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ABSTRACT Chemosensory pathways are among the most abundant prokaryotic sig-
nal transduction systems, allowing bacteria to sense and respond to environmental
stimuli. Signaling is typically initiated by the binding of specific molecules to the
ligand binding domain (LBD) of chemoreceptor proteins (CRs). Although CRs play a
central role in plant-microbiome interactions such as colonization and infection, little
is known about their phylogenetic and ecological specificity. Here, we analyzed
82,277 CR sequences from 11,806 representative microbial species covering the
whole prokaryotic phylogeny, and we classified them according to their LBD type
using a de novo homology clustering method. Through phylogenomic analysis, we
identified hundreds of LBDs that are found predominantly in plant-associated bacte-
ria, including several LBDs specific to phytopathogens and plant symbionts.
Functional annotation of our catalogue showed that many of the LBD clusters identi-
fied might constitute unknown types of LBDs. Moreover, we found that the taxo-
nomic distribution of most LBD types that are specific to plant-associated bacteria is
only partially explained by phylogeny, suggesting that lifestyle and niche adaptation
are important factors in their selection. Finally, our results show that the profile of
LBD types in a given genome is related to the lifestyle specialization, with plant sym-
bionts and phytopathogens showing the highest number of niche-specific LBDs. The
LBD catalogue and information on how to profile novel genomes are available at
https://github.com/compgenomicslab/CRs.

IMPORTANCE Considering the enormous variety of LBDs at sensor proteins, an impor-
tant question resides in establishing the forces that have driven their evolution and
selection. We present here the first clear demonstration that environmental factors
play an important role in the selection and evolution of LBDs. We were able to dem-
onstrate the existence of LBD families that are highly enriched in plant-associated
bacteria but show a wide phylogenetic spread. These findings offer a number of
research opportunities in the field of single transduction, such as the exploration of
similar relationships in chemoreceptors of bacteria with a different lifestyle, like
those inhabiting or infecting the human intestine. Similarly, our results raise the
question whether similar LBD types might be shared by members of different sensor
protein families. Lastly, we provide a comprehensive catalogue of CRs classified by
their LBD region that includes a large number of putative new LBD types.
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To ensure cell survival, bacteria have to adapt to changing environmental conditions
(1). For this, bacterial cells are equipped with an array of different signal transduction

systems that sense different environmental stimuli, such as osmolarity, oxygen tension,
temperature, pH, light, nutrients, toxins, and other chemicals (2). Chemosensory pathways
represent one of the primary bacterial signal transduction mechanisms, and more than
half of all the bacterial genomes contain signaling genes (3). Most chemosensory path-
ways appear to mediate chemotaxis (3), whereas others have been associated with type
IV pilus-based motility (4) or alternative cellular functions such as the control of second
messenger levels (4, 5).

In a canonical chemosensory pathway, signals are perceived by binding specific
molecules to the ligand binding domain (LBD) of chemoreceptors (CRs), which modu-
lates the activity of the CheA autokinase and the subsequent transphosphorylation to
the CheY response regulator. In canonical CRs, the extracytosolic LBD is flanked by two
transmembrane (TM) regions, a cytosolic HAMP domain, and a signaling domain
(MCPsignal). While the CR signaling domain (MCPsignal) is highly conserved, LBDs are
rapidly evolving domains (6), which reflects the wide variety of chemoeffectors to be
sensed. To date, more than 80 different LBD families have been identified (7, 8), and
new types of LBDs continue to be discovered (9). The thermodynamic parameters for
ligand binding to the individual CRs are very similar to those for binding to specific
LBDs (10, 11), supporting the idea that the molecular determinants for signal recogni-
tion by CRs are located in the LBD. Further evidence of this came from the construction
of chimeric receptors recombining LBDs with other signaling domains (e.g., autokinase
domains), where the LBD was proved to define the function of the chimera (12, 13).
Thus, while the conserved MCPsignal domain can be used to identify CRs, their LBDs
allow them to be classified on the basis of their function (7, 8).

On the other hand, there is evidence suggesting that the genomic repertory of CRs
is related to bacterial lifestyle (14, 15). For instance, it has been shown that plant-asso-
ciated bacteria (PAB) possess a particularly large number of CRs (8, 16), indicating that
chemosensory signaling is indeed an important requisite for plant-bacterium interac-
tions. This is of particular relevance for plant pathogens and symbionts, for which it
has been shown that flagellum-mediated chemotaxis is required for optimal virulence
or symbiosis establishment (17–25). Plants represent complex habitats for colonization
by different kinds of microorganisms, and PAB species can colonize the plant rhizo-
sphere, phyllosphere, or endosphere (26). Motile sensory behavior has been shown to
play a key role in the establishment of plant-microbe interactions, since bacteria that
can sense and rapidly navigate toward niches optimal for growth and survival will
have a clear competitive advantage (27–29). These considerations are valid for both
pathogenic and nonpathogenic relationships between microorganisms and plants (8,
16). Similarly, microbial inhabitants of the phyllosphere, comprising the aerial part of
plants, have to deal with the challenges of life on leaf surfaces, where flagellar motility
confers advantages in terms of epiphytic fitness (30). The epiphytic lifestyle also repre-
sents the initial stage of foliar colonization by many bacterial phytopathogens, preced-
ing entry into the leaf apoplast via wounds or natural plant openings (e.g., stomata)
(30). However, despite their biological significance, the function and cognate signal
have been determined for only a limited number of CRs from PAB, and very little infor-
mation exists on their phylogenetic and ecological specificity.

