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Contact structure, a critical driver of infectious disease transmission, is not completely understood and
characterized for environmentally transmitted pathogens. In this study, we assessed the effects of temporal
and spatial heterogeneity in animal contact structures on the dynamics of environmentally transmitted
pathogens. We used real-time animal position data to describe contact between animals and specific
environmental areas used for feeding and watering calves. The generated contact structure varied across
days and among animals. We integrated animal and environmental heterogeneity into an agent-based
simulation model for Escherichia coli O157 environmental transmission in cattle to simulate four different
scenarios with different environmental bacteria concentrations at different areas. The simulation results
suggest heterogeneity in environmental contact structure among cattle influences pathogen prevalence and
exposure associated with each environment. Our findings suggest that interventions that target
environmental areas, even relatively small areas, with high bacterial concentration can result in effective
mitigation of environmentally transmitted pathogens.

T
he transmission of most pathogens involves the passage of the pathogen from an infectious to a susceptible
individual through the environment1,2. For environmentally transmitted pathogens, the understanding of
pathogen dynamics outside the host, and the contact between a host and its associated environment is

necessary to fully characterize transmission, as well as to identify effective mitigation strategies. Some environ-
ments may have the potential to contribute to a disproportional number of infections; for example, high pathogen
survival and growth rates in the environment, or a high contact rate between host and environment can create
hotspots for infection3–5. For some environmentally transmitted pathogens, such as Shiga-toxigenic Escherichia
coli, enteric viruses, and multidrug-resistant pathogens, pharmacological interventions are limited, making
interventions aimed at blocking pathogen transmission through the environment the cornerstone of their
control6. Despite its central role in transmission and disease control, the environment is often poorly represented
in infectious disease models used to understand transmission and evaluate control strategies. Models that include
environmental reservoirs often represent the environment as a homogenous compartment, and the contact rates
between the environment and hosts are assumed to be random7–10.

Pathogen transmission, both direct and indirect, is ultimately determined by the contact structure among hosts
and their environments (e.g. number of contacts, duration of each contact, and total duration of all contacts in a
given time), making the variation in contact structure one of the most important sources of transmission
heterogeneity in infectious diseases11,12. Individual animals spend different amounts of time doing different
activities in various areas13,14. These heterogeneous behavioral patterns among animals can affect the contact
structure (in this study defined as the duration of total contact with specific areas in a pen in 1 day).

However, one of the main limitations in modeling indirect transmission through the environment has been the
lack of appropriate empirical data to characterize contact between hosts and their associated environments.
Recently, the availability of telemetric technologies has facilitated the collection of empirical data that can be
used to characterize the contact structure among hosts and between hosts and their environment. Proximity
loggers have been used to describe close social encounters in both humans and animals15–17. Animal movement
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data collected using global positioning and other triangulation and
accelerometer systems can be used to both characterize direct con-
tacts and to describe the interactions between animals and their
associated environment11,14. These systems provide novel empirical
data to describe contact for environmentally transmitted diseases
and can be integrated with infectious disease transmission models
to provide a more accurate description of pathogen transmission
throughout the environment. The overall aim of this study was to
assess how spatial and temporal heterogeneity in contact structure
between animals and their associated environment are able to influ-
ence pathogen transmission through the environment. This study
highlights the potential importance of contact structure and tem-
poral-spatial heterogeneity in environmental transmission and
potential mitigation strategies.

Results
Spatial and temporal heterogeneity associated with animal move-
ment. There was clear spatial and temporal heterogeneity associated
with animal position and movement during the monitoring period (8
days) for all 3 pens at 10-s resolution. The daily contact durations
summarized for the three pens were presented in Table 1 and
Figure 1. The animals spent much more time around the hay bunk
than around the water and grain bunk, and contact with water was
limited to only a small amount of time in a day (less than 1%). This
pattern is consistent across all 3 pens. Based on the ANOVA results,
there was a significant daily difference in animals’ contact structure
for all 3 areas: grain bunk, water, and hay bunk (Fig. 1 panel 1–3; P 5

2.6*1029, 4.8*1022, 2.2*10216, respectively). Also, there was a signi-
ficant difference in total daily contact duration at pen level for the
grain bunk, water, and hay bunk (P 5 3.8*1025, 1.6*1028, 2.7*10215,
respectively), and at individual animal level (P 5 4.4*1023, 8.9*1023,
2.0*1022, respectively). There was no significant interaction between
day and pen (P 5 4.0*1021, 3.9*1021, 5.1*1021 for grain bunk, water,
and hay bunk, respectively). In successive simulations, these sources
of heterogeneity were incorporated in the agent-based model.

Simulated prevalence dynamics with spatial heterogeneity. The
bacterial concentration was calculated as 106 CFU/m2 (colony
forming unit) for water, 105 for both grain bunk and hay bunk,
and 104 for the remaining pen floor (approximate to the nearest

Table 1 | Daily total contact duration (minutes) of calves in 3 pens
at grain bunk, water, and hay bunk areas (aggregated across the
entire observation period)

Pen Grain bunk Water Hay bunk

1 24.10 6 25.49 15.78 6 16.49 156.53 6 53.42
2 22.39 6 23.24 10.69 6 13.62 132.21 6 37.29
3 34.39 6 28.37 7.93 6 9.52 119.82 6 50.69

Numbers are mean contact duration (minutes) 6 standard deviation (minutes).
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Figure 1 | Daily total contact duration difference across observation period and pen. Circle represents mean value of the pen, and bar represents

standard error. Red: Pen1; Green: Pen2; Blue: Pen3. Figure 1A: Grain; Figure 1B: Water; Figure 1C: Hay; Figure 1D: Others.
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magnitude) for the baseline scenario (see Appendix B in
supplemental material for details). So we considered water source
as a high bacterial concentration area, grain bunk and hay bunk as
medium concentration areas, and other pen environment as a low
concentration area. We present the sizes of high, medium, and low
concentration areas; relative percent of the entire pen area size;
average duration of contact in a day; and percent of contact in a
day in Table 2. The high concentration area (water) contributed
only a small amount of area in the pen (1%) and in daily contact
(0.8%).

