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Molecular evidence of N-methyl-D-aspartate receptor
hypofunction in schizophrenia
CS Weickert1,2,3, SJ Fung1,2,3, VS Catts1,2,3, PR Schofield1,2,4, KM Allen1,2,3, LT Moore2, KA Newell1,5, D Pellen2, X-F Huang1,5, SV Catts2,6

and TW Weickert1,2,3

Blockade of N-methyl-D-aspartate receptors (NMDARs) produces behavior in healthy people that is similar to the psychotic
symptoms and cognitive deficits of schizophrenia and can exacerbate symptoms in people with schizophrenia. However, an
endogenous brain disruption of NMDARs has not been clearly established in schizophrenia. We measured mRNA transcripts for five
NMDAR subunit mRNAs and protein for the NR1 subunit in the dorsolateral prefrontal cortex (DLPFC) of schizophrenia and control
(n¼ 74) brains. Five NMDAR single-nucleotide polymorphisms (SNPs) previously associated with schizophrenia were tested for
association with NMDAR mRNAs in postmortem brain and for association with cognitive ability in an antemortem cohort of 101
healthy controls and 48 people with schizophrenia. The NR1 subunit (mRNA and protein) and NR2C mRNA were decreased in
postmortem brain from people with schizophrenia (P¼ 0.004, P¼ 0.01 and P¼ 0.01, respectively). In the antemortem cohort, the
minor allele of NR2B rs1805502 (T5988C) was associated with significantly lower reasoning ability in schizophrenia. In the
postmortem brain, the NR2B rs1805502 (T5988C) C allele was associated with reduced expression of NR1 mRNA and protein in
schizophrenia. Reduction in NR1 and NR2C in the DLPFC of people with schizophrenia may lead to altered NMDAR stoichiometry
and provides compelling evidence for an endogenous NMDAR deficit in schizophrenia. Genetic variation in the NR2B gene predicts
reduced levels of the obligatory NR1 subunit, suggesting a novel mechanism by which the NR2B SNP may negatively influence
other NMDAR subunit expression and reasoning ability in schizophrenia.
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INTRODUCTION
Schizophrenia is characterized by hallucinations, delusions,
disorganization and lack of motivation. People with schizophrenia
commonly display executive function/reasoning deficits related to
dorsolateral prefrontal cortex (DLPFC) and possible glutamate
dysfunction.1,2 Blockade of N-methyl-D-aspartate (NMDA)-type
glutamate receptors (NMDARs) in healthy people produces
behavior that resembles the symptoms and cognitive deficits of
schizophrenia3–6 and administration of NMDAR antagonists
exacerbates symptoms in schizophrenia.7–9 Additional evidence
from blood, brain tissue and structural imaging genomics sug-
gests that NMDAR function can be attenuated in schizophrenia
due to reduction in an endogenous ligand for NMDAR, D-serine.10–12

As postmortem studies have failed to find a clear and simple
molecular basis for NMDAR hypofunction, some leaders in the
field are suggesting that the endogenous failure in NMDAR
function must lie in interacting partners or downstream effectors
of NMDARs.13 However, before prematurely concluding that the
NMDAR itself is not abnormal, further studies examining this
receptor in the brains of people with schizophrenia are needed.

The NMDAR is composed of four subunits: two obligatory NR1
subunits, and two NR2 (NR2A, NR2B, NR2C and NR2D) and/or NR3
(NR3A and NR3B) subunits. Each subunit is encoded by a distinct
gene and differential assembly of NR2/3 subunits endows the
receptor with different properties.14 Genetic polymorphisms in

NMDARs, particularly NR1 (GRIN1), NR2A (GRIN2A) and NR2B
(GRIN2B), are associated with schizophrenia15–22 and genetic vari-
ation in GRIN promoter regions impact transcript levels in vitro.15,18

The extent to which NMDAR subunit mRNAs are altered in the brains
of people with schizophrenia is controversial, with decreases,23–26

increases27,28 and no change29 found in schizophrenia. The lack of
consistency in the postmortem findings hinders progress into the
mechanism of NMDAR pathophysiology in the disease.