In order to study those LBD types most tightly coupled to the plant-associated life-
style, here we comprehensively identified the CR genes in all known bacterial lineages
and classified them according to their LBDs, with a particular focus on the LBD types
linked to a plant-associated lifestyle. As such, we employed a novel de novo methodol-
ogy to extract putative LBD regions from all CR sequences and group them into homol-
ogy-based clusters (i.e., putative LBD types). This analysis allowed us to identify hun-
dreds of LBD types highly specific for PAB species, many of them unknown. We further
found that the taxonomic distribution of the majority of PAB-specific LBD clusters is
only partially explained by phylogeny, suggesting that niche and host adaptation
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might have played relevant roles for their selection. Together, these results form a solid
basis for the design of experiments aimed at identifying CRs that are essential for
plant-microbe interactions and virulence.

RESULTS
Towards a global catalogue of chemoreceptors in plant-associated bacteria. In

order to maximize the coverage of our analysis, we first built a comprehensive cata-
logue of CRs detected across the entire prokaryotic phylogeny (Fig. 1). Species
genomes were retrieved from the proGenomes v2 databases (31). Unlike the NCBI
Taxonomy database, which is not an authoritative source for nomenclature or classifi-
cation (32), proGenomes2 data do not rely on taxonomic names to identify species.
Instead, each species-representative genome in proGenomes is delineated based on
the evolutionary distances calculated between universally conserved genes present in

FIG 1 Schematic view of the bioinformatics pipeline used to identify CRs that are potentially relevant for plant association. From a set of 11,806
representative prokaryotic genomes, 82,277 protein sequences were mined using HMM-based searches against the MCPsignal Pfam domain (PF00015). CR
topology was analyzed by predicting transmembrane regions (TMs) and Pfam domains. Based on the topological analysis, LBD regions were predicted and
a set of 72,480 LBD sequences was obtained. Clustering of LBDs based on sequence homology (20% minimum sequence identity with at least 50%
sequence coverage) resulted in 5,149 clusters or subfamilies of LBDs, of which 1,842 contained a single sequence. To study a possible link between the
LBD profiles and plant-associated lifestyle, a manually curated subset of 960 representative species of plant-associated bacteria (PAB) was generated,
including phytopathogen (119) and symbiont (192) subsets. The determination of the proportion of PAB LBDs present in each cluster allowed us to assign
the degree of plant specificity (DPS) value for each LBD subfamily. Subsequent analysis of high-DPS clusters identified LBD clusters that are potentially
important for bacterium-plant associations. Furthermore, the validation of the high-DPS clusters as good ecological indicators was corroborated by
measuring their phylogenetic signal. A detailed step-by-step description of the process can be found in Materials and Methods.
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nearly all organisms (32, 33). To establish links between CRs and the plant-associated
lifestyle, we compiled three manually curated databases of PAB (see Materials and
Methods): (i) PAB-broad, a reference database of 960 organisms found in multiple plant
environments including leaves, roots, and rhizospheric soil; (ii) PAB-phyto, a subset
database of 119 species including only known phytopathogens; and (iii) PAB-symb,
which groups 192 plant symbionts. Using HMM-based searches, we then mined all the
sequences containing the MCPsignal domain in the 11,806 species-representative
genomes from the proGenomes database, compiling a global catalogue of 82,277 CR
sequences from 5,546 genomes (see Data Set S3 in the supplemental material). This
confirms the broad distribution of CRs, with 47% of the representative genomes con-
taining at least one chemotactic receptor.

PAB species possessed almost twice as many CRs per genome (22.86) as those spe-
cies not classified as plant associated (12.94), with the subset of phytopathogens show-
ing the highest number (27.29). No CRs were predicted in 178 out of the 960 PAB
genomes, indicating that more than 81% of PABs possess at least one CR gene, a per-
centage largely superior to the bacterial average (47%). From all species considered in
this study, 36 PAB genomes stood out by their high content of CRs (Table 1), most
notably the following: (i) 14 genomes from the Pseudomonas genus (49 to 60 CRs),
including the well-known plant pathogens P. syringae and P. savastanoi (34), and (ii) 9
genomes from the Herbaspirillum genus (52 to 67 CRs), a group of betaproteobacteria
that endophytically colonize gramineous species, thereby promoting their growth (35).

