, 
and independence (e.g., Fahrmeir et al., 2013). The linearity 
assumption is that the model is linear in the parameters, 
implying a linear relationship between the predictor(s) in 
the model and the mean test score conditional on the 
predictor(s), like age. Possible nonlinear, yet smooth, rela-
tionships between predictor(s) and the mean test score can 
be accommodated by using transformed versions of the 
predictor(s) and/or test score. Examples are polynomials of 
the predictor(s), spline versions of the predictor(s) (e.g., 
Perperoglou et al., 2019), and a log transformation of the 
test score. The normality and homoscedasticity assump-
tions pertain to the normality of the conditional raw test 
score distributions (e.g., conditional on the predictor age), 
with a constant variance. The independence assumption is 
that the residuals (i.e., differences between the test scores 
and the conditional mean) are independent of one another. 
In contrast with the other three assumptions, violations of 
this assumption must be prevented with the sampling design 
followed in the normative study (i.e., individuals who make 
up the normative sample, should be sampled independently 
of each other). For this reason, we will only focus on the 
other three assumptions in this article.

In continuous norming practice, the relationship between 
the mean test score and the predictor is sometimes assumed 
to be linear (e.g., Agelink van Rentergem et  al., 2018; 
Ganguli et  al., 2010; Grober et  al., 2015). Nonlinear, yet 
smooth relationships are modelled by including a second 
order polynomial of the predictor (e.g., Goretti et al., 2014; 
Kirsebom et al., 2019; Van der Elst et  al., 2011) or high-
order polynomials (e.g., Lenhard et al., 2018), or by using 
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splines (e.g., Rommelse et al., 2018). Homoscedasticity and 
normality of the conditional score distribution are often 
assumed in norming practice (e.g., Goretti et  al., 2014; 
Grober et  al., 2015; Van Breukelen & Vlaeyen, 2005). 
Sometimes the tenability of these assumptions is assessed 
via the model residuals. Homoscedasticity seems to be 
mostly assessed with the Levene’s test (e.g., Llinàs-Reglà 
et al., 2013; Van der Elst et al., 2011), and normality with 
the Kolmogorov–Smirnov test (e.g., Goretti et  al., 2014; 
Llinàs-Reglà et al., 2013; Van der Elst et al., 2011) or Q-Q 
plots (e.g., Kirsebom et al., 2019). Applying Levene’s test 
in the context of continuous norming is problematic as it 
can only be applied to test for homogeneity of variances of 
the score distributions within a certain group. Like in tradi-
tional norming, this requires discretization of the predictor 
variable(s). Van der Elst et al. (2011) applied the Levene’s 
test to four groups, which were formed by splitting up the 
predictor into four distinct segments (i.e., quartiles). In this 
way, the homogeneity of variances of the score distribution 
is assessed for only four predictor groups, and the variance 
is assumed to be equal within each group. Thus, homosce-
dasticity and normality checks in continuous norming are 
problematic in that these are assessed across pieces of or the 
full observed predictor space. If homoscedasticity and nor-
mality seem to hold for a given piece of the predictor space, 
one cannot rule out that the assumptions are violated locally. 
Furthermore, with such tests one cannot confirm that the 
assumptions are correct, but only fail to find evidence for 
violation of assumptions. On top of this, the consequences 
of violations of assumptions are often unclear and overesti-
mated by applied researchers (Ernst & Albers, 2017; 
Williams et al., 2013).

Assumption Violations in Continuous Norming 
Practice

We argue that continuous test norming practice often deals 
with nonlinearity, heteroscedasticity, and nonnormality. 
Bechger et  al. (2009) already noted that the linearity 
assumption is probably unrealistic in practice. For intelli-
gence and developmental tests (e.g., Grob et  al., 2018; 
Kaufman & Kaufman, 2004; Wechsler, 2014) and neuro-
psychological tests (e.g., FEEST; Voncken et al., 2018), test 
scores that are based on the number of correct items typi-
cally increase strongly with age for young children, and this 
relationship diminishes or decreases as people get older 
(Ferrer & McArdle, 2004; McArdle et al., 2002). Also, we 
often see that the spread of the conditional score distribu-
tion varies with age (e.g., Grob et  al., 2018; Tellegen & 
Laros, 2017). These aspects are to be covered in the longi-
tudinal part of the norming regression model.

Floor and ceiling effects typically result in skewness of 
the conditional score distribution, possibly varying from 
positive skewness to negative skewness as a function of 

age. In addition, test scores based on response times typi-
cally result in a positively skewed conditional score distri-
bution (Heathcote et  al., 1991). These characteristics of 
psychological tests thus result in violations of the assump-
tions of homoscedasticity and normality. These aspects 
need to be covered in the transversal model, for example, by 
using a skew normal distribution.

