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Abstract: Cyanophages play an important role in regulating the dynamics of cyanobacteria commu-
nities in the hydrosphere, representing a promising biological control strategy for cyanobacterial
blooms. Nevertheless, most cyanophages are host-specific, making it difficult to control blooming
cyanobacteria via single or multiple cyanophages. In order to address the issue, we explore the inter-
action between cyanophages and their heterologous hosts, with the aim of revealing the principles of
designing and constructing an artificial cyanophage genome towards multiple cyanobacterial hosts.
In the present study, we use synthetic biological approaches to assess the impact of introducing a
fragment of cyanophage genome into a heterologous cyanobacterium under a variety of environmen-
tal conditions. Based on a natural cyanophage A-4L genome (41,750 bp), a truncated cyanophage
genome Syn-A-4-8 is synthesized and assembled in Saccharomyces cerevisiae. We found that a 351–
15,930 bp area of the A-4L genome has a fragment that is lethal to Escherichia coli during the process of
attempting to assemble the full-length A-4L genome. Syn-A-4-8 was successfully introduced into E.
coli and then transferred into the model cyanobacterium Synechococcus elongatus PCC 7942 (Syn7942)
via conjugation. Although no significant phenotypes of Syn7942 carrying Syn-A-4-8 (LS-02) could be
observed under normal conditions, its growth exhibited a prolonged lag phase compared to that of
the control strain under 290-millimolar NaCl stress. Finally, the mechanisms of altered salt tolerance
in LS-02 were revealed through comparative transcriptomics, and ORF25 and ORF26 on Syn-A-4-8
turned out to be the key genes causing the phenotype. Our research represents an important attempt
in designing artificial cyanophages towards multiple hosts, and offers new future insights into the
control of cyanobacterial blooms.

Keywords: artificial cyanophage genome; cyanophage A-4L; heterologous expression; non-host
cyanobacteria; salt stress; transcriptomic analysis

1. Introduction

Filamentous cyanobacteria are distributed all over the world, and their overbreeding
results in harmful cyanobacterial blooms [1–6]. Recently, most sequenced cyanophages are
viruses that infect the unicellular cyanobacteria of the Synechococcus and Prochlorococcus
genera [7–11]. Few studies focus on the genome sequencing of cyanophages that infect
freshwater filamentous cyanobacteria [12–14]. Additionally, in recent decades, water
eutrophication and global climate warming have intensified the frequency of cyanobacterial
blooms, especially in freshwater systems [6,15–17]. Toxin-producing cyanobacterial blooms
frequently occur in many eutrophic lakes, ponds and rivers in the world [15], raising the
emergency status concerning their control [6,18,19]. With a plentiful number of species
and their abundance in the hydrosphere [20,21], cyanophages are a class of viruses that
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can infect and lyse cyanobacteria, playing an important role in regulating the dynamics of
cyanobacterial communities [21,22]. Given their high efficiency, controlling cyanobacterial
blooms based on cyanophages has been considered an important and promising strategy.

However, most natural cyanophages are host-specific, making it difficult to use them
in large-scale applications for the control of cyanobacterial blooms due to the lack of broad-
spectrum cyanophages. Most cyanophages with host specificities have different host ranges,
including specialist cyanophages with a narrow host range and generalist cyanophages
with a wide host range [8,23,24]. Regarding the specific infection of a tailed cyanophage
(tailed phage), the specific binding of the receptor-binding protein (RPB) to the receptor
on the host cell’s surface is necessary [25,26]. In addition, there are other mechanisms
that contribute to explaining the infecting specificity of cyanophages. In 2019, the defense
mechanisms of marine cyanobacteria Synechococcus and Prochlorococcus against T7- and
T4-like cyanophages were systematically studied. The following behaviors were observed:
(1) most specialist cyanophages could not attach to the surfaces of non-host cyanobacterial
cells, resulting in a failed infection, and (2) most generalist cyanophages could inject their
genomic DNA into non-host cyanobacteria cells, but non-host cyanobacteria hindered virus
production through various intracellular interactions [24]. This may be the factor that is
relevant to the infection specificity of cyanophages. However, due to the genomic DNA of
cyanophages that cannot be injected into phylogenetically distant non-host cyanobacteria
naturally, there are still few studies on the intracellular resistance of non-host cyanobacteria
to cyanophages, as well as studies on the effects of cyanophages on non-host cyanobacteria.

With the development of synthetic biology, the artificial synthesis of various genomes
has been realized, such as the chemical synthesis of the Mycoplasma mycoides genome [27,28],
recoding of the Escherichia coli genome [29], artificial synthesis of Saccharomyces cerevisiae
chromosomes [30–32] and a data-carrying chromosome [33,34]. Using rational design,
DNA synthesis and assembly as well as non-natural functions such as degenerate codons
and truncated genomes have been introduced into modified microorganisms, providing
new insights into the design and synthesis of artificial cyanophages with a broad spectrum.
Although artificial synthesis of the ø X174, T7 and AP205 phages has been achieved [35–38],
the synthesis of the full-length cyanophage genome has not yet been reported.