TABLE 1 List of PAB with the highest number of predicted CRs

TaxId Biosample Representative species No. of CRs PAB-phytoa PAB-symbb

1078773 SAMN04334956 Herbaspirillum rubrisubalbicansM1 67
1144319 SAMN00839627 Herbaspirillum sp. CF444 67
964 SAMN03779333 Herbaspirillum seropedicae 65
193 SAMN02982994 Azospirillum lipoferum 65
286727 SAMN02982917 Azospirillum oryzae 64
346179 SAMN03785417 Herbaspirillum rhizosphaerae 62
864073 SAMN02471292 Herbaspirillum frisingense GSF30 62
237610 SAMN05860868 Pseudomonas psychrotolerans 60
288000 SAMN02598359 Bradyrhizobium sp. BTAi1 60 S
92645 SAMN06130964 Herbaspirillum frisingense 59
1175306 SAMN02469572 Herbaspirillum sp. GW103 59
1121033 SAMN02440867 Azospirillum halopraeferens DSM 3675 58
169679 SAMN05170519 Clostridium saccharobutylicum 58
29438 SAMN03837775 Pseudomonas savastanoi 57 P
1262470 SAMN03010392 Herbaspirillum hiltneri N3 55
582667 SAMN05192568 Methylobacterium pseudosasicola 54
50340 SAMN05216581 Pseudomonas fuscovaginae 54
1001585 SAMN02603190 Pseudomonas mendocina NK-01 54
1749078 SAMN04216969 Pseudomonas sp. EpS/L25 53
1190415 SAMN05216593 Pseudomonas asturiensis 53
50340 SAMN03100370 Pseudomonas fuscovaginae 53
129140 SAMN03976254 Pseudomonas syringae pv. tagetis 52 P
294 SAMN04992557 Pseudomonas fluorescens 52
1855289 SAMN05216319 Duganella sp. CF402 52
1144342 SAMN00839653 Herbaspirillum sp. YR522 52
47885 SAMN03365871 Pseudomonas oryzihabitans 51
205918 SAMN02604347 Pseudomonas syringae pv. syringae B728a 51 P
1907416 SAMN05880558 Aeromonas sp. RU39B 51
693986 SAMN03075686 Methylobacterium oryzae CBMB20 50
1736267 SAMN04151647 Pseudomonas sp. Leaf127 50
114615 SAMEA3138227 Bradyrhizobium sp. ORS 278 50 S
1028989 SAMD00019511 Pseudomonas sp. StFLB209 50
80867 SAMN04009978 Acidovorax avenae 50 P
1122963 SAMN02440654 Pleomorphomonas oryzae DSM 16300 50
223283 SAMN02604017 Pseudomonas syringae pv. tomato DC3000 49 P
1245469 SAMD00061052 Bradyrhizobium oligotrophicum S58 49 S
aP, phytopathogen.
bS, plant symbiont.
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Classifying chemoreceptors according to their ligand binding domain. As the
ecological relevance of CRs is mostly defined by their LBD region, we explored whether
sequence segments corresponding to the LBD, rather than the full-length CR sequen-
ces, were related to a plant-associated lifestyle. To maximize the number of LBD
sequences included in our analysis and not limit this to known LBD types from the
Pfam database (7), we inferred LBDs based on the domain architecture of each CR.
First, we extracted LBD sequences from the whole set of 82,277 CRs. Next, and given
the high variability in the domains that could be considered LBDs, we identified puta-
tive LBDs using three different strategies: (i) detecting sequence regions matching any
known domain other than the MCPsignal or HAMP, (ii) locating sequence regions
flanked by two TM regions, and (iii) taking domains between the N-terminus and a sin-
gle TM region. In total, we retrieved 72,480 putative LBD sequences, which could be fit-
ted into three main groups based on their length (Fig. 2). The first group includes LBDs
with a size between 60 and 110 amino acids, containing 21% of all the LBDs detected.
The most abundant LBD family within this size range was PAS_3. The second group,
comprising LBDs from 130 to 200 amino acids, contained over 45% of all LBDs and
included 4HB_MCP_1 as the predominant family. The third group, comprising LBD
lengths between 220 and 299 amino acids, covers 26% of all LBDs and has dCache_1
as the most abundant LBD family. Only 8% of all the LBDs detected fell outside these
three size ranges, and the three most abundant LBDs were 4HB_MCP_1 (17.6%),
dCache_1 (15.5%), and PAS_3 (9.2%).