Figure 1 illustrates nonlinearity, heteroscedasticity, and 
nonnormality in the observed test scores and their estimated 
continuous norming models of an intelligence test and a 
cognitive test. The observations and the percentile bands 
estimated as a function of age are shown for test scores of 
subtest “logical mathematical reasoning” of the Intelligence 
and Development Scales–2 (IDS-2; Grob et  al., 2018) in 
panel (a), and for response times of subtest “Response time 
complex” of the Cognitive Test Application (COTAPP; 
Rommelse et al., 2018) in panel (b). To create the percentile 
curves for these subtests, the median, variation, skewness, 

Figure 1.  Estimated centile curves for the normative data of 
subtest “logical mathematical reasoning” of the Dutch IDS-2 
(Grob et al., 2018) in panel (a), and subtest “Response time 
complex” of the COTAPP (Rommelse et al., 2018) in panel (b).
Note. The observations are indicated with the black dots. The 
boundaries of the gray percentile bands represent percentiles 1, 5, 
15, 25, 50 (black line), 75, 85, 95, and 99. IDS–2 = Intelligence and 
Development Scales–2.



Voncken et al.	 1935

and kurtosis of the Box–Cox Power Exponential (BCPE) 
distribution (Rigby & Stasinopoulos, 2004) were estimated 
as a smooth, possibly nonlinear function of age using 
P-splines. The BCPE distribution has distributional param-
eters µ, σ, ν, and τ, which relate to the median, variation, 
skewness, and kurtosis, respectively. The default link func-
tions were used: the identity link function for µ and ν, and 
the log link function for σ and τ. Splines (for a review, see 
Perperoglou et al., 2019) are polynomial functions, which 
are used in regression to achieve a smooth estimated func-
tion. P-splines are a variant that is numerically stable, easy 
to implement and requires only a single penalty parameter 
to control the smoothness of the complete function (Eilers 
& Marx, 1996). Both models in Figure 1 showed good fit, 
as indicated by their associated worm plots (Van Buuren & 
Fredriks, 2001), which are detrended Q-Q plots, possibly 
conditional on ranges of the predictor(s).

Figure 1(a) shows a nonlinearly increasing relationship 
between the median intelligence test score and age, age-
depending variance of the conditional score distribution, 
and age-depending skewness and kurtosis of the conditional 
score distribution (as reflected by the nonsymmetric width 
of the percentile bands). Figure 1(b) shows a nonlinearly 
decreasing relationship between the median response time 
and age, and age-depending variance, skewness and kurto-
sis of the score distribution. The associated continuous test 
norming models appeared to fit the normative data well, but 
it is unknown how much flexibility is optimal.

In general, using more flexible models allows for more 
accurate (i.e., with smaller bias) estimation of the percen-
tiles, because the model can fit the observed data at least as 
well as a more constrained variant. However, flexibility 
comes with risks of overfitting and large sampling variabil-
ity (Everitt, 1998; Sammut & Webb, 2010). This sampling 
variability can be reduced by increasing the sample size, but 
this is expensive and larger samples are not always avail-
able. If the decrease in bias by using a more flexible model 
is small relative to the increase in required sample size, the 
increased flexibility might not be worth it.

Oosterhuis (2017) investigated consequences of violating 
the linearity, homoscedasticity, and independence assump-
tions in continuous test norming. In a simulation study only 
considering the standard linear regression model, Oosterhuis 
found that violations of these assumptions introduced bias in 
the percentile estimates, but they did not affect the precision 
of the percentile estimates. In this article, we extended the 
study by Oosterhuis and investigated in a simulation study 
(1) the costs in terms of the bias of using restricted models in 
the presence of violations of (combinations of) model 
assumptions and (2) the costs in terms of the sampling vari-
ability of using more flexible GAMLSS models than strictly 
needed to properly describe the population data. Thus, we 
investigated the balance between the bias and variance in 
normed scores related to the model flexibility. Based on this, 

we explored how robust the various models are and thus 
how sensitive the issue of model flexibility is.

Simulation Study

The simulation study was performed in R (version 3.6.1; R 
Core Team, 2019). We used version 5.1-6 of the gamlss 
package (Rigby & Stasinopoulos, 2005). The R code can be 
found on the Open Science Framework via https://osf.io/
hwme5/.

Research Questions and Hypotheses

In this simulation study, we investigated how model flexi-
bility relates to bias (i.e., accuracy), variance (i.e., preci-
sion), and total variability (as expressed by the root mean 
square error (RMSE)) in the estimates of normalized z 
scores based on regression modeling under empirically rel-
evant conditions. More specifically, we investigated (1) 
what the consequences of transversal and/or longitudinal 
assumption violations in continuous test norming are for the 
bias in the normalized z score estimates, (2) how much pre-
cision is lost (i.e., how much the variance increases) when 
using a more flexible model using the same sample size, 
and (3) what the net effects on the total variability in esti-
mates (i.e., RMSE) are of assumption violations and 
flexibility.

We selected the normalized z score as the statistic of 
interest, because it is often used in norming practice. 
Furthermore, it is not limiting, because other normed scores, 
as percentiles and normalized IQ scores, can be directly 
derived from normalized z scores. The bias concerns the 
center of the sampling distribution. Specifically, the nor-
malized z score estimate of an observed test score at a cer-
tain age is unbiased if the mean of its sampling distribution 
equals the population normalized z score. The variance of 
the sampling distribution indicates the degree of variability 
in estimated normalized z scores of an observed score at a 
certain age across samples. A larger sample size is associ-
ated with a smaller variance (Moore et al., 2012). A desir-
able property of a fitting model (i.e., the estimated model 
complies with the population model or is less constrained) 
is that it is unbiased, or, at least consistent (Lindgren, 1993).