In Figure 2, we showed the time series of prevalence obtained by
simulating the agent-based model for different conditions (C1 to C3
as heterogeneous conditions, and H1 as homogeneous condition)
and summarized the predicted maximum prevalence and its corres-
ponding occurrence day in Table 2. The overall shapes of prevalence
dynamics under these conditions were similar; however, peak pre-
valence differed substantially (Table 3). Condition C2 and C3 rep-
resent different potential mitigation approaches. C2 focused on the
high concentration area (water) with reduced bacteria concentration
only in the water source, while C3 further reduced bacteria concen-
tration in the grain bunk and hay bunk, as well. In C2, we reduced the
maximum prevalence by approximately 6%. In C3, a further reduc-
tion to 1/10 of the bacteria concentration for the grain bunk and hay
bunk (with already lowered bacteria concentration in water as C2)
resulted in about a 12.7% reduction of prevalence. Finally, if we lower
the bacteria concentration in water to 104 CFU/m2 (which is a homo-
geneous pen with 104 CFU/m2 bacteria concentration everywhere),
we would have less than 70% maximum prevalence. All these con-
ditions (C2, C3, and H1) focus only on controlling bacterial concen-
tration in the water, grain bunk, and hay bunk, and the results show
that targeting these specific areas can be useful to control bacteria
colonization and infection in the pen.

Not only did the simulated infection dynamics and maximum
prevalence change under different conditions (with different envir-
onmental bacteria concentrations), we also quantified the risk of
infection and demonstrated the relative risk (probability of infection)
changed substantially at different areas in the pen under these con-
ditions (Table 3). In C1 the water had a high bacteria concentration
level (106 CFU/m2), and exposure to the water area for only 10 min
(less than 1% of total time in a day) resulted in more than 40% of total
new infections. While the calves spent over 85% of their time in the
general pen area, the infection probability in the general pen area was
less than 40%. When the bacteria concentration was reduced in the
water area (in C2, the water area had the same bacteria concentration
as did the grain and hay bunks), the importance of the water area as a
potential source of infection was substantially decreased, and the
importance of the general pen area was substantially increased. In
C3 where water had a bacteria concentration 10 times higher than in
any other area in the pen, the water area became the second-most
important source of infection, and the most infectious source was the
general pen. Contribution to infection from the water area was not as
significant as in C1, because in C1 the bacteria concentration
was much higher (100 times) than in the general pen area. In a

homogeneous setting (as shown in H1), the risk of infection
depended only on the total duration that an animal spent around
each area; hence, the general pen area served as the primary source of
infection. All these results indicate the importance of temporal-
spatial heterogeneity in infection dynamics.

Discussion
While contact structure and individual heterogeneity is intensively
studied in directly transmitted disease18,19, it is unclear how contact
structure among individual animals and various environments influ-
ences the transmission dynamics of environmentally transmitted
pathogens. The temporal and spatial heterogeneity in our simula-
tions led to some interesting findings. The risk of infection from the
environment (i.e. infection or colonization probability) was depend-
ent on both the environmental bacteria concentration and total con-
tact duration. Although the prevalence time series were similar for
the simulated scenarios, the heterogeneity in environmental concen-
tration and contact had a large effect in determining the contribution
of different environments to new infections. The previous result
section illustrates the importance of total contact duration with the
high bacteria concentration area. We suggest identifying and quan-
tifying the high-concentration areas (‘‘hotspots’’ of the pathogen) as
one of the most important tasks in clarifying transmission and con-
trol options. This can lead to designing more effective control and
mitigation strategies (as already shown in the results section when
comparing various conditions in simulation). For instance, while it is
not feasible to shorten the duration an animal stays near certain areas
in the pen, we may be able to reduce environmental contamination
with the bacteria (hence reduce probability of infection). Depending
on labor and budget, it may be effective to target specific areas (e.g.
the ‘‘hotspots,’’ and not entire pen) to reduce prevalence.

In this study, we combined field observation datasets of animal
behavior and contact structure with an agent-based modeling frame-
work and quantitatively assessed the temporal-spatial heterogeneity
and how it changes infection dynamics within the pen. It is relatively
easy and straightforward to adopt the existing agent-based models to
study other similarly transmitted pathogens such as Salmonella.
Furthermore, environmental transmission pathways occur in many
other pathogens, even those assumed to be mostly directly transmit-
ted, such as influenza, and pathogens with other transmission routes,
such as waterborne and foodborne pathogens20–22. Consequently, we
can integrate the contact structure to the environment components
with these models as well, and assess the importance of both envir-
onmental transmission and direct transmission pathways. Targeting
environmental pathogen sources and pathways is particularly rel-
evant for those pathogens for which pharmacological interventions
are limited6.

One of the implicit assumptions in this research is that the contact
structure remains the same when the epidemic is established in the
population. It is possible that the pathogen might change animal
behavior and influence/change the contact structure between the
animal and the environment11,15. Nevertheless, for the specific