We next investigated whether LBDs could be classified into broader sequence
homology clusters, each representing a group of LBD sequences sharing a common ev-
olutionary origin. Using relaxed homology thresholds (E value #1023, 50% coverage,
20% amino acid identity), we grouped all 72,480 LBD sequences into 5,149 family clus-
ters (Data Set S4), of which 3,307 contain more than 1 sequence. This de novo cluster-
ing approach might not be adequate for a detailed functional characterization of LBDs,
as single residue changes have been shown to modify LBD ligand affinities (36–38).
Nevertheless, each of our LBD clusters could be interpreted as an independent LBD
type, with implicit levels of functional and ecological conservation. In fact, our
approach consistently recovered all known LBD types and distributed them into 2,068
compact clusters where 90% of their members belonged to the same Pfam domain
family (Table S1). Moreover, our clustering strategy allowed us to split large LBD

FIG 2 Length distribution of the LBDs. The analysis was conducted on 72,480 LBDs, and the predominant LBD
types within each of the main peaks are indicated. Only LBDs shorter than 500 amino acids (aa) are
represented.
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families into finely grained subcategories (Fig. 3). For example, despite 4HB_MCP and
Cache-like being present at similar levels in the initial CR sequence database, the num-
ber of derived clusters differs significantly, namely, 20.9% for 4HB_MCP compared to
8.3% for Cache-like. In the case of 4HB_MCP_1, the 10,034 sequences group into 856
different clusters compared to the 283 clusters for the 9,162 dCache_1 sequences, indi-
cating higher sequence conservation in the latter. The situation is even more drastic in
the case of PAS_3 LBDs, where 2,675 sequences group into just 21 clusters (Table S1),
indicating a very low degree of diversity.

FIG 3 Visual representation of the abundance of the LBD families. The outer donut of the chart represents the distribution of each LBD type and its
relative abundance (in percentage of sequences), and the number of clusters with at least 90% of their sequences sharing the same LBD type, as defined
by the Pfam signature. The LBDs are sorted according to the number of clusters within each LBD type. The inner donut of the chart represents all the
clusters included within each LBD category, indicating the number of sequences contained in each subfamily. All singletons are merged in the last section
of each LBD type (e.g., LBDs classified as “Unknown” have 1,242 singletons, that is, clusters containing only one sequence). “Mixed clusters” are those that
do not reach the 90% threshold of sequences with the same Pfam model per cluster. “Low-abundance LBDs” include those LBD types that group into
fewer than 12 “compact clusters.”
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Notably, an important fraction (45%) of the LBD clusters inferred could not be confi-
dently associated with any previous family of Pfam domains, since more than 90% of
their LBD sequences did not match to any known domain signature, suggesting the ex-
istence of a large number of unknown LBD types.

Identifying PAB-specific ligand binding domains. To identify LBD families specific
to a plant-associated lifestyle, we analyzed each LBD cluster and calculated the corre-
sponding percentage of PAB species therein, which we referred to as the degree of
plant specificity (DPS; see Materials and Methods). For each LBD cluster, we calculated
three DPS values, based on three databases of PAB species: (i) DPS-broad, calculated
based on the PAB-broad reference database; (ii) DPS-phyto, based on the PAB-phyto
subset; and (iii) DPS-symb, using the PAB-symb subgroup as a reference. In all cases,
the DPS values ranged from 0% (no LBD family observed in the corresponding PAB
database) to 100% (the LBD cluster includes only species from a given reference PAB
database). From the 3,307 LBD nonsingleton clusters, we identified 419 and 139 clus-
ters with a DPS-broad score of $50%, and $80%, respectively. Similarly, many LBD
clusters showed high specificity in the stricter PAB reference databases (Data Set S5).

To further validate our findings, we cross-linked our predictions with experimental
data from previous studies (39–43). In particular, we found that CRs with increased
expression in planta, and particularly those required for full bacterial virulence,
belonged to high-DPS clusters (Table 2). This list includes CRs that are upregulated in
Dickeya dadantii 3937 and Pectobacterium carotovorum WPP14, two soft-rot bacterial
strains (39); Dickeya dianthicola RNS04.9, which grows on macerated potato tubers
(40); and Xanthomonas fragariae, which grows on strawberry leaves (41). Similarly, we

TABLE 2 CRs predicted to be involved in plant-bacterium interactions

CR gene ID (in the
original source) LBD type

DPS
(%)

DPS-phyto
(%)

DPS-symb
(%)

Cluster
no.