In the study, we investigated to what extent the bias and 
variance of the normalized z score estimates are influenced 
by three factors. Factor (1) is the kind of population model, 
expressed via their transversal and longitudinal nature. 
Factor (2) is the sample size N. Factor (3) is the flexibility 
(i.e., too flexible, true, and too strict) of the transversal and 
longitudinal nature of the estimation model, in relation to 
the transversal and longitudinal nature of the population 
model.

In line with the findings of Oosterhuis (2017), we 
expected that using a too strict model would result in higher 
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bias compared with the true and too flexible models, but 
would keep the precision of the normalized z score esti-
mates at the same or a lower level. Furthermore, we 
expected that larger differences between the population 
model and the stricter estimated models would result in a 
higher bias. With respect to the variance, we expected the 
variance to decrease as the sample size increases, and the 
variance of a too flexible model to be higher than of the true 
model. We did not have hypotheses on the effects on devia-
tions in terms of the transversal and longitudinal nature. 
With respect to the RMSE, we expected the RMSE of the 
true model to be lower than of the too strict and too flexible 
models. We expected so because we designed the study 
such that the true model differed substantially from the too 
strict and too flexible models. This implied that we expected 
the bias introduced with using the too strict model would 
not be compensated with the decrease in variance. 
Furthermore, we expected the too flexible models to have 
similar or somewhat higher levels of bias than the true 
model, and with an increased variance.

Design

As the starting point for our population models (Factor [1]), 
we used a model estimated based on the normative data of 
subtest “logical mathematical reasoning” of the Dutch 
IDS-2 (Grob et al., 2018). The test scores show non normality, 
heteroscedasticity, and smooth, nonlinear effects of age. 
This pattern is more often found in intelligence and devel-
opmental tests, in that test scores typically increase rapidly 
with age for young children, and this relationship deceler-
ates with age as they get older (e.g., Ferrer & McArdle, 
2004; Grob et  al., 2018; Kaufman & Kaufman, 2004; 
McArdle et al., 2002).

As the transversal model for the normative data, we 
selected the skew Student t distribution (Fernandez & Steel, 
1998), as reparametrized by Würtz et al. (2006). This distri-
bution has four distributional parameters, namely µ for the 
mean, σ for the standard deviation, and ν and τ, which are 
related to the skewness and kurtosis, respectively. We used 
the default link functions (i.e., identity link for µ, log link 
for σ and ν, and ln[τ − 2] for τ). We selected the skew 
Student t distribution, because we expected that it would 
capture the nonnormal and heteroscedastic normative data 
reasonably well, and because based on this model we could 
easily make normal and/or homoscedastic model variants. 
This is so because the skew Student t distribution simplifies 
to the normal distribution when ν = 1 and τ = ∞, and its σ 
parameter equals the standard deviation (this is unlike, e.g., 
the BCPE distribution). As the longitudinal model for the 
normative data, we used orthogonal polynomials of age.

To select the model for the normative data, the IDS 
model for short, we fitted a series of presumably fitting 
models, selected the model with the lowest Bayesian 

information criterion (BIC; Schwarz, 1978), and checked 
model fit using the worm plot. Specifically, we fitted the 
skew Student t distribution, using all possible combinations 
of orthogonal polynomials of age, with polynomial degrees 
ranging from 0 up to 5 for distributional parameters µ, σ, 
and ν, and polynomials degrees from 0 up to 2 for distribu-
tional parameter τ, thus considering 63 * 3 = 648 models in 
total. The selected IDS model includes polynomials of age 
up to degree 4 for both µ and ln ν, and up to degree 2 for ln 
σ, and degree 1 for ln (τ − 2). Figure 2 depicts the centile 
curves (panel a) and the distributional parameters as a func-
tion of age (panel b) for the IDS model. Distributional 
parameter µ corresponds to the mean value of the condi-
tional test score distribution, σ corresponds to the standard 
deviation of the conditional score distribution, and ν and τ 
correspond to the skewness and kurtosis. The closer ν is to 
1 and the higher τ is, the closer the conditional score distri-
bution resembles a normal distribution.

The IDS model involves in the longitudinal model non-
linearity for µ, and in the transversal model heteroscedastic-
ity and nonnormality, which are depicted with solid lines in 
panel (b) of Figure 2. Based on this, we defined a linear 
variant for µ, a homoscedastic variant (i.e., σ constant), and 
a normal variant (i.e., ν = 1; τ = ∞), as depicted with 
dashed lines in panel (b) of Figure 2. By using all possible 
combinations of (non)linearity, homoscedasticity/het-
eroscedasticity, and (non)normality, we defined 23 = 8 pop-
ulation models.