In order to solve the limitation of the host specificity of natural cyanophages in their
application to control cyanobacterial blooms, we aim to explore the principles of designing
and constructing an artificial cyanophage in relation to multiple cyanobacterial hosts. The
freshwater cyanophage A-4L belongs to the Podoviridae family in the Caudovirales order,
and only infects some specific strains of genera of Nostoc sp. [39]. The A-4L genome is
a linear double-stranded DNA with a length of 41,750 bp, containing 810 bp of direct
terminal repeats and encoding 38 open reading frames (ORFs) from ORF1 to ORF38 [40].
Model cyanobacterium Synechococcus elongatus PCC 7942 (hereafter Syn7942) is a single-
cell model cyanobacterium with a genome of approximately 2.7 Mb [41]. Syn7942 has
a well-established genetic operation system, and the target plasmids can be transferred
into Synechococcus using natural transformation or conjugation [42–44]. In this study, we
synthesize and assemble a truncated cyanophage genome Syn-A-4-8 in order to investigate
the effect of an artificial cyanophage genome on non-host cyanobacteria by transferring it
into Syn7942 via conjugation (Figure 1). Although no significant phenotypes of Syn7942
carrying Syn-A-4-8 (LS-02) could be observed in normal conditions, its growth exhibited a
prolonged lag phase compared to that of the control strain under 290-millimolar NaCl stress.
The related mechanisms in LS-02 were revealed using comparative transcriptome analysis,
and the key genes on Syn-A-4-8 causing the phenotype were also revealed. Our study lays
the foundation for a further construction of a broad-spectrum artificial cyanophage, and
provides new future insights into the control of cyanobacterial blooms.
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Figure 1. Schematic of the present study. (A) The general idea of this study. Syn-A-4-8 truncated
cyanophage genome. (B) Schematic diagram of plasmid construction and transformation in this
study. Synechococcus elongatus PCC 7942 (Syn7942).

2. Materials and Methods
2.1. Strains, Plasmids and Culture Conditions

All strains and plasmids used in this study are presented in Table S1. Competent cells
of E. coli DH10B (NEB 10-beta electrocompetent cells) used in this study were purchased
from Biomed, China. All E. coli strains were cultured in LB medium at 37 ◦C with antibiotics
when needed (50 µg/mL kanamycin). Wild-type S. cerevisiae BY4741 was grown in YPD
medium at 30 ◦C. Yeast transformants were selected and cultured on synthetic complete
medium without leucine (SC-Leu) or SC-His medium.

All Syn7942 strains constructed in this study and the plasmids used are presented
in Table 1. All Synechococcus strains were cultured at 37 ◦C with a light density of
100 µmol/(m2·s) under a normal culture condition [45]. Wild-type Syn7942 was grown
in BG11 medium, and constructed Synechococcus strains were cultured in BG11 medium
supplemented with 25 µg/mL of kanamycin. Cyanobacteria live in different natural en-
vironments, such as freshwater, seawater and estuaries. Therefore, some stress culture
conditions were chosen to simulate various adverse natural environments and observe
the growth of Syn7942 strains, including different light intensities, different temperatures,
nitrogen deficiency and salt stress (Table S2). The fresh seed liquid was inoculated into
20 mL of fresh liquid medium that was supplemented with 25 µg/mL of kanamycin. The
optical density (OD) at 750 nm and the full absorption spectrum of liquid cultures were
measured by using a Varioskan LUX multifunctional microplate reader (Thermo Fisher
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Scientific, Waltham, MA, USA). The initial OD750 of the liquid culture was 0.04, and it was
measured every 12 h. The full absorption spectrum of the strain cells was measured at
72 h. Each strain was repeated by three biological parallel samples. For nitrogen depletion
and salt treatment, BG-11 medium without sodium nitrate (BG-N−) and BG11 medium
supplemented with salt (190 mM NaCl or 290 mM NaCl) were applied to analyze the
growth curves of Synechococcus strains, respectively.

Table 1. The constructed Syn7942 strains and plasmids used in this study.

Strains/Plasmids Characteristics 1,2

Plasmids (Size/bp)
pJA2 (6537) KmR, E. coli-cyanobacteria shuttle vector

Syn-A-4-8 (34,770) pJA2 harboring the A4-A8 cassette
pSJ03 (20,889) pJA2 harboring the ORF25, ORF26, ORF27 and ORF38 of the A-4L genome
pSJ04 (14,845) pJA2 harboring the ORF25 and ORF26 of the A-4L genome
pSJ05 (12,253) pJA2 harboring the ORF25 of the A-4L genome
pSJ06 (14,243) pJA2 harboring the ORF26 of the A-4L genome

Strains
LS-01 Syn7942 harboring the plasmid pJA2, KmR

LS-02 Syn7942 harboring genome Syn-A-4-8, KmR

LS-03 Syn7942 harboring the plasmid pSJ03, KmR

LS-04 Syn7942 harboring the plasmid pSJ04, KmR

LS-05 Syn7942 harboring the plasmid pSJ05, KmR

LS-06 Syn7942 harboring the plasmid pSJ06, KmR

1 ORFs include coding and flanging sequences of 800 bp containing original promoters. 2 km, kanamycin.

2.2. Construction of Truncated Cyanophage Genome and Plasmid

The truncated cyanophage genome Syn-A-4-8 (34,770 bp) was designed based on
the cyanophage A-4L genome sequence (GenBank: KF356198, 41,750 bp). The A-4L gene
sequence was divided into eight DNA fragments with lengths of approximately 5 kb
(A1–A8). The five large DNA fragments (A4–A8) were, respectively, assembled in E. coli
using pUC57 plasmid as a vector. Additionally, Not I restriction sites (5′-GCGGCCGC-3′)
were added at both ends of the large DNA fragment in order to connect the pUC57 vector.
The E. coli-cyanobacteria shuttle plasmid pJA2 [46] was used as the backbone vector for
Syn-A-4-8. Additionally, a yeast replication element, CEN6/ARS4, and a His3 marker from
pLS0 plasmid were added to enable Syn-A-4-8 to be replicated and screened in S. cerevisiae.
The pLS0 plasmid is a retrofitted BAC-YAC shuttle plasmid in our lab. Its plasmid map is
shown in Figure S1, and the specific DNA sequences of CEN6/ARS4 and His3 are shown in
Table S3. The five large DNA fragments (A4–A8) from enzyme digestion, linearized vector
pJA2, yeast replication element CEN6/ARS4 and His3 marker were co-transformed into S.
cerevisiae, realizing the one-step assembly of the truncated cyanophage genome Syn-A-4-8
by the LiAc/SS carrier DNA/PEG method [47]. Syn-A-4-8 carries 14 ORFs from ORF25 to
ORF38 of the A-4L genome. The obtained yeast transformants were verified using colony
PCR and DNA sequencing. The specific primers involved are shown in Table S4.