Amino acid identity (%)
to representative LBDs
from the database Bacterial species and strain Reference

ABF-0014824 TarH 100 100 0 932 100 Dickeya dadantii 3937 39
ABF-0015168 TarH 68.09 40.43 0 179 100 Dickeya dadantii 3937 39
ABF-0016115 HBM 63.64 48.48 0 409 100 Dickeya dadantii 3937 39
ABF-0016585 TarH 51.09 14.60 0.73 42 100 Dickeya dadantii 3937 39
ABF-0017097 Unknown 80.00 80.00 0 838 100 Dickeya dadantii 3937 39
ABF-0017674 4HB_MCP_1 100 87.50 0 630 100 Dickeya dadantii 3937 39
ABF-0019851 TarH 61.22 42.86 0 123 100 Dickeya dadantii 3937 39
ABF-0019855 TarH 61.22 42.86 0 123 100 Dickeya dadantii 3937 39
ABF-0020431 sCache_2 34.55 12.73 0 233 100 Dickeya dadantii 3937 39
DDI_0843 dCache_1 38.61 10.13 1.27 51 100 Dickeya dianthicola RNS04.9 40
DDI_0932 sCache_2 34.55 12.73 0 233 100 Dickeya dianthicola RNS04.9 40
DDI_1647 TarH 61.22 42.86 0 123 88.97 Dickeya dianthicola RNS04.9 40
DDI_1649 TarH 61.22 42.86 0 123 100 Dickeya dianthicola RNS04.9 40
DDI_2258 HBM 100 100 0 792 100 Dickeya dianthicola RNS04.9 40
DDI_4092 4HB_MCP_1 100 87.50 0 630 100 Dickeya dianthicola RNS04.9 40
ADT-0000027 HBM 63.64 48.48 0 409 96.03 Pectobacterium carotovorumWPP14 39
ADT-0000661 sCache_2 38.46 12.82 0 160 99.30 Pectobacterium carotovorumWPP14 39
ADT-0001320 TarH 51.09 14.60 0.73 42 98.84 Pectobacterium carotovorumWPP14 39
ADT-0001602 TarH 56.99 29.03 0 116 94.15 Pectobacterium carotovorumWPP14 39
ADT-0001887 TarH 61.22 42.86 0 123 97.59 Pectobacterium carotovorumWPP14 39
ADT-0002104 TarH 100 100 0 932 100 Pectobacterium carotovorumWPP14 39
ADT-0003152 TarH 68.09 40.43 0 179 91.15 Pectobacterium carotovorumWPP14 39
ADT-0003245 4HB_MCP_1 100 87.50 0 630 97.40 Pectobacterium carotovorumWPP14 39
ADT-0003418 Unknown 80.00 80.00 0 838 95.60 Pectobacterium carotovorumWPP14 39
PSA3335_17610 Unknown 87.50 50.00 0 835 100 Pseudomonas savastanoi NCPPB3335 43
XAC1892 Unknown 100 100 0 846 86.77 Xanthomonas citri subsp. citri XHG3 42
XAC2448 4HB_MCP_1 39.23 14.62 0 77 98.88 Xanthomonas citri subsp. citri XHG3 42
NBC2815_01024 4HB_MCP_1 92.00 84.00 0 549 100 Xanthomonas fragariae IPO 3485 41
NBC2815_02005 4HB_MCP_1 60.53 42.11 0 353 100 Xanthomonas fragariae IPO 3485 41
NBC2815_02008 4HB_MCP_1 88.46 88.46 0 273 100 Xanthomonas fragariae IPO 3485 41
NBC2815_02009 4HB_MCP_1 82.14 75.00 0 340 100 Xanthomonas fragariae IPO 3485 41
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found several CRs with very high DPS values (80%) that were shown to be relevant in
Xanthomonas citri virulence (42) or required for fitness of Pseudomonas savastanoi pv.
savastanoi in olive knots (43). Taken together, these data support the validity of our
approach to identify CRs that are relevant for a plant-associated lifestyle.

Interestingly, we also found that many PAB-specific clusters (41.75%) are formed by
proteins of unknown LBD type, suggesting the presence of a significant number of
uncharacterized LBD types. Excluding unknown LBD families, the most common
domains among high-DPS clusters are 4HB_MCP_1 (26%), TarH (4.5%), and HBM (4%)
(Table 3). It is remarkable that the three domain families form four-helix bundle struc-
tures (37, 38). The case of the HBM and TarH domains is particularly interesting, as the
majority of sequences that belonged to these categories concentrated in very few
high-DPS clusters: 57.0% (516/906) of all HBM sequences are grouped into 23 high-DPS
clusters, and 36.7% (1,042/2,840) of all TarH sequences are grouped into 26 high-DPS
clusters. This indicates a strong association of the TarH and HBM domains with the
plant-associated lifestyle. In contrast, despite being the second most abundant LBD in
bacteria (Table S2), the dCache_1 domain was not very abundant in PAB.