Normative samples were randomly generated from each 
population model, with sample size n = 500, 1,000, and 
2,000 (Factor 2)—which are in the typical range of what is 
being used in practice. The age values were fixed to N 
evenly spaced values in the range [5, 21]. For Factors (1) 
and (2), we used a fully crossed design, involving R = 
1,000 replications. This resulted in 8 (population model) × 
3 (N) × 1,000 (R) = 24,000 generated normative samples.

Factor (3) is the flexibility (i.e., too flexible, true, and too 
strict) of the transversal and longitudinal nature of the esti-
mation model, in relationship to the transversal and longitu-
dinal nature of the population model. Specifically, for each 
sample, we estimated the true model, and as far as applica-
ble, the transversal and/or longitudinal strict models, and 
the transversal and/or longitudinal flexible models.

As the true model, we used the skew Student t distribu-
tion for the transversal model (i.e., population and estima-
tion models equal), and the longitudinal model with a linear 
effect for conditions with a linear population model, and 
P-splines for the conditions with a nonlinear population 
model (Eilers & Marx, 1996; i.e., population and estimation 
model different, but expected to yield similar results); there-
fore we denote this model as True[linear/splines] in what 
follows. To keep the simulation study feasible, we used a 
fixed number of 6 knots, rather than to each simulated data 
set tailored number. We selected the number of knots such 
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Figure 2.  Centile curves (panel a) and distributional parameters of the skew Student t distribution as polynomial function of age 
(solid lines; panel b) for the IDS model.
Note. The dashed lines in panel (b) indicate the conditions with linearity in µ, homoscedasticity (i.e., σ is constant, and normality (i.e., ν = 1; τ = ∞ is 
not depicted). IDS–2 = Intelligence and Development Scales–2.
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that it was optimal (i.e., lowest Akaike information criterion 
and lowest BIC) for the most complex population model 
(i.e., nonlinearity, heteroscedasticity, and nonnormality). 
The smoothing parameter of the P-splines was automati-
cally selected using the generalized Akaike information cri-
terion (GAIC) method with penalty 5, which was optimal 
(i.e., lowest BIC) for the most complex population model 
given the selected 6 knots. To assess to what extent the 
P-splines indeed yield similar results as polynomials would 
achieve, we estimated for the most flexible nonlinear popu-
lation model (i.e., the IDS-2 population model) also a model 
involving polynomials; this model will be denoted as 
True[poly].

The strict transversal model variant involved homosce-
dasticity and normality, and the strict longitudinal model 
variant involved a linear model for µ. The flexible transver-
sal model variant involved heteroscedasticity and nonnor-
mality, and the flexible longitudinal model variant involved 
splines for µ.

To examine to what extent the simulated data could be 
approximated with a different distribution than the popula-
tion one (i.e., skew Student t distribution), we also esti-
mated a BCPE distribution using default link functions, and 
P-splines. To accommodate for possible negative simulated 
test scores, the BCPE model was estimated on the test 
scores plus 100 for each value, and the estimated values 
were backtransformed accordingly.

We estimated all applicable combinations of models. For 
example, the IDS-2 population model involved nonlinear-
ity, heteroscedasticity and nonnormality. Because this is the 
most flexible variant that we consider, only the strict esti-
mation model variants are applicable next to the true model.

Outcome Measures

The main outcome measures were the bias, variance, and 
the RMSE of the normalized z score estimate, at age value i 
and test score j. RMSEij is a combination of bias and vari-

ance (i.e., RMSE variance biasij ij ij= + 2 ). It expresses how 

much the estimated normalized z scores deviate from the 
population normalized z score, due to sampling variability 
(i.e., variance) and a systematic difference (i.e., bias). If an 
increase in model flexibility resulted in an increased 
RMSEij, this would indicate that the increase in variance is 
larger than the decrease in squared bias for that age value 
and test score.

We evaluated the three outcome measures per age value 
and test score across the R = 1,000 replications, for I 
(=1,000) equally spaced age values across the full age range 
[5, 21], and J (= 100) test scores corresponding to (condi-
tional) population z scores in the range [−3, +3]. Conditional 
test scores outside this range (i.e., deviating more than 3 
SDs from the mean score) are sometimes not reported in 

practice (e.g., in the IDS-2 intelligence test; Grob et  al., 
2018) because the uncertainty in those scores is considered 
to be too large and therefore not relevant in our outcome 
measures. The normalized z score estimates were derived 
from the percentiles of the estimated test score distribution 
conditional on age via the inverse normal distribution. 
Small differences in extreme estimated percentiles resulted 
in large differences in extreme z scores, and very extreme 
estimated percentiles resulted in |zˆ| = ∞. This is why we 
bounded the estimated normalized z scores to the range [−5, 
+5], which is very extreme in practice.

Thus, the bias, variance, and RMSE of zij, the normalized 
z score at age value i and test score j, were computed as
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In addition to our main outcome measures (i.e., bias, 
variance, and RMSE), we evaluated the convergence of all 
estimated models. We defined two types of nonconverging 
models: (1) models that could not be estimated and (2) 
models that were estimated with the maximum number of 
iterations, which we fixed to 2,000 iterations. The computa-
tions of the main outcome measures were based on all the 
models that could be estimated, thus including those that 
were estimated with the maximum number of iterations.