NMDARs have a key role in behavior and cognition as NR1
mutant mice show metabolic reductions in brain, social withdrawal
and working memory and attention deficits.30–35 Elimination of
interneuronal NR1 results in cortical disinhibition, hyperlocomotion,
increased anhedonia and anxiety, and memory impairment.36 In
rodents, increased NR2B levels are associated with enhanced
neuronal plasticity and spatial learning,37 whereas mice lacking
the NR2B/NR1 gene have impaired memory.38–42 Human studies
have shown a relationship between variation in the NR2B gene
and short-term memory in dyslexia43 and between the NR2A gene
and attention deficit hyperactivity disorder,44 suggesting that
NMDAR polymorphisms may influence human cognition.

In the present study, we determined whether people with
schizophrenia had altered levels of NMDAR mRNAs and NR1
protein in the prefrontal cortex using the largest postmortem
sample to date to address this question. We also tested whether
putative schizophrenia genetic risk polymorphisms in NMDAR
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genes were associated with mRNA or protein levels in the
postmortem cohort or with cognition in antemortem samples of
people with schizophrenia and healthy adults. Our hypotheses
were that (1) NMDAR would be reduced in people with
schizophrenia, (2) polymorphisms linked to decreases in cortical
NMDAR levels would impair cognition, and (3) changes in mRNA
and/or protein would be related to genetic polymorphisms
associated with schizophrenia.

METHODS AND MATERIALS
Human postmortem brain samples
DLPFC tissue from people with schizophrenia or schizoaffective disorder
(n¼ 37) and controls (n¼ 37) was obtained (New South Wales Tissue
Resource Centre, Sydney, Australia) and matched according to tissue pH,
postmortem interval, RNA integrity number (RIN) and age (Table 1a), see
Weickert et al.45 Only one fresh-frozen hemisphere (randomly left or right)
was available for each case, with the opposing hemisphere fixed, although
overall both right and left hemispheres were assessed in patients and
controls (Table 1a). This study was approved by the Human Research Ethics
Committee of the University of New South Wales (HREC 07261).

Quantitative reverse transcription-PCR and western blot analyses
Quantitative reverse transcription-PCR and western blot analyses of DLPFC
homogenate were performed with TaqMan gene expression assays
(Applied Biosystems, Mulgrave, VIC, Australia) and antibodies listed in
Supplementary Table S1. These standard procedures are described in
detail in Supplementary material. Supplementary Figures S1 and S2 show
the location of TaqMan assay binding to known transcripts of the NR1 and
NR2A mRNA, respectively, in the present study relative to previous studies.

Cognitive assessments of healthy adults and people with
schizophrenia
One hundred and one healthy adults were recruited via advertisements.
Forty-eight people meeting diagnostic criteria for schizophrenia or schizo-
affective disorder based on structured clinical interview for DSM-IV-TR axis I
disorders (SCID-1) interview by trained clinicians also participated (see
Table 1b for demographic characteristics of the groups). All people with
schizophrenia were chronically ill and were receiving second-generation
antipsychotic medication at the time of testing. The Wechsler Adult
Intelligence Scale, 3rd edition (WAIS-III),46 letter number sequencing test
was administered to all participants as a measure of working memory
function. The Wechsler Test of Adult Reading47 used as an estimate of
premorbid IQ in schizophrenia, along with four subtests from the WAIS-III,
including arithmetic, similarities, picture completion and digit symbol coding,
which was used as current estimate of full-scale IQ were also administered
to all participants. These assays provided measures of reasoning, language/
verbal comprehension, perceptual organization and processing speed,
respectively. All volunteers provided written informed consent and this
study was approved by the South Eastern Sydney and Illawarra Area Health
Service and UNSW HRECs (numbers 07/259, 07121, 10155).

Polymorphism genotyping of brain and blood
DNA was isolated from DLPFC tissue using a PUREGENE DNA purification
kit (QIAGEN, Doncaster, VIC, Australia) from 20 mg of tissue or from whole
blood using slightly modified versions of the manufacturer’s protocol
(described in Supplementary Material). The NR2B single-nucleotide
polymorphisms (SNPs) rs1805502 (T5988C 30UTR), rs1805247 (T4197C),
rs7301328 (C366G exon 2) and rs1019385 (T200G) and NR1 SNP
rs11146020 (G1001C) genotypes were determined using TaqMan SNP
genotyping assays (Applied Biosystems) (see Supplementary Table S2),
with a call rate of 97.9%. A no template control was run for each assay and
no signal was detected. Allele frequencies were calculated (see
Supplementary Table S2) and w2 demonstrated that the SNPs were all in
Hardy–Weinberg equilibrium. Heterozygotes were grouped with indivi-
duals homozygous for the rare allele to allow statistical comparisons where
minor allele frequency was o0.3. The number of dinucleotide repeats
(GT)n in the promotor of the NR2A gene15 was amplified by Prevention
Genetics (Wisconsin, USA) using forward primer 50-AGGAAGCATGTGGG
AAATGCAG-30 and reverse primer 50-GCTGGGTACAGTTATCCCCCT-30 .

Statistical analyses: postmortem sample
Gene expression data were normalized to the geometric mean of the four
housekeeping genes and group outliers (±2 s.d. from mean) were
removed. Gene and protein expression data for all NMDAR subunit genes
assayed exhibited a normal distribution (Kolmogorov–Smirnov (K–S)
d¼ 0.97–0.147, P40.20) with the exception of NR1 and NR3A mRNAs,
which were skewed to the right for the schizophrenia group (K–S
d¼ 0.165–0.195, Po0.20). Normalized gene expression data for these two
mRNAs were, therefore, transformed by taking the logarithm of gene
expression values yielding a normal distribution (K–S d¼ 0.69–0.114,
P40.20). Pearson’s correlations were performed to determine whether
sample characteristics (age, pH, postmortem interval and RIN) correlated
with our measures in controls and/or people with schizophrenia. Analysis
of covariance testing for diagnosis effects on mRNA and protein expression
were performed and covaried for factors that correlated with mRNA and
protein expression. Pearson’s correlations were also performed between
gene/protein expression and clinical variables, including medication
dosage converted to chlorpromazine equivalents (CPZ) dose for people
with schizophrenia. Where gene expression differed by hemisphere or
gender, a diagnosis x hemisphere/gender factorial analysis of variance was
performed. Planned post-hoc testing was performed in the postmortem
cohort to explore the association of significant NMDAR SNPs with mRNA
and protein expression in the brain.

Statistical analyses: antemortem sample
The effects of genotype on cognition (WAIS-III arithmetic, similarities,
picture completion, digit symbol coding, letter number sequencing and
Wechsler test of adult reading) in people with schizophrenia and healthy
adults was assessed using a series of analysis of variances in which
diagnosis (schizophrenia versus control) and genotype were used as
independent grouping variables and cognitive score was used as the
dependent variable. For cognitive tests from the WAIS-III, age-scaled scores
derived from the WAIS-III manual were used in all analyses to adjust for
the significant age difference between people with schizophrenia and
controls. All statistical tests were performed with Statistica software
(version 7.1, Tulsa, OK, USA).

RESULTS
Detection of NMDAR subunit mRNAs in DLPFC
We found that NR1, NR2A, NR2B, NR2C and NR3A mRNAs were
reliably detected in adult human DLPFC, whereas NR2D and NR3B
mRNAs were not. Several NMDAR subunit mRNAs were signifi-
cantly correlated with age, tissue pH and RIN (see Supplementary
Table S3).

Expression of NR1 mRNA and protein are reduced in the DLPFC of
people with schizophrenia
NR1 mRNA was significantly reduced in people with schizophrenia
by 22% (F(1,65)¼ 8.91, P¼ 0.004) after co-varying for pH and RIN
(Figure 1a). NR1 mRNA expression was greater in the right hemi-
sphere DLPFC compared with the left hemisphere (t(67)¼ � 2.24,
P¼ 0.028); however, this effect was no longer significant when we
covaried for pH and RIN (F(1,65)¼ 2.059, P¼ 0.156). There was no
effect of gender on NR1 mRNA expression. We found that the
schizophrenia group had 36% less NMDA NR1 subunit protein
than the control group (t(67)¼ 6.95, P¼ 0.010) after co-varying
for pH and postmortem interval (Figure 1b and c). We observed
no difference in NR1 protein levels between left and right
hemisphere in the whole cohort. There was also no effect of
gender on NR1 protein in the total cohort.

Expression of NR2C mRNA was reduced in people with
schizophrenia
NR2C mRNA was also significantly reduced, by 28%, in people with
schizophrenia (F(1,51)¼ 6.446, P¼ 0.014, after co-varying for pH,
RIN and age) (Figure 2a). The other NMDAR subunit mRNAs, NR2A,
NR2B and NR3A, did not significantly differ according to diagnosis
(NR2A: F(1,66)¼ 0.303, P¼ 0.584; NR2B: F(1,68)¼ 1.228, P¼ 0.272;
NR3A: (F(1,59)¼ 1.255, P¼ 0.267, respectively) (Figures 2b–d).
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Lateralization and gender effects on NR2B subunit mRNA
expression
NR2B mRNA expression was 39% higher in the left versus right
DLPFC in the whole cohort, (t(69)¼ 2.938, P¼ 0.004). There was no
significant diagnosis x hemisphere interaction for NR2B mRNA
expression (F(1,66)¼ 1.590, P¼ 0.212). NR2B mRNA expression was
33% greater in DLPFC in males relative to females (t(69)¼ 2.107,

P¼ 0.039); however, this effect was no longer statistically significant
after we covaried for age at death (F(1,68)¼ 3.286, P¼ 0.074).

Correlations with disease characteristics and medication estimates
We correlated NMDAR subunit mRNA expression and NR1 protein
with age of illness onset, duration of illness, daily mean CPZ dose,

Table 1. Summary of demographics for control and schizophrenia groups in the postmortem (a) and antemortem (b) cohorts

a. Postmortem cohort

Control group (n¼ 37) Schizophrenia group (n¼ 37) df P

Age (years) 51.1 (14.6) 51.3 (14.1) t¼ � 0.06 72 0.96
Gender 7 F, 30 M 13 F, 24 M w2¼ 2.47 1 0.12
Caucasian 36 36
Asian 1 1
Hemisphere 23 R, 14 L 17 R, 20 L w2¼ 1.96 1 0.16
pH 6.66 (0.3) 6.61 (0.3) t¼ 0.64 72 0.52
PMI (h) 24.8 (11.0) 28.8 (14.1) t¼ � 1.26 72 0.21
RIN 7.3 (0.6) 7.3 (0.6) t¼ 0.24 72 0.81
Age of onset (years) — 23.7 (0.1)
DOI (days) — 27.6 (2.3)

Manner of death 36 Natural,
1 accidental

27 Natural, 8 suicide, 1 accidental, 1 undetermined

Antipsychotics — 30 Predominantly typicals, 6 predominantly atypicals,
1 typical and atypical

Antidepressant history — 19 Yes, 18 no
Subclass — 16 Paranoid, 7 undifferentiated,

5 disorganized, 4 schizoaffective depressed,
3 schizoaffective bipolar, 2 residual

b. Antemortem cohort

Control group (n¼ 101) Schizophrenia group (n¼ 48) df P

Age (years) 26.1 (7.5) 34.4 (7.8) t¼ � 6.26 147 o0.0001
Gender 52 F, 49 M 17 F, 31 M w2¼ 3.38 1 0.07
Caucasian 63 47
Asian 35 1
Hispanic 1 0
African 2 0
Education (years) 15.1 (2.0) 12.7 (2.3) t¼ 6.3 147 o0.0001

WAIS-III
LNS SS 12.2 (3.2) 8.2 (3.0) t¼ 7.4 147 o0.0001
Picture completion SS 21.0 (2.4) 18.3 (3.3) t¼ 5.67 147 o0.0001
DSST SS 12.3 (3.1) 6.8 (2.3) t¼ 10.84 147 o0.0001
Similarities SS 12.0 (2.8) 9.8 (3.0) t¼ 4.5 147 o0.0001
Arithmetic SS 12.7 (2.5) 7.9 (3.4) t¼ 9.68 147 o0.0001
FSIQ 113.4 (13.7) 91.6 (13.9) t¼ 9.06 147 o0.0001
WTAR reading 108.2 (8.3) 104.9 (9.0) t¼ 2.27 147 o0.0001
Age of onset (years) — 27.4 (20.1)
DOI — 14.0 (14.6)
BMI — 31.3 (14.3)
Antidepressants 0 19
CPZ — 661.1 (531.9)
Subtype — 25 Paranoid, 6 undifferentiated,

3 disorganized, 6 schizoaffective depressed,
6 schizoaffective bipolar, 2 residual

PANSS
Positive score — 15.9 (4.8)
Negative score — 14.6 (6.8)
General score — 33.5 (10.0)
Total score — 64.0 (18.7)

Abbreviations: BMI, body mass index; CPZ, chlorpromazine equivalent dose; DOI, duration of illness; DSST, digit symbol substitution test; FSIQ, full-scale IQ;
LNS, letter number sequencing; L/R, left/right; PANSS, positive and negative syndrome scale; M/F, male/female; PMI, postmortem interval; RIN, RNA integrity
number; SS, standard score; WAIS-III, Wechsler Adult Intelligence Scale, 3rd edition; WTAR, Wechsler Test of Adult Reading.
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last CPZ dose, and lifetime CPZ dose (see Supplementary Table S4)
in the postmortem cohort. We found significant negative
correlations between NR3A mRNA expression and duration of
illness and lifetime CPZ dose; however, neither significant
correlation was preserved after a partial correlation for age was
performed (duration of illness: r¼ � 0.166, P¼ 0.39; lifetime CPZ:
r¼ � 0.078, P¼ 0.69).

NMDAR SNPs and cognitive function
In general, people with schizophrenia scored significantly lower
than controls on the basis of all cognitive variables assessed (see
Table 1b). Two-way analysis of variances showed a significant

main effect of diagnostic group such that people with schizo-
phrenia had significantly lower reasoning performance than
controls as measured by WAIS-III Arithmetic (F(142)¼ 94.9,
Po0.001). We found a significant main effect of NMDAR genotype
such that carriers of the minor allele (C) of the NR2B gene SNP
rs1805502 had significantly reduced reasoning performance
relative to homozygotes (TT) (Arithmetic: F(1, 142)¼ 4.3,
P¼ 0.04) and post hoc least significant difference (LSD) analysis
showed that Arithmetic scores were significantly reduced in
people with schizophrenia carrying the C allele of this SNP
compared with homozygous (TT) people with schizophrenia,
P¼ 0.02, and control C carriers, Po.0001 (Figure 3a). We did not
detect a significant difference in letter number sequencing or
other subtests of the WAIS-III, total FSIQ or Wechsler test of adult
reading scores in relation to the NR2B rs1805502 genotype.

Effect of genotype on NMDAR subunit mRNA and protein
expression
We tested whether the NR2B rs1805502 SNP17,19,20 altered
expression of NMDAR subunits whose mRNA or protein levels
were altered in the DLPFC in schizophrenia. We found that the
expression of the NR1 subunit mRNA was significantly reduced in
individuals with schizophrenia who were C carriers of SNP
rs1805502 relative to heterozygous controls (P¼ 0.008; Figure 3b).
Similarly, we found the level of NR1 protein to be significantly
reduced in C carriers with schizophrenia relative to C carrier
controls (P¼ 0.025; Figure 3c). In contrast, we found no difference
in NR2C mRNA levels according to NR2B rs1805502 genotype in
either controls or people with schizophrenia (P40.05).

We also examined whether the length of the (GT)n repeat in the
promoter of the NR2A gene15,16,21 was related to mRNA expression
of NR1 or NR2C. No significant correlations between NR2A repeat
length and NR1 or NR2C mRNA expression were found in controls
or people with schizophrenia, and there were no significant
differences in average repeat length between controls (44.3 bases)
and people with schizophrenia (44.7 bases) on the basis of NR2A
genotype.

DISCUSSION
Our findings, from the largest postmortem sample assessing
NMDAR mRNA, NR1 protein and NMDAR genetic polymorphisms
in schizophrenia brain to date, provide clear evidence of a
decrease in the obligatory NR1 subunit at both the mRNA and
protein level in schizophrenia. This supports the theory that
hypofunction of NMDARs exists endogenously in prefrontal cortex
in schizophrenia and strongly supports that the hypofunction can
reside within the NMDAR. Thus, the next step for the field would
be to determine the mechanism by which NMDAR subunits are
reduced rather than to only test for diagnostic changes in NMDAR
interacting proteins. We also, for the first time, show that the NR2B
gene polymorphism (rs1805502) predicts reasoning deficits in
people with schizophrenia and suggest that reduced prefrontal
NR1 mRNA and protein levels are relevant to this cognitive deficit.

Previous studies of mRNA for the obligatory NR1 subunit in the
prefrontal cortex of people with schizophrenia are at odds,
reporting no change,29 an increase in elderly patients,27 or reduc-
tion in schizophrenia23,26 (with group n¼ 15–26). Our study (with
group n¼ 37) is now the third of five studies showing NR1 mRNA
reductions in the prefrontal cortex of people with schizophrenia.
Two previous studies of NR1 protein did not observe significant
changes in schizophrenia patients,48,49 whereas we found a robust
decrease, possibly due to our larger sample size. The decrease in
NR1 protein may limit assembly of the functional NMDAR complex
and, thus, we would predict that reduced NMDAR binding should
also exist. However, other studies on NMDAR binding have
reported an increase,50–52 or no change52–56 in NMDAR binding

Figure 1. NR1 expression is reduced in people with schizophrenia.
Dorsolateral prefrontal cortex (DLPFC) NR1 mRNA expression, mea-
sured by quantitative reverse transcription-PCR (qRT-PCR) and normal-
ized to the geometric mean of four housekeeping genes, was reduced
in people with schizophrenia relative to normal controls (a). NR1
protein expression, normalized to alpha-tubulin, was quantified by
western blot (representative blot shown in (b). A single band for NR1
was present at the predicted size (B120kDa). NR1 protein was reduced
in the DLPFC of people with schizophrenia compared with matched
controls (c). **Pp0.01, ***Po0.005. C, control; S, schizophrenia case.
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in the brains of people with schizophrenia. The reasons for lack of
the expected decrease in NMDAR binding in these other studies
are unknown, but may be a result of technical differences
between the assays, smaller sample sizes, the ion channel open/
closed state57 or receptor internalization.

In addition to the reduction in NR1 mRNA, we also provide
further support for a reduction in NR2C mRNA expression in
people with schizophrenia compared with controls.23,29 Knockout
of the NR2C subunit gene in mice leads to deficits in associative
and working memory,58 demonstrating the functional role for this
subunit and the potential for a deficit in this subunit to influence
cognitive processes in schizophrenia. NR2C expression has been
shown in parvalbumin-positive interneurons in the prefrontal
cortex,59 and thus reductions in NR2C could be a consequence
of altered inhibitory neuronal health.60 If an NR2C deficit in
interneurons was primary, then this would be expected to result in
dysregulated glutamatergic transmission in interneurons, which
could impact on inhibitory control of excitatory cortical circuits.
We and others60–67 have demonstrated that there is a deficit in
parvalbumin and somatostatin expressing interneurons in schizo-
phrenia, which may be linked to reduced NR2C expression in the
disease.

Genetic variation in NR2B has been associated with human
cognitive dysfunction, for example in dyslexia.43 Given that
glutamate has been associated with prefrontal cortex function
and schizophrenia, there is a surprising paucity of studies
examining the relationship between genetic polymorphisms in
NMDAR genes and cognition in schizophrenia. Interestingly, we
demonstrate that a genetic polymorphism in the NR2B gene, SNP
rs1805502, predicts impaired DLPFC-dependent reasoning ability

in schizophrenia. Impaired performance on WAIS-III Arithmetic
suggests that reasoning ability is particularly compromised in
those people with schizophrenia carrying the minor allele in the
30UTR of the NR2B gene. The WAIS-III Arithmetic subtest is a sen-
sitive assay of the construct of reasoning, and although working
memory and reasoning are interrelated, there is abundant
evidence showing that these two constructs are distinct.68–73

Given that our antemortem patient sample size is equivalent to
other studies reporting genetic effects on cognition, the effect in
the present study should be reliable; however, this finding should
be replicated in a larger, independent sample.

Our findings suggest that genetic variation in the human NR2B
gene is associated with changes in reasoning ability in schizo-
phrenia putatively via altering NR1 mRNA and protein levels. In
support of this, Humphries et al.25 reported that lower post-
mortem NR1 mRNA expression in the temporal cortex of people
with schizophrenia was strongly correlated with worse premorbid
IQ and cognitive function. Although we did not find a relationship
between the rs11146020 SNP in NR1 that has previously been
associated with schizophrenia22 and NR1 mRNA, this NR1 SNP has
been shown to interact with the NR2B SNP rs1805502 in people
with schizophrenia.20 Although it is unclear how such genetic
variations in NR2B would impact the gene expression of other
NMDAR subunits, there is evidence that variation in the schizo-
phrenia genes can impact mRNA levels of binding partners.74

Similarly, a SNP in the schizophrenia susceptibility gene neu-
regulin has been shown to impact NR2C mRNA levels in the
cerebellum in schizophrenia.28 Although the mechanistic pathway
by which NMDAR hypofunction may lead to cognitive deficits
remains speculative, other recent work suggests that altered

Figure 2. NR2C, NR2A, NR2B and NR3A mRNA expression in people with schizophrenia and matched controls. Expression of N-methyl-D-
aspartate (NMDA) receptor subunit mRNAs was measured in the dorsolateral prefrontal cortex (DLPFC) of people with schizophrenia and
matched controls by quantitative reverse transcription-PCR (qRT-PCR). Quantity means of transcripts were normalized to the geometric mean
of four housekeeping genes. NR2C mRNA (a) was reduced in people with schizophrenia, whereas NR2A (b), NR2B (c) and NR3A (d) were
unaltered. *Po0.05.
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NMDAR function can be related to cortical thickness, suggesting a
potential neurobiological substrate.12

We find that the C allele carriers of NR2B SNP rs1805502 relates
to worse cognition in people with schizophrenia relative to
controls with the same genotype. Although this may seem
surprising, diagnosis-specific polymorphic effects on cognition can
be found in other studies. For example, Jablensky et al.75 have
reported another NR2B gene SNP (rs220599) is associated with
altered verbal memory in cognitively impaired people with schizo-
phrenia, but not in healthy controls. Further, this group found that
two SNPs also in glutamate signaling genes (GRIM3 and PRKCA),
both had significant, but opposite effects on verbal memory in
healthy controls and people with schizophrenia.75 We suggest
that genetic changes that may contribute to beneficial effects of
glutamate in controls and typically serve to improve cognitive
performance (that is, plasticity and synaptic strengthening) could
also enhance deleterious effects (that is, neurotoxic effects) of
glutamate in schizophrenia leading to worse cognition.

In summary, we have shown that NR1 mRNA and protein is
reduced in the DLPFC of people with schizophrenia. Given that
NR1 is the obligatory subunit of the NMDAR, a reduction in overall
NMDAR function may be expected in schizophrenia; thus,
knowledge of this risk allele may help to identify those who
may benefit from future NMDAR agonist treatment studies in
schizophrenia. We also report that the NR2B SNP rs1805502 C
allele carriers display significant reasoning deficits in people with
schizophrenia. We find that people with schizophrenia also have
reduced NR2C mRNA in their frontal cortex that appears to be
independent of genotype. To our knowledge, this represents the
first study to link NMDAR genotypes, mRNA transcript expression,
NR1 protein and cognition in people with schizophrenia. These
findings provide support for a multifaceted model of NMDAR
dysfunction in schizophrenia and for a role of NMDAR hypofunc-
tion in the pathophysiology of cognitive dysfunction in schizo-
phrenia. Our results support that the augmentation of NMDAR
signaling may represent a neurobiological convergence point for
potential new treatment approaches for cognitive impairment in
schizophrenia.
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