Similarly, four recombinant plasmids using the same vector backbone as Syn-A-4-8
were constructed in S. cerevisiae. More specifically, the recombinant plasmid pSJ03 contains
the ORF25, ORF26, ORF27 and ORF38 of A-4L; pSJ04 contains the ORF25 and ORF26 of
A-4L; pSJ05 contains the ORF25 of A-4L; and pSJ06 contains the ORF26 of A-4L. The recom-
binant plasmids were verified using PCR sequencing and the specific primers involved are
shown in Table S4.

2.3. Transformation of Syn7942

The best way to transfer Syn-A-4-8 into Syn7942 is by conjugation rather than by natu-
ral transformation, due to the size of Syn-A-4-8 (34,770 bp). Synechococcus elongatus UTEX
2973 (hereafter Syn2973) is a close relative of Syn7942 [48]. The target genome Syn-A-4-8
was transferred into Syn7942 by conjugation, according to the transformation method
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used in Syn2973 [43,44]. The truncated cyanophage genome Syn-A-4-8 was transferred
into Syn7942 from E. coli under the combined action of pRL443 (conjugative plasmid) and
pRL623 (helper plasmid).

The target plasmid was electroporated into NEB 10-beta electrocompetent cells (Biomed,
Beijing, China) as the donor strain. Briefly, 2 mL of mid-log-phase E. coli containing the
target plasmid and 2 mL of mid-log-phase E. coli HB101 containing pRL443 and pRL623
were washed twice with antibiotic-free LB medium and then separately resuspended in
100 µL of LB medium that was fully mixed and incubated at 37 ◦C for 30 min. A total
of 1 mL of mid-log-phase Syn7942 cells were centrifuged and resuspended in 0.2 mL of
BG11 medium, mixed with the above suspension and incubated at 37 ◦C for 30 min. The
mixed cells were plated onto 0.45-micrometer pore-size cellulose nitrate membranes on
BG11 + 5% LB (v/v) agar plates and incubated at 37 ◦C for 24 h in 100 µmol/(m2·s) light.
Then, the membrane was transferred to BG11 agar plates with 25 µg/mL of kanamycin.
After incubation at 37 ◦C for 5–7 days, cyanobacterial transformants were observed. These
single transformants were then streaked onto selective medium plates again to select stable
transformants. Cyanobacterial transformants were verified by colony PCR and Sanger
sequencing. The specific primers involved are shown in Table S4.

2.4. Transcriptomic Analysis

In order to explore the heterologous expression of Syn-A-4-8 in Syn7942 and its
effect on the heterologous host, transcriptomic analysis was conducted on constructed
Syn7942 strains cultured for 72 h under normal conditions and 290-millimolar NaCl stress.
Transcriptomic analysis was performed using the RNA-sequencing method (RNA-seq) in
GENEWIZ (Suzhou, China). Three biological replicates were performed for each sample.
After the quality assessment of raw reads obtained by transcriptome sequencing, low-
quality reads were pre-processed to obtain clean reads. The filtered sequenced clean data
were compared with the reference genome (GenBank: CP000100.1). The gene expression
level was calculated using the FPKM (fragments per kilobases per million reads) method
using Htseq software (V 0.6.1) [49,50]. Based on the data of the experimental and the
control groups, DESeq2 (V1.6.3) of the Bioconductor software was used for differential gene
expression analysis [51]. Differentially expressed genes (DEGs) were screened according to
a fold change > 1.5 and p-value < 0.05.

2.5. Quantitative Real-Time PCR (qRT-PCR)

After being cultured in liquid medium for 72 h, the cell culture (volume*OD750nm = 5)
was collected by centrifugation and then immediately frozen with liquid nitrogen. Then,
total RNA was extracted from the cells using the Direct-zolTMRNA MiniPrep kit (Zymo,
Irvine, CA, USA) according to the manufacturer’s instructions. Total RNA was reverse
transcribed into cDNA using the HiScript® II Q RT SuperMix for qPCR (+gDNA wiper;
Vazyme, Nanjing, China) according to the manufacturer’s instructions. cDNA was diluted
to 1/100 for qRT-PCR templates. The qRT-PCR reaction system was prepared with the
ChamQ Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China) according to the
manufacturer’s instructions. Additionally, qRT-PCR was performed using the StepOne
Real-time PCR system (Applied Biosystems, Foster City, CA, USA). According to a reported
method [52], qRT-PCR was used to evaluate the level of heterologous expression of the
truncated cyanophage genome Syn-A-4-8 in Syn7942. The primers used for qRT-PCR are
presented in Table S4. The rnpB gene encoding RNase P subunit B was used as an internal
reference gene. Three technical replicates were performed for each sample. The qRT-PCR
data were analyzed by using StepOne Software (Applied Biosystems, Foster City, CA, USA)
and the 2−∆∆Ct method [53].