Results

The key results are presented in Figures 3 to 5. These 
show the absolute bias, variance, and RMSE of the nor-
malized z scores, as averaged across all ages and test 
scores evaluated, per combination of population model 
and estimation model. The associated numbers with their 
SEs are provided in the Supplementary Material (see 
https://osf.io/hwme5/). The order of population models is 
the same in the three figures, with the most flexible non-
linear population model (i.e., the IDS-2 population model) 
first, and the most restricted population model (i.e., linear 
regression model with homoscedasticity) last. The SEs of 
the outcome measures are very small relative to the differ-
ences in the average outcome variables between condi-
tions. Thus, we can reliably interpret the means represented. 
The Supplementary Figure S1, which is available via the 
same OSF link, illustrates for one condition (i.e., popula-
tion model without assumption violations in combination 
with the “strict” estimation model, for n = 500, age 5, and 

https://osf.io/hwme5/
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Figure 3.  Mean absolute bias across all ages and test scores evaluated, per population model and estimation model, for n = 500 (a), 
n = 1,000 (b) and n = 2,000 (c).
Note. Estimation model is too strict (Strict), or too flexible (Flex), related to the trans(versal) and/or long(itudinal) model; True[linear] and True[poly] 
equal, and True[splines] approximates the population model. NL = nonlinear; Li = linear; Ho = homoscedastic; He = heteroscedastic; No = normal; 
NN = nonnormal; BCPE = Box–Cox Power Exponential model.
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Figure 4.  Mean variance across all ages and test scores evaluated, per population model and estimation model, for n = 500 (a), n = 
1,000 (b) and n = 2,000 (c).
Note. Estimation model is too strict (Strict), or too flexible (Flex), related to the trans(versal) and/or long(itudinal) model; True[linear] and True[poly] 
equal, and True[splines] approximates the population model. NL = nonlinear; Li = linear; Ho = homoscedastic; He = heteroscedastic; No = normal; 
NN = nonnormal; BCPE = Box–Cox Power Exponential model.
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Figure 5.  Mean RMSE across all ages and test scores evaluated, per population model and estimation model, for n = 500 (a), n = 
1,000 (b) and n = 2,000 (c).
Note. Estimation model is too strict (Strict), or too flexible (Flex), related to the trans(versal) and/or long(itudinal) model; True[linear] and True[poly] 
equal, and True[splines] approximates the population model. RMSE = root mean square error; NL = nonlinear; Li = linear; Ho = homoscedastic; He 
= heteroscedastic; No = normal; NN = nonnormal; BCPE = Box–Cox Power Exponential model.
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z score = 0) that 1,000 replications were more than enough 
because convergence of the RMSE measure was already 
reached after about 700 replications.

To ease the reading of the results, we present them asso-
ciated to the hypotheses stated in the section “Research 
questions and hypotheses.”

Bias

We expected that using a too strict model would result in 
higher bias than using the true models and the too flexible 
models. Comparing in Figure 3 all Strict, True, Flex, and 
(too flexible) BCPE estimation models for all population 
models shows that this is indeed the case at all sample sizes 
for the conditions with (1) the normal (No) population mod-
els, estimated with the BCPE model; and (2) the nonnormal 
(NN) population models, estimated with the Flex models 
(i.e., involving the Skew Student t distribution), and for the 
condition involving heterogeneity, estimated with the BCPE 
model. Deviations from the expectation are found in (3) the 
normal (No) population models, estimated with the Flex 
models, which are too flexible in the transversal model (i.e., 
Flex[trans] and Flex[long,trans]); and (4) the nonnormal 
population models involving homoscedasticity (Ho), esti-
mated with the BCPE model.

We further expected that a larger difference between the 
population model and the strict estimation model would 
result in a higher absolute bias. Comparing in Figure 3 the 
(most restricted) Strict[long,trans] model with the (less 
restricted) Strict[long] and Strict[trans] models for each 
population model and sample size show that this is indeed 
seen at all cases considered.

Variance

We expected that using a too strict model would result in com-
parable or lower variance when compared with the true mod-
els and the too flexible models. Comparing in Figure 4 all 
Strict, True, Flex, and BCPE model variants shows that this is 
indeed the case, for all population models and sample sizes.

We further expected the variance to decrease as the sam-
ple size increases. Comparing in Figure 4 the three samples 
sizes per combination of population and estimation models 
learns that this is generally the case, with the following 
exception: (1) the nonnormal population models, estimated 
with the BCPE model, with substantial deviations in the 
homoscedastic (Ho) condition. Inspection of the means (to 
be found in the Supplementary Material [see https://osf.io/
hwme5/]) learns that small deviations are also found in (2) 
the normal population models with heteroscedasticity and 
nonlinearity (NL-HeNo), estimated with the Strict[long] 
and True[linear/spline] models; and (3) the normal popula-
tion models with heteroscedasticity and linearity (Li-HeNo), 

estimated with the True[linear/spline], Flex[long] and 
Flex[long, trans] estimation models.