Phylogenetic versus ecological signal in PAB-specific ligand binding domains.
Intrigued by the potential ecological significance of PAB-specific LBD clusters, we

TABLE 3 Distribution of LBD types among clusters with high DPS ($50%)

LBD type
No. of
clusters

% of clusters
over totala

No. of LBD
sequences with the
indicated domainb

Avg no. of LBD
sequences per
cluster

Unknown 243 41.75 2,053 8.45
4HB_MCP_1 151 25.95 2,642 17.50
TarH 26 4.47 1,042 40.08
HBM 23 3.95 516 22.43
CHASE3 9 1.55 142 15.78
PilZ 7 1.20 39 5.57
PAS_9 6 1.03 7 1.17
sCache_2 4 0.69 245 61.25
NIT 4 0.69 79 19.75
Protoglobin 3 0.52 153 51
PAS_8 3 0.52 9 3
PAS_3 3 0.52 82 27.33
dCache_1 3 0.52 151 50.33
Cache_3-Cache_2 3 0.52 79 26.33
PAS_4 2 0.34 4 2
CHASE4 2 0.34 3 1.50
Usher 1 0.17 1 1
Tox-URI2 1 0.17 1 1
SURF1 1 0.17 1 1
SOR_SNZ 1 0.17 1 1
sCache_3_3 1 0.17 2 2
Porin_4 1 0.17 1 1
Peripla_BP_5 1 0.17 1 1
PAS_7 1 0.17 19 19
PapC_N 1 0.17 1 1
Glyco_hydro_2_N 1 0.17 1 1
Glyco_hydro_106 1 0.17 1 1
FHIPEP 1 0.17 1 1
DUF4077 1 0.17 5 5
dCache_3 1 0.17 71 71
CBS 1 0.17 2 2
Asparaginase 1 0.17 1 1
ABC_tran 1 0.17 1 1
5TM-5TMR_LYT 1 0.17 20 20
Total 510 7,377
aPercentages are calculated over the total number of LBD clusters with at least 90% of their sequences sharing
the same LBD type. These total clusters comprise more than 88% of the total number of clusters in this work.

bSum of the total number of sequences sharing the same domain type found in the indicated clusters.
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further tested whether their taxonomic distribution is due to the phylogenetic signal
of the underlying species, or if it might be driven by additional ecological factors. To
address this issue, we reconstructed the complete phylogeny of the 11,806 species
considered here (see Materials and Methods) and used it to assess the taxonomic distri-
bution of each individual LBD cluster. Using the d -approach (44), we found that the
majority (75.7%) of plant-associated LBD types (DPS $50%) did not follow the
expected phylogenetic signal. In contrast, the taxonomic distribution of most PAB-spe-
cific LBDs was scattered over the global bacterial phylogeny (Fig. 4). This observation
was consistent for the three PAB reference databases considered in this study, using
stricter DPS cutoffs, and even when the species lacking CR genes were excluded from
the analysis (Fig. S1).

Overall, the lack of phylogenetic signal for most of the LBD clusters, together with
the fact that the LBDs tested are enriched in PAB species, suggests that the evolution
of the sensory machinery of bacterial species might be at least partially driven by eco-
logical pressures. This should allow the use of particular LBD clusters, even if function-
ally undefined, as lifestyle biomarkers. This issue is best illustrated by the LBD cluster
549 (Fig. 4B and C), which contains 27 CRs from broadly distributed bacterial families
and orders, while retaining a high plant-association signal (DPS-broad .80%).

FIG 4 Phylogenetic signal detection in plant-associated LBD clusters. (A) Proportion of the significant phylogenetic signal among LBD clusters enriched in
PAB-broad, PAB-phyto, and PAB-symb species within two thresholds ($50%, $80%). The significance through a P value test with 100 iterations, P value
$0.05 rejects the null hypothesis of a phylogenetic signal (see Materials and Methods). (B) LBD cluster 549 (in red) distributed according to the
chemotactic species phylogeny (5,763 representative species). The green leaves of the tree represent the PAB species. DPS, d , and P values for this LBD
cluster are represented in the lower left box. (C) Phylogeny representation of LBD cluster 549, containing 27 LBD sequences distributed across 4 orders
(numbered 1 to 4 in the tree). The domain architecture prediction is shown for each of the CRs.

Chemoreceptor Profiles of Plant-Associated Bacteria

September/October 2021 Volume 6 Issue 5 e00951-21 msystems.asm.org 9

https://msystems.asm.org


LBD profiles per genome. To investigate whether the profile of LBD clusters per
genome could be informative about the plant-associated bacterial lifestyle, we studied
the full repertoire of CRs among different PAB species. The genomes from the PAB spe-
cies not only contained more CRs than those of non-PAB species, but also, many of
their CRs could be considered highly specific to plant-related environments. In fact,
assessing the LBD profiles per genome showed that microorganisms with a pro-
nounced plant-associated lifestyle (i.e., PAB-symb and PAB-phyto) harbor more specific
CRs than other PAB species (Fig. 5). On average, 28% and 20% of plant-symbiont and
plant-phytopathogen CRs, respectively, are highly specific (DPS-broad .80%). In con-
trast, other PAB with a less pronounced plant-associated lifestyle, like nonsymbiont
and nonphytopathogen plant-associated species, contained significantly fewer specific
CRs (6%) (Fig. 5). Taken together, this information reinforces the idea that the reper-
toire of CRs has been partially shaped by niche adaptation, with more specialized
adaptations leading to more specific CRs.