The reliability of the RNA-seq expression data was validated by the qRT-PCR of
18 selected genes using the same RNA extractions for RNA-seq. The primers used for
verification are presented in Table S4. Similarly, three technical replicates were performed
for each sample. The correlations between RNA-seq and qRT-PCR were assessed by means
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of scatter graphs as well as the Pearson correlation coefficient in Excel. If the correlation
coefficient was greater than 0.8, the RNA-seq expression data were considered reliable.

3. Results
3.1. Synthesis and Assembly of a Truncated Cyanophage Genome Syn-A-4-8

In order to synthesize the truncated cyanophage genome Syn-A-4-8 based on the
natural cyanophage A-4L (GenBank: KF356198, 41,750 bp, containing genes including
ORF1–ORF38, infecting filamentous Nostoc sp. PCC 7120) (Figure 2A), firstly, eight DNA
fragments (A1–A8) of the A-4L genome were tentatively assembled and cloned in E. coli
from synthetic oligonucleotides. Surprisingly, the results show that DNA fragments A1, A2
and A3 could not be successfully cloned in E. coli, whereas they could survive separately in
E. coli with 10 small DNA fragments (B1–B10) with lengths of 1–2 kb (Figure 2B). The DNA
fragments A1, A2 and A3 were successfully assembled by homologous recombination
in S. cerevisiae using a shuttle vector pRS415 containing a colE1 replication origin and a
yeast replication element CEN/ARS with a Leu2 marker [54], leading to the construction of
Syn-A1, Syn-A2 and Syn-A3 (Figure 2C). Nevertheless, Syn-A1, Syn-A2 and Syn-A3 could
still not be introduced into E. coli (Table S5), suggesting the existence of toxic genes.
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The DNA fragments (B1–B10) cannot be assembled into larger DNA fragments in E. coli. (C) Recom-
binant plasmids and artificial genomes assembled by homologous recombination in yeast. Syn-A1,
pRS415 harboring the A1 cassette; Syn-A2, pRS415 harboring the A2 cassette; Syn-A3, pRS415 harboring
the A3 cassette; Syn-A-4-8, the truncated cyanophage genome. (D) Map of artificial genome Syn-A-4-8.
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Syn-A-4-8 contains 14 ORFs from ORF25 to ORF38 in the A-4L genome. (E) The gel electrophoresis
results of restriction enzyme digestion for Syn-A-4-8. M2: Trans15K DNA marker. M3: 1 kb DNA
ladder. Drd I + Blp: Syn-A-4-8 was digested with the restriction endonucleases Drd I and Blp I and
then divided into four fragments (19,578 bp, 10,111 bp, 4333 bp, 748 bp). Nhe: Syn-A-4-8 was digested
with the restriction endonuclease Nhe I and then divided into ten fragments (9094 bp, 8401 bp, 4817 bp,
3425 bp, 3103 bp, 2503 bp, 2085 bp, 841 bp, 385 bp, 116 bp). Hind III: Syn-A-4-8 was digested with the
restriction endonuclease Hind III and then divided into twelve fragments (7279 bp, 6343 bp, 5302 bp,
2886 bp, 2819 bp, 2439 bp, 2365 bp, 2166 bp, 1749 bp, 915 bp, 321 bp, 187 bp).

Given the potential toxicity of fragments from A1 to A3 (Figure 2C), the truncated
cyanophage genome Syn-A-4-8 containing A4–A8 was successfully assembled in S. cerevisiae
and validated (Figure 2D,E). In this case, the E. coli-cyanobacteria shuttle plasmid pJA2 [46]
with a yeast replication element, CEN6/ARS4, and a His3 marker from the pLS0 plasmid,
were used as the backbone. As illustrated in Table S6, Sanger sequencing shows that
Syn-A-4-8 contains five base mutations. Unlike the results of Syn-A1, Syn-A2 and Syn-A3,
Syn-A-4-8 could be transferred into E. coli via electroporation (Table S5), suggesting the
existence of toxic genes in fragments from A1 to A3.

3.2. Heterogeneous Expression and Investigation of Syn-A-4-8 in Syn7942

Although many cyanobacterial species are naturally transformable [55], the introduc-
tion of large plasmids (>20 kb) mainly depends on the conjugation mediated by E. coli [56].
We focused on the heterogeneous expression and investigation of Syn-A-4-8 in non-host
cyanobacterium Syn7942. As expected, Syn-A-4-8 was successfully transferred into Syn7942
by E. coli-mediated conjugation, leading to the LS-02 test strain (Table 1). Meanwhile, the
LS-01 control strain, which carried empty plasmid pJA2 in Syn7942, was also constructed
(Table 1). The cyanobacteria transformants were verified by colony PCR screening (Figure S2).

The LS-02 and LS-01 strains were cultured under a variety of culture conditions to
investigate the effect of Syn-A-4-8 on Syn7942 (Table S2). Under different light intensities,
different temperatures, the growth curve of the LS-02 test strain was similar to that of the
LS-01 control strain (Figure 3A,B). As Syn7942 has no nitrogen fixation capacity, the growth
of LS-01 and LS-02 under nitrogen-deficiency conditions was both slightly weaker than
that under the normal culture condition, but the growth of LS-02 was consistent with that
of LS-01 (Figure 3C). Additionally, absorption spectra also showed that the cytochrome
content between LS-02 and LS-01 presented a minor difference under nitrogen-deficiency
conditions (Figure S3A). Although the absorption spectra showed that the cytochrome
content between LS-02 and LS-01 presented a slight difference under 190-millimolar NaCl
stress (Figure S3B), the growth of LS-02 was similar to that of LS-01 (Figure 3D). Therefore,
we tried a higher concentration of salt stress culture.