We finally expected the variance of a too flexible model 
to be higher than of the true model. Comparing in Figure 4 
the Flex and BCPE model variants to the True[linear/
splines] model and the True[poly] model (if available) per 
population condition learns that this is indeed seen at all 
cases considered. Note that the larger variance of the 
True[linear/splines] model than the BCPE model in the 
NL-HeNN condition at sample size n = 500 does not indi-
cate an exception, because the True[linear/splines] model 
still deviates from the population model, in that splines 
rather than polynomials are used. The True[poly] model 
equals the population model, and their associated variance 
is indeed lower than of the BCPE model.

RMSE

We expected the RMSE of the true model to be lower than 
that of the too strict and too flexible models. Comparing in 
Figure 5, the True models with all other estimation models 
shows that this is indeed the case, for all population models 
and sample sizes. For the Flexible models it appeared that 
the RMSE of the Flexible models was comparable or a bit 
higher than the RMSE of the True models, except for two 
notable exceptions: (1) the BCPE model in the non normal 
homoscedastic population conditions (HoNN), and (2) the 
Flex estimation models in the Normal population condi-
tions (No). For the Strict models it appeared that the RMSE 
of Strict models were consistently higher than of the True 
models, and also of the Flexible models, except for the two 
exceptions as described in the previous line.

Figure 6.  Heat plot of the RMSE (root mean square error) of 
the estimated z values over all replications for each combination 
of age and population z score conditional on age, for the most 
restricted population model, with linearity, homoscedasticity and 
normality (Li-HoNo), at a sample size of n = 500, and using the 
most flexible estimation model, i.e., the Flex[long,trans] model.

https://osf.io/hwme5/
https://osf.io/hwme5/
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To offer some illustration on how much the RMSE 
depends on the region in the observed predictor space, 
Figure 6 shows a heat map for all combinations of age values 
and population z scores conditional on age, for the condition 
with the highest mean RMSE. This condition is the most 
restricted population model (i.e., the linear regression model 
with homoscedasticity and normality) combined with the 
most flexible estimation model (i.e., the skew Student t dis-
tribution, using P-splines), at the sample size of n = 500. 
The heat map shows that the RMSE has rather high values 
for the extremely low population z values (say below −2.7), 
and rather low values for all other z values, consistently 
across all ages. The P-splines thus yield a consistent fit 
across all ages, while the skew Student t distribution yield a 
rather poor estimation at the lower tail of the population dis-
tributions at all ages. Inspection of the estimated scores 
revealed that the low z scores are underestimated.

Nonconvergence

Per condition (i.e., all 43 combinations of population model 
and estimation model, for 3 sample sizes), we assessed the 
frequency (out of 1,000 replications) of (1) models that 
could not be estimated, and (2) models that were estimated 
with the maximum number of 2,000 iterations. The full 
tables are available in the online Supplementary Material 
(https://osf.io/hwme5/). Across all 129 conditions, the maxi-
mal number of models that could not be estimated ranged 
from 0 (<0.01%) to 4 (0.04%), and the maximal number of 
models estimated with the maximal number of iterations 
ranged from 0 (<0.01%) to 60 (6.0%). Thus, nonconver-
gence poses little to no thread to the robustness of our results.

How to Diagnose Underfitting and Overfitting in 
Empirical Practice Using Visual Diagnostics

In practice, the population model is unknown and one has to 
estimate the norming model based on a normative sample. 
As a result, underfitting and overfitting of the normative 
sample data are serious risks. We illustrate based on empiri-
cal normative data (N = 1,654) of the subtest “logical math-
ematical reasoning” of the Dutch IDS-2 (Grob et al., 2018) 
how centile curves and worm plots (Van Buuren & Fredriks, 
2001) can be used to visually diagnose underfitting and 
overfitting. We estimated three models: a very strict model 
(i.e., assuming linearity, homoscedasticity, and normality), 
a properly fitting model (i.e., using the SST distribution 
with P-splines, with the smoothing parameter selected by 
the BIC), and a very flexible model (i.e., same model as the 
properly fitting model, yet selecting the smoothing param-
eter by the GAIC (0.1), which entails a much smaller pen-
alty than the BIC does on the model complexity).

Figure 7 shows the centile curves and the observed test 
scores as a function of age and the corresponding worm 
plots (Van Buuren & Fredriks, 2001) for the three estimation 
models. As can be seen in Figure 7, the centile curves of the 
strict estimation model in panel (a) all increase linearly with 
age. Note that the median increases linearly with age due to 
the linear nature of the longitudinal model only, and that all 
percentiles increase linearly with age due to both the linear 
nature of the longitudinal model and the age independent 
nature of the transversal model. This model clearly results in 
underfitting because the centile curves do not follow the 
general pattern in the normative data, which corresponds 
with the large deviations from zero (i.e., the horizontal dot-
ted lines) in the worm plots in panel (b). The centile curves 
of the properly fitting and flexible estimation models, in 
panels (c) and (e) respectively, seem to follow the pattern in 
the normative data much better. This is shown by the small 
deviations from zero in the worm plots in panels (d) and (f). 
However, the centile curves of the flexible estimation model 
seem too wiggly, especially for the extreme percentiles, 
thereby most likely overfitting the sample data. Theoretically, 
the relationship between the percentiles and age is expected 
to be smooth, and not wiggly. This example illustrates that 
underfitting is best detected using the worm plots, and over-
fitting is best detected using the centile curves in combina-
tion with theoretical expectations about the relationship 
between the percentiles and the predictor(s).

Discussion

The results of the simulation study largely supported all 
hypotheses stated. That is, in our simulation study it gener-
ally appeared that the use of a too strict estimation model 
results in higher bias compared with using the true or a too 
flexible models, while the precision of the normalized z 
score estimates is at the same or a lower level. Also, a larger 
difference between the population model and the too strict 
estimation model results in higher bias. Furthermore, the 
variance of the estimates of a too flexible model is higher 
than of the true model, and the variance decreases with 
increasing sample size. Finally, the RMSE of the true model 
is lower than of the too strict and too flexible models.

In our simulation, we found some notable results that 
deviated from our stated hypotheses. We carefully consid-
ered these results, and inspected estimated models of a sam-
ple of replicates. In our view, the exceptions found stem 
from two difference sources. First, the estimation with the 
skew Student t distribution appeared to be problematic in 
samples drawn from a normal population distribution. 
Theoretically, the skew Student t distribution with distribu-
tional parameter τ equal to ∞ equals a normal distribution. 
We presume that the estimation issues occurred in samples 
drawn from a normal distribution, because the estimated 

https://osf.io/hwme5/
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Figure 7.  Centile curves (left panels) and worm plots (right panels) for a strict model (assuming linearity, homoscedasticity, and 
normality), a model with proper fit (SST[BIC]), and a flexible model (SST[GAIC (0.1)]) as estimated for empirical normative data of 
subtest “logical mathematical reasoning” of the Dutch IDS-2 (Grob et al., 2018).
Note. The nine centile curves within each left panel correspond to percentiles 1, 5, 10, 25, 50, 75, 90, 95, 99 as a function of age, and the grey dots 
indicate the sample scores. BIC = Bayesian information criterion; GAIC = generalized Akaike information criterion.

parameter τ may thus become very large, and with large 
fluctuations across samples.

Second, the estimation with the BCPE distribution 
appeared to be problematic, with the largest effects seen in 

samples drawn from nonnormal populations involving 
homoscedasticity. We presume that these estimation issues 
are due to the use of too flexible longitudinal models for the 
parameters σ, ν, and τ. We used P-splines with a fixed 
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number of knots to keep the simulation study feasible, and 
this number was based on optimal knot selection for the 
most complex population model (i.e., with nonlinearity, 
heteroscedasticity, and nonnormality), thus requiring the 
largest degree of flexibility. For, for example, a sample from 
a homoscedastic population, this is obviously too flexible 
for the spread parameter σ, because an intercept only would 
be sufficient already.

Practical Recommendations

Our simulation study has clear implications for empirical 
practice. In empirical norming with GAMLSS, one models 
the distribution of test scores, where the distributional 
parameters are modelled as functions of the predictor. The 
best choice would be to use a distribution with specific 
functions of the predictor that would fit the population dis-
tributions well. Thus, the estimation model applied may 
deviate from the exact population model, as long as the 
approximation is well. A more constrained model would 
result in biased estimates, while a more flexible model 
would result in a larger variance.

In practice, one obviously does not know which model 
fits well at the population level. The way to proceed is to 
select a candidate distribution and candidate relationship, 
based on, as far as possible, knowledge about the nature of 
the raw test scores and relationships between the predictor 
and the distributional parameters (e.g., smoothness). For 
scores that presumably can be fitted with a continuous dis-
tribution, the BCPE distribution seems to be a safer choice 
than the skew Student t distribution, given the estimation 
problems of the latter that we encountered for (about) nor-
mally distributed data. The specific model parameters (e.g., 
degrees of the polynomials, or penalty parameters of the 
P-splines) can then be selected by fitting a series of models 
(e.g., using all combinations of polynomial degrees in a cer-
tain range), and selecting the optimal one based on an infor-
mation criterion (e.g., BIC; Schwarz, 1978). In this way, the 
model fits the sample data as closely as possible (i.e., to 
prevent underfitting), while penalizing the model complex-
ity (i.e., to prevent overfitting). In a similar way, the smooth-
ing parameter in the P-splines balances underfitting against 
overfitting. Other regularization/penalization methods to 
prevent overfitting in model selection are available, such as 
cross-validation (e.g., see Hastie et al., 2009).

Herewith, we advise to take a substantial number of 
maximal iterations (say, 2,500), and possibly increase that 
number if the maximum number of iterations would be 
needed, at least for the finally selected model. For the latter 
model, it is also important to visually inspect its model fit, 
using worm plots (Van Buuren & Fredriks, 2001), and plots 
of the centile curves and empirical observations (e.g., as in 
Figure 1), as illustrated in the Results section. This visual 
inspection should be guided by theoretical expectations 

about the relationship between the percentiles and the 
predictor(s). While underfitting and overfitting cannot be 
prevented completely in practice, this helps keeping their 
degree minimal.

In this article, we considered the normed scores associ-
ated with observed test scores. These test scores serve as the 
best estimates of the latent trait that is measured with the 
test, and thus are point estimates. In using test scores for 
individual decisions, it is important to acknowledge the 
uncertainty in the point estimate. This can be done by using 
a 95% confidence interval for the raw test score, which thus 
expresses the uncertainty due to test unreliability. The inter-
val can be based on classical test theory, or measurement 
models as item response theory-based models. Once the 
boundaries of the confidence interval for raw test score are 
known, they can be converted to the boundaries of the 
normed scores, using the same transformation as applied to 
the point estimate.

Limitations

This simulation study has four possible limitations. First, 
our continuous norming models included only one predictor 
(i.e., age). The interpretation of the normed scores crucially 
depends on the used predictor(s), because the predictor(s) 
fully determine the reference populations. For intelligence 
and developmental tests, the reference population typically 
is the general population of the same age, implying that in 
continuous norming age will be the only predictor. However, 
in different types of tests, one may have additional 
predictor(s). For example, in clinical tests, one may have a 
healthy population of the same age, sex, and education level 
as the reference population. Continuous norming of such a 
test would thus require the predictors’ age, sex, and educa-
tional level. The used continuous norming models can eas-
ily be extended to include more predictors. Categorical 
predictors can be included using dummy coding (e.g., 
Cohen et al., 2003). We believe that using more predictors 
would have complicated our simulation study unnecessar-
ily, as we expect similar results for models with more pre-
dictors, including categorical ones. Note that adding 
predictors may complicate the model, rendering a larger 
sample necessary to achieve the same precision.

Second, we sampled the observations randomly from 
each population model. Therefore, the expected distribution 
of age within a sample is uniform. We refrained from vary-
ing the distribution of the predictor values, because their 
effects on precision were beyond our interest, and their 
effects heavily depends on the specific population model. 
That is, the effects of such an unbalanced design on the qual-
ity of the estimated model depends on the nature of the lon-
gitudinal model, which describes the relationships between 
age and the distributional parameters of the GAMLSS. 
Generally, the more complicated the relationship is, the 
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larger the effect of unbalancedness will be. For example, lin-
ear relationships could be approximated well based on only 
observations near the boundaries of the age range, while 
higher order polynomials would also need support by obser-
vations within the age range.

Third, we used a limited number of population models 
and estimation models. We could have generated assump-
tion violations in different ways (e.g., violation of the nor-
mality assumption with a bimodal distribution), and used 
other estimation models (e.g., for ordered categorical data). 
However, we carefully manipulated the characteristics of 
the population models in terms of their longitudinal and 
transversal nature, and matched with a series of estimation 
models that could be presumed to be used in practice. For 
example, using an estimation model for ordered categorical 
data will probably not used for continuous empirical data, 
hence would be rather far-fetched to examine.

Fourth, we only explored estimation through GAMLSS 
to deal with violated assumptions of the standard regression 
model. Alternatives are semiparametric continuous norm-
ing (Lenhard et  al., 2018) and robust regression (Wilcox, 
2012). The semiparametric approach performed similar to 
the use of specific GAMLSS distributions, except for 
extreme (i.e., easy and difficult) tests for the population of 
interest, where the semiparametric approach outperformed 
(Lenhard et  al., 2019). Considering robust regression, 
Oosterhuis (2017) used the distribution-free Harrell–Davis 
(Harrell & Davis, 1982) quantile estimator to estimate per-
centiles without assuming normality of the conditional 
score distribution. This required the unrealistic assumption 
that the shape of the score distribution was consistent across 
the predictor range. Such alternative approaches could have 
a different bias-variance trade-off than the models studied 
in this article.

Relationships Between Norming and 
Measurement Models

Normed scores are based on raw test scores. To arrive at the 
transformation rules, one only needs the distribution(s) of 
the raw test scores in the reference population(s). This 
implies that no assumptions are made on what is actually 
measured by the test. This leaves aside that normed scores 
only make sense if the raw test scores provide a reasonable 
quantification of the construct of interest. This issue can be 
approached using psychometric theory, including classical 
test theory and latent variable theory (e.g., Raykov & 
Marcoulides, 2011), complemented by appropriate valida-
tion studies.

If a test score is composed of individual item scores, a 
latent variable model (e.g., common factor model or item 
response theory-based model) is of use to assess the quality 
of the items and the resulting test. Furthermore, this would 

offer the possibility to examine possible violations of mea-
surement invariance (e.g., Vandenberg & Lance, 2000). For 
normed scores, it is only necessary to consider violators of 
measurement invariance that vary among individuals within 
the reference population(s) of the test. Thus, it would make 
sense to assess measurement invariance for sex for an intel-
ligence test, but not for a neuropsychological test with sex 
specific norms.
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