DISCUSSION

In the present study, we carried out a comprehensive phylogenomic analysis of the
full repertoire of CRs from a wide collection of microbial genomes, classifying them
according to their LBDs. To maximize the representativeness of our study, we used
more than 82,000 species-level CR sequences from 11,000 species-representative
genomes, significantly expanding the scope of previous works (7, 15, 45), in terms of
both the number of sequences examined and the phylogenetic coverage. To achieve
this, we developed a novel method to extract LBDs and classified them based on a de
novo homology-based clustering approach, departing from the traditional classification
of CRs centered around their general protein topology (15, 45–47) or on known LBD
domain searches (7). This approach allowed us to identify many new potential LBD
types, suggesting that the chemosensing landscape remains largely unexplored.
Additionally, we believe that our strategy delineating large LBD families into finely
grained subcategories could provide further information (Fig. 3). Moreover, by classify-
ing CRs based on their putative LBD type, for the first time we were able to quantify to
what extent the chemosensory activity of PAB is linked to lifestyle.

Considering the enormous variety of LBDs at sensor proteins, establishing the
forces that have driven their evolution is an important question that was never specifi-
cally addressed. To our knowledge, we present here the first clear demonstration
showing that environmental factors play an important role in the selection and

FIG 5 Distribution of the high-plant-specificity LBDs in the PAB species profiles per genome. (A) Calculation of
the proportion of high-DPS-broad ($80%) LBDs in the total number of LBDs present in each species. The
graph illustrates the distribution of the number of species according to the proportional ranges, plotting the
species count as PAB-symb (yellow), PAB-phyto (brown), and the rest of PAB (green). (B) Absolute number of
LBDs with a DPS-broad value of $80% in each PAB genome. The graph illustrates the distribution of the
number of species as an absolute count of high-DPS LBD ranges. The species count is plotted as PAB-symb
(yellow), PAB-phyto (brown), and the rest of PAB (green).
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evolution of LBDs. We found that the specificity of LBDs to a plant-associated lifestyle
could not be explained by just a phylogenetic signal, since the taxonomic distribution
of most PAB-specific LBD types was scattered over the microbial phylogeny, which at
times covered different orders and phyla. This indicates that the selection of the certain
CRs might indeed be guided by ecological factors, opening the possibility of identify-
ing lifestyle biomarkers.

We also found that bacterial species more tightly associated with plant environ-
ments (such as plant symbionts and phytopathogens) tend to have stronger lifestyle
specificity signals in their CR repertory. For instance, plant symbionts had the largest
number of PAB-specific LBDs per genome, followed by phytopathogens, with both
showing significantly higher ratios than generic soil microbiota. It appears likely that
even stronger links between the chemosensory capabilities of bacteria and their life-
style will be detected in the future as more data become available on new organisms
(e.g., via metagenomics sequencing) and on their niche adaptation (i.e., plant-tissue
specificity).

These findings thus offer a number of research opportunities in the field of signal
transduction. First, it can be explored whether similar relationships can be observed in
CRs of bacteria with a different lifestyle, such as for example those that inhabit or infect
the human intestine. Another interesting issue that needs to be addressed is the ques-
tion whether similar LBD types are shared by members of different sensor protein fami-
lies. Major families of these receptors are sensor histidine kinases; chemoreceptors;
adenylate, diadenylate, and diguanylate cyclases; and certain cAMP, c-di-AMP, and c-
di-GMP phosphodiesterases, as well as Ser/Thr/Tyr protein kinases and phosphopro-
tein phosphatases (48). As the different sensor proteins of a given strain are exposed
to the same signals, it appears plausible that the same LBD types might be present in
members of different sensor protein families. Several examples have been reported
in this direction, such as the specific sensing of nitrate by PilJ-type LBDs of the NarQ-
type sensor kinases (49), the McpN chemoreceptor (50), and the PAS domain, univer-
sally found in different signal transduction systems (48). It would be of interest to
estimate the global occurrence of such cases.

Overall, we believe that our study provides a comprehensive resource for future
studies on bacterial chemoreception and that it sets the basis for the identification of
novel CRs relevant for bacterium-plant interactions.

MATERIALS ANDMETHODS
Chemoreceptor (CR) sequence retrieval. From the genomes of 11,806 representative species in

the proGenomes2 database (31), 82,277 CR sequences were obtained. The representative species in
proGenomes2 are the result of a phylogeny-based classification of all RefSeq (51) genomes, where spe-
cies delineation is based on a systematic phylogenetic threshold (i.e., ,95% divergence in 40 universal
marker genes) rather than relying on the NCBI taxonomic names. Although this might lead to inconsis-
tencies with the current NCBI Taxonomy names for strains and species, it better represents the genomic
definition of species, as well as providing a standardized classification system (33, 52). To identify CRs in
our set of representative genomes, all the sequences matching the MCPsignal Pfam domain signature
(PF00015) were retrieved using HMMER 3.1b2 (53), Pfam-A 31.0 (54), and the specific gathering thresh-
old provided for the MCPsignal HMM Pfam model. Multiple hits were resolved by retaining the match
with the highest bit score. In analogy to previous studies (7, 55, 56), the presence of an MCPsignal do-
main in the sequence was the only criterion used for CR identification.