Interestingly, the growth of LS-02 exhibited a prolonged lag phase compared to that
of LS-01 under 290-millimolar NaCl stress (Figure 3E). The absorption spectrum revealed
that the quantities of chlorophyll a (680 nm) [57], carotenoid (approximately 505 nm) and
phycocyanin (625 nm) in the test-strain LS-02 cells were higher than those in the control-
strain LS-01 cells under 290-millimolar NaCl stress (Figure 3F). All the results suggest that
the salt tolerance of LS-02 was altered due to the expression of Syn-A-4-8.
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The error bars represent the standard deviations of the three biological replicates for each sample. 

Figure 3. The transfer of Syn-A-4-8 had a minor effect on Syn7942 under various culture conditions.
The error bars represent the standard deviations of the three biological replicates for each sample.
(A) The growth curves of LS-01 and LS-02 under the same light intensities at different culture
temperatures. (B) The growth curves of LS-01 and LS-02 at 37 ◦C under different light densities.
(C) The growth curves of LS-01 and LS-02 in BG11 medium without sodium nitrate. (D) The
growth curves of LS-01 and LS-02 in BG11 liquid medium supplemented with salt (190 mM NaCl).
(E) The growth curves of LS-01 and LS-02 in BG11 liquid medium supplemented with salt (290 mM
NaCl). (F) Full absorption spectrum of strain cells in BG11 liquid medium supplemented with salt
(290 mM NaCl).

3.3. Transcriptional Analysis Revealing the Effect of Syn-A-4-8 on Syn7942

The growth of LS-02 exhibited a prolonged lag phase compared to that of LS-01 under
290-millimolar NaCl stress. In order to reveal the effect of mechanisms of the prolonged
lag phase in LS-02, transcriptomic analysis was performed for LS-02 and LS-01 under both
normal and salt stress conditions. The reliability of the transcriptomic data was validated
using qRT-PCR testing, reaching a correlation of >0.9 (Figure S4).
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3.3.1. Transcriptomic Comparations of LS-02 and LS-01 under Normal Conditions

Although the growth of LS-02 was consistent with that of LS-01, the heterologous
expression of Syn-A-4-8 resulted in differentially expressed genes (DEGs) under normal
culture conditions. As a result, a total of 2664 expressed genes of Syn7942 were identified
under the normal culture condition, of which 66 DEGs, including 46 down-regulated and
20 up-regulated genes, were screened in LS-02 compared to those in LS-01 using a 1.5-fold
change as a cutoff (Figure 4A). According to pathway enrichment, the enriched DEGs
were mainly involved in oxidative phosphorylation, two-component systems, heat shock
proteins (HSPs), photosynthesis and transporters (Figure 4B, Table S7).
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Figure 4. Response of Syn7942 cells to heterologous expression of Syn-A-4-8. (A) Volcano map of
differentially expressed genes under normal culture conditions. Red dots indicate up-regulation and
blue dots indicate down-regulation. The abscissa represents the logarithm of the fold change of gene
expression, and the ordinate represents the statistical significance of the change in gene expression.
Differentially expressed genes (DEGs) were screened based on a fold change > 1.5 and p-value < 0.05.
(B) KEGG pathway-enrichment scatter plot under normal culture conditions. The abscissa represents
the Rich factor. The larger the Rich factor, the greater the enrichment degree. The ordinate represents
the pathway name. The size of each dot indicates the number of DEGs in this pathway, and the
color of each dot corresponds to different p-values. The smaller the p-value, the more significant the
enrichment. (C) Volcano map of differentially expressed genes under 290-millimolar NaCl stress.
(D) KEGG pathway-enrichment scatter plot under 290-millimolar NaCl stress.

Three down-regulated genes were involved in oxidative phosphorylation (Table S7),
including ctaA encoding heme-A synthase (HAS) and two genes (coxA and coxC) encoding
subunits I (COI) and III (COIII) of cytochrome-c oxidase. Cyanobacteria are oxygenic
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photosynthetic organisms, and the photosynthetic and respiratory electron transport chains
are located in the thylakoid membrane (TM), forming a metabolically active membrane
network and maintaining redox balance [58,59]. Terminal oxidases in the respiratory chain,
the key enzymes for cyanobacterial respiration, accept electrons and reduce molecular
oxygen to water, as well as generate a proton motive force used for ATP synthesis [60,61].
Cytochrome-c oxidase is a heme-copper oxidase, and its important cofactor, heme A,
is synthesized by HAS [62,63]. Additionally, in Synechocystis sp. PCC 6803, terminal
oxidases of the respiratory chain can alleviate the photo-oxidative damage of photosystem
I under repetitive short-pulse illumination [64]. As previously reported, the expression
of ubiquinone oxidoreductase in the respiratory chain of host cyanobacteria Nostoc sp.
FACHB-596 decreased after being infected with cyanophage YongM at 8 h, limiting proton
transport during host oxidative phosphorylation [65]. Thus, the down-regulation of the
three genes in our study may adversely affect electron transfer in the respiratory chain of
cells, resulting in the weakening of cyanobacterial respiration.

The two-component system involved three down-regulated genes encoding HAS
(Table S7), CheW protein and CheY-like protein. In Bacillus, cells sense the hypoxia signal
through the ResDE two-component regulatory system and improve the biosynthesis of
terminal oxidases; terminal oxidases interact with histidine kinase kinB to activate the
formation of biofilm [66]. The cofactor heme A of terminal oxidases is synthesized by HAS.
CheW and CheY-like proteins belong to the bacterial chemotactic system, an improved two-
component system that responds to environmental stimuli by regulating gene expression
and moving cells towards a favorable environment [67,68]. In E. coli, the chemotaxis signal
transduction protein CheW connects methyl-accepting chemotaxis proteins (MCPs) and
histidine kinase CheA to form a stable core signal complex, which is the core component of
the chemotaxis system [67,69]. After the self-phosphorylation of CheA, the phosphorylated
group is transferred to the reactivity regulatory protein CheY, which controls its affinity for
movement through its phosphorylation state [70]. In Synechocystis sp. PCC 6803, there are
genes (pilG, pilH, pilI and pilJ) whose products are homologous to PatA (CheY-like protein),
CheY, CheW and MCPs, to participate in its phototactic motility in order to better adapt to
environmental stimuli [71,72]. The down-regulation of these three genes may adversely
affect the ability of cells to respond to environmental stimuli.

Five down-regulated genes were involved in HSPs (Table S7), including genes en-
coding IbpA (HSP20), DnaK (HSP70), HtpG (HSP90) and a DnaK/DnaJ chaperone ClpA.
DnaK-DnaJ-GrpE and GroEL-GroES are two representative molecular chaperone systems
present in E. coli, and some HSPs, including IbpA, IbpB, ClpB, ClpA and HtpG, use their
co-chaperones to maintain cell protein homeostasis [73]. DnaK-DnaJ-GrpE, the HSP70 chap-
erone system, including DnaK (HSP70), co-chaperone DnaJ (HSP40) and GrpE (nucleotide
exchange factor), play a role in maintaining protein homeostasis under physiological and
stress conditions in E. coli [74]. The small heat shock proteins, IbpA and IbpB, bind to
denatured proteins to form a complex that promotes the refolding of denatured proteins
in the copolymer via DnaK/DnaJ and ClpB [75]. The high-temperature protein G (HtpG,
HSP90) has been shown to be involved in stabilizing proteins required for the assembly of
phycobilisomes in cyanobacteria [76]. Cyanobacteria contain multiple GroELs that jointly
maintain the protein homeostasis of cells, including GroEL1, which forms an operon with
the co-chaperone GroES gene and monocistronic GroEL2 [77].

Two genes involved in photosynthesis were up-regulated (Table S7), namely the
Syn7942_0407-encoding photosystem I reaction center subunit X (PsaK) and petG-encoding
cytochrome b6-f complex subunit 5 (PetG). PsaK, a small subunit of photosystem I com-
plexes, contributes to photosystem I electron transport [78]. The cytochrome b6-f complex
is a photosynthetic electron transport complex in thylakoid membranes which participates
in electron transport from photosystem II to I and in the respiratory chain [58]. After
cyanophage P-TIM68-carrying photosynthesis-related genes infect cyanobacteria MIT9515,
the expressions of these cyanophage genes maintain or control the photosynthesis of host
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cells [79]. The up-regulation of the photosynthesis-related genes may be related to the
transferred partial cyanophage genome Syn-A-4-8.

In addition, two genes encoding Na+/H+ antiporter subunits were down-regulated
(Table S7). Under salt stress, the Na+/H+ antiporter actively excretes excess Na+ in cells
and improves their salt tolerance [80,81].

3.3.2. Transcriptomic Response of LS-02 to Salt Stress

Under 290-millimolar NaCl stress, a total of 2664 expressed genes of Syn7942 were
also detected, of which 172 DEGs (92 down-regulated and 80 up-regulated genes) were
identified in LS-02 compared to those in LS-01 using a 1.5-fold change as a cutoff value,
accounting for 6.4% of the total expressed genes (Figure 4C). The DEGs were involved in
various pathways, such as the sulfur metabolism of energy metabolism, ABC transporters,
photosynthesis antenna proteins and photosynthesis (Figure 4D). In order to explore the
growth difference caused by the heterologous expression of Syn-A-4-8 in Syn7942, the
DEGs were further classified into seven groups (Table S8).

Ten down-regulated genes (Group 1) were involved in sulfur metabolism, of which
8 genes encoded ATP-binding cassette (ABC) transporters of the sulfate/thiosulfate trans-
port system and Syn7942_0019 encoded sulfite reductase (ferredoxin) (Fd-SiR) (Table S8,
Figure 5A). Sulfur, an essential element for microorganisms, enters cells in the form of
inorganic sulfur through ABC transporters [82]. The redox state of cells is maintained
by increasing sulfur metabolism and the biosynthesis of sulfur-containing compounds
to improve salt tolerance [83]. In cyanobacteria, sulfite (S4+) is reduced to sulfide (S2−)
catalyzed by Fd-SiR through the sulfate assimilation pathway for the biosynthesis of sulfur-
containing amino acids [84]. The expression levels of 10 genes in group 1 related to sulfur
metabolism were down-regulated, which may have affected the sulfur metabolism and
biosynthesis of sulfur-containing compounds in LS-02.

Four up-regulated genes (Group 2) involved in carbohydrate metabolism (Table S8,
Figure 5B), such as Syn7942_0808 encoding sucrose phosphate synthase (SPS), Syn7942_0603
encoding glucose-1-phosphate adenylyltransferase (GlgC) and Syn7942_0781 encoding
phosphoenolpyruvate synthase (PpsA). Syn7942 mainly accumulates sucrose as the osmotic
regulator to regulate osmotic pressure under salt stress conditions [85]. PpsA catalyzes
the conversion of pyruvate to phosphoenolpyruvate (PEP), the formation of which is the
initial step of gluconeogenesis [86,87]. The SPS encoded by Syn7942_0808 contains SPS
and sucrose phosphate phosphatase (SPP) domains, and has bifunctional activity, which
can catalyze fructose-6-phosphate and UDP-glucose to synthesize sucrose [88]. GlgC is an
important regulator of bacterial glycogen biosynthesis [89,90]. In Syn7942, glycogen can
be used as a carbon source for sucrose synthesis, and the Syn7942_0603 and Syn7942_0808
genes were both overexpressed simultaneously, which could improve the level of sucrose
synthesis [91]. The up-regulation of the above-mentioned genes makes carbon metabolism
in cells tend to carbohydrate synthesis; that is, towards the accumulation of energy.

Thirteen up-regulated genes (Group 3) were related to photosynthesis antenna proteins
and photosynthesis (Table S8, Figure 5C). Following infection with cyanophage S-PM2, the
host transcription of cyanobacteria Synechococcus WH7803 was not significantly closed, and
the genes involved in photosynthesis were partially up-regulated [92]. After 8 h of YongM
infection, phycocyanin-related rod-linked proteins of host cyanobacteria Nostoc sp. FACHB-
596 were up-regulated, which improved the photosynthetic efficiency of the host [65].
The up-regulation of these cyanobacteria genes may be related to the transferred partial
cyanophage genome Syn-A-4-8.
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Figure 5. Pathways involved in DEGs. (A) DEGs involved in sulfur metabolism. APS: 5′-
adenylylsulfate. PAPS: 3′-phosphoadenosine-5′-phosphosulfate. Fd-SiR: sulfite reductase (ferre-
doxin). (B) DEGs involved in carbohydrate metabolism. RuBP: ribulose-1,5-bisphosphate;
PGA: 3-phosphoglycerate; PEP: phosphoenolpyruvate; 3-P-glycerate: 3-phospho-D-glycerate; 2-
P-glycerate: 2-phospho-D-glycerate; F-1,6-P2: beta-D-fructose 1,6-bisphosphate; F-6-P: fructose-6-
phosphate; G-6-P: glucose-6-phosphate; G-1-P: glucose-1-phosphate; ADP/UDP-G: ADP/UDP-
glucose; Suc-6-P: sucrose-6-phosphate. (C) DEGs involved in photosynthesis antenna proteins and
photosynthesis. PSI: photosystem I; PSII: photosystem II; PQ: plastoquinone; POH2: plastoquinol-1;
PC: plastocyanin; Fd: ferredoxin; FNR: ferredoxin-NADP+ reductase.

According to the results of the transcriptomic analysis, both DEGs under normal and
salt stress conditions are involved in oxidative phosphorylation, photosynthesis and the
Na+/H+ antiporter (Tables S7 and S8). These results match those observed in previous
studies [65,79,92]; the infection of host cyanobacteria by the cyanophage would limit the
oxidative phosphorylation of cyanobacteria and maintain or enhance the photosynthetic
efficiency of the host.

3.4. Identification of the Genes in Syn-A-4-8 Causing the Prolonged Lag Phase of Syn7942

Finally, we tried to identify the specific genes in Syn-A-4-8 that are related to the
phenotype in LS-02. Although Syn-A-4-8 contained 14 ORFs (from ORF25 to ORF38)
originally annotated in A-4L, only some of their transcripts were detected according to the
results obtained from the transcriptomic data. More specifically, the transcripts of five ORFs,
including ORF25 (hypothetical protein), ORF26 (tail protein), ORF36 (terminase), ORF37
(hypothetical protein) and ORF38 (hypothetical protein), were detected under normal
conditions, while ORF25, ORF26, ORF27 (tail protein) and ORF38 were found under salt
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stress conditions (Figure 6A,B). The transcription levels of ORF25 and ORF26 were higher
than those of ORF27, ORF36, ORF37 and ORF38. The relative expressions of the ORFs
in Syn-A-4-8 obtained by qRT–PCR analyses also proved the above-mentioned results
(Figure 6C). Syn-A-4-8 exists in Syn7942 cells, but most of the cyanophage genes have
no transcripts.
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Figure 6. Identification of the cyanophage genes with transcripts in non-host Syn7942. The error bars
represent standard deviations of the three biological replicates for each sample. (A) FPKM values
(fragments per kilo bases per million reads) of expressed genes carried by Syn-A-4-8 in LS-02 cells
according to the transcriptomics under normal culture conditions. (B) FPKM values of expressed
genes in LS-02 cells according to the transcriptomics under 290-millimolar NaCl stress conditions.
(C) qRT-PCR validations of the expressed genes in LS-02 under normal and salt stress. Normalized
Ct value: the Ct value of each gene was normalized by that of the housekeeping gene rnpB.

Based on the results mentioned above, we focused on the four genes of Syn-A-4-8
expressed under the 290-millimolar NaCl condition. In this case, the LS-03 strain containing
ORF25, ORF26, ORF27 and ORF38 was constructed (Table 1). Although the growth pattern
of LS-03 was similar to that of the control strain, LS-01, under 290 mM NaCl (Figure 7A) a
decreased level of growth was observed when increasing the salt concentration to 380 mM
(Figure 7B), suggesting that the four ORFs were responsible for altered salt tolerance.
Furthermore, ORF27 and ORF28 were omitted, given their relatively lower abundances,
leading to the LS-04 strain containing ORF25 and ORF26 (Table 1). As expected, a phenotype
similar to LS-03 was observed in LS-04 under 380 mM (Figure 7B). We then separately
expressed ORF25 and ORF26 in LS-05 and LS-06, but no significant phenotypes could be
investigated (Figure 7B). The transcription levels of specific genes in LS-03, LS-04, LS-05
and LS-06 were verified by qRT-PCR analyses (Figure 7C), re-confirming the relatively
higher transcriptional levels of ORF25 and ORF26. Based on the results above, we speculate
that the decreased tolerance of LS-02 to salt stress may be caused by the co-effect of ORF25
and ORF26.
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Figure 7. Cyanobacterial growth differences may be caused by the co-effect of ORF25 and ORF26.
The error bars represent standard deviations of the three biological replicates for each sample. (A) The
growth curves of LS-01, LS-03, LS-04, LS-05 and LS-06 in BG11 liquid medium supplemented with
290 mM NaCl. (B) The growth curves of LS-01, LS-03, LS-04, LS-05 and LS-06 in BG11 liquid medium
supplemented with 380 mM NaCl. (C) QRT-PCR validations of the expressed genes in LS-03, LS-04,
LS-05 and LS-06. Normalized Ct value: the Ct value of each gene was normalized by that of the
housekeeping gene rnpB.

4. Discussion

The design and assembly of the artificial cyanophage genome could represent a
feasible strategy for obtaining cyanophages that can target multiple hosts, promoting
the control of cyanobacterial blooms. Natural transformations are frequently observed
in most cyanobacteria of the genera of Synechococcus and Synechocystis. They naturally
absorb DNA from the environment, but are not suitable for the transformation of large
DNA [55]. Electroporation can be used for moderately large plasmid genetic operations of
cyanobacteria, while the weaknesses include small application scope and low efficiency [93].
E. coli-mediated conjugation is a good tool for transferring large plasmids, but the target
DNA first needs to be transferred into E. coli [43,44,93]. However, we observed that there
may be some genes that are toxic to E. coli on 351–15,930 bp of the A-4L genome. We blasted
the protein sequences of the genes of these A1–A3 regions on the A-4L genome through the
NCBI website, but there was no new progress observed in the functional annotation of its
genes (Table S9). Taken together, E. coli-mediated conjugation may be the most appropriate
method to transfer a full-length artificial cyanophage genome into cyanobacteria cells;
meanwhile, the issue of DNA cytotoxicity to E. coli needs to be addressed, which may be
one of the reasons why artificial synthetic cyanophages have not been realized to date. In
order to address this issue, the specific toxic genes on the A-4L genome should be identified
and then controlled by inducible promoters in the future.

In general, the early and middle gene products encoded by phages usually inhibit
or redirect host target proteins, or assist in late gene transcriptions [94]. Unlike marine
cyanopodovirus, the genome of freshwater cyanophage A-4L lacks gene-encoding RNA
polymerase, and there are many putative bacterial promoter sequences preceding the
early and late gene transcriptions, indicating that the expressions of these genes may
be host-dependent on RNA polymerase [40]. In this study, given that Syn-A-4-8 only
contained structural protein genes and unknown functional genes on the right arm of
the A-4L genome, but lacked host-takeover and DNA replication genes, no significant
effects could be observed under normal conditions for LS-02. In addition, the promoters
in Syn-A-4-8, which were designed and assembled based on the A-4L genome, may not
be fully recognized in non-host cyanobacterial Syn7942, as only several transcripts could
be observed via transcriptome. Thus, in addition to the attempt to introduce a full-length
artificial cyanophage genome into Syn7942, the promoters for the specific ORFs on Syn-A-
4-8 could be replaced by common promoters used in Syn7942 in the future.
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Although no phenotypes could be observed for LS-02 under normal conditions, its
tolerance to salt was found to be altered in this study. The exposure of living cells to high
salinity conditions produced two stress reactions, i.e., increasing osmotic pressure and in-
creasing inorganic ion concentrations. Under salt stress conditions, cyanobacterial cells reg-
ulate osmotic pressure by accumulating compatible solutes as osmotic protectants [85,95],
exclude excess Na+ through the Na+/H+ antiporter and actively absorb K+ through the
K+ transport system [80]. According to the results of the transcriptomic analysis, it is
speculated that the heterologous expression of Syn-A-4-8 reduces the ability of LS-02 cells
to exclude Na+, as several Na+/H+ antiporter encoding genes are down-regulated in LS-02
compared to those in LS-01, which is not conducive to the process of cell metabolism. In
addition, cellular processes, such as sulfur metabolism, ion transport, gene transcription
and translation, were also adversely affected, resulting in a prolonged lag phase of LS-02
compared to LS-01 under salt stress conditions.

The growth curves of Syn7942 strains (LS-03, LS-4, LS-5 and LS-6) and the tran-
scriptional levels of cyanophage genes in the Syn7942 strains indicated that the growth
differences may be related to the co-effect of ORF25–26 expression. In addition, ORF36 and
ORF37 had high transcriptional levels under normal conditions, but the transcriptional
levels significantly reduced under 290-millimolar NaCl stress. Therefore, it is speculated
that the reduced expressions of ORF36–37 combined with high expressions of ORF25–26
may be one of the reasons for the growth lag of LS-02 under 290-millimolar NaCl stress.

5. Conclusions

Using S. cerevisiae as the chassis, we successfully assembled a truncated cyanophage
genome, Syn-A-4-8, based on the natural cyanophage A-4L (41,750 bp) and infected fila-
mentous Nostoc sp. PCC 7120. We found potential genes toxic to E. coli that exist in the
A-4L genome. Syn-A-4-8 was transferred into non-host unicellular cyanobacteria Syn7942
by E. coli-mediated conjugation. Then, we investigated the heterologous expression of
Syn-A-4-8 in non-host cyanobacteria by using transcriptomic analysis. The growth of the
cells of LS-02 exhibited a more prolonged lag phase than that of LS-01 under 290-millimolar
NaCl stress. The growth difference caused by the heterologous expression of Syn-A-4-8
in non-host cyanobacterial cells was expounded from the transcription level, and verified
that the growth difference may be related to the co-effect of ORF25 and ORF26. This study
revealed the expression of a truncated cyanophage genome in heterologous hosts, and lays
a foundation for research into the heterologous infection of cyanophages.
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