Ligand binding domain (LBD) extraction. For each CR sequence, transmembrane regions (TMs)
were predicted using TMHMM2 (57). The position of the TM region(s) was used to infer the putative
extracellular LBD regions, which were subsequently annotated using the Pfam domain database. When
no significant Pfam matches were found, LBD sequences were labeled as “unknown.” Two different top-
ologies of extracellular LBDs were considered: (i) sequence regions flanked by two TM regions and (ii)
sequence regions located between one TM and the N-terminal sequence. In both cases, sequences
shorter than 30 amino acids were discarded. Intracellular LBD regions, as well as potentially overlooked
extracellular LBDs (e.g., due to undetected TMs), were inferred based on the detection of Pfam domains
other than the MCPsignal and HAMP domains. Pfam mappings were performed using HMMER (53)
searches as implemented in eggNOG-mapper v.2.0.5 (53, 58). When more than two domains mapped to
the same region, the best hit was selected. The final data set contained 72,480 LBD sequences.

Clustering of LBD sequences. De novo homology-based clustering of the 72,480 LBD sequences
was inferred using MMseqs2 (59) with an E value threshold of 0.01, 20% minimum identity, and 50%
minimum query coverage. These parameters were chosen to maximize remote homology detection and
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to infer LBD clusters with broad phylogenetic divergence (i.e., distant homologues) while still grouping
sequences with a common evolutionary origin. The MMseqs2 command used was “mmseqs cluster -c
0.2 –min-seq-id 0.5 –cov-mode 2”.

Construction of the databases for plant-associated bacteria (PAB). A curated list of PAB was man-
ually curated from the 11,806 representative species. As a first filter, we used the habitat information
(i.e., “host plant-associated” label) provided by proGenomes2, which is based on the PATRIC database
(31). The resulting list was reviewed manually to exclude uncertain or incorrectly annotated entries by
checking their metadata and associated literature. Additionally, we included other known plant-associ-
ated species on the list that were missed by the PATRIC database but that were considered PAB based
on published data. In total, we identified 960 reference species (PAB-broad) that could be considered
related to the plant environment. From this list, we extracted two subdatabases (see Data Set S1 in the
supplemental material): phytopathogens (PAB-phyto, 119 members) and plant symbionts (PAB-symb,
192 members).

Degree of plant specificity (DPS). A specificity score for plant association was calculated for each
LBD type based on the proportion of PAB species present in each LBD cluster. We calculated three score
values, which we refer to as the degree of plant specificity (DPS), depending on the PAB reference data-
base used: DPS-broad, the proportion of PAB-broad species in each LBD cluster; DPS-phyto, the propor-
tion of PAB-phyto species; and DPS-symb, the proportion of PAB-symb species.

Phylogenetic tree reconstruction and visualization. Multiple sequence alignments were built for
each cluster using Clustal Omega v1.2.4 (60), and phylogeny was inferred by IQ-Tree v1.6.12 using the
default parameters (61). The trees were further analyzed and visualized using ETE3 v3.0 (62), with custom
Python scripts integrating the annotations of each sequence for its taxonomy, domain architecture,
sequence alignment, and plant-specificity prediction (DPS).

Phylogenetic signal tests. The phylogenetic signal tests were performed using the d -approach
(44), a phylogenetic analogue of the Shannon entropy that measures the degree of phylogenetic signal
between a categorical trait (trait vector) and a phylogeny (metric-tree). We used the d -approach to spe-
cifically test the null hypothesis that a given taxonomic distribution of an LBD follows the phylogenetic
signal of the underlying species, which provided us with a P value for each LBD cluster. We applied 100
iterations per test and set the P value threshold at 0.05.

The species phylogeny used as a reference in all the tests was reconstructed using the ETE3 (62)
supermatrix-based workflow and a concatenated alignment of 40 universal marker genes (63) extracted
from the 11,806 species-representative genomes using the FetchMG tool (64). Multiple sequence align-
ments were inferred using Clustal Omega v1.2.4 (60), and phylogenetic reconstruction was performed
with FastTree v2.1 (65). Moreover, an alternative species phylogeny including only genomes with at least
one CR was reconstructed using the same methodology. As the d -statistic has poor sensitivity in detect-
ing the phylogenetic signal for small taxon sample sizes (,20 taxa), LBD clusters mapping to reference
phylogenetic tree nodes smaller than 20 leaves were discarded from the analysis (Data Set S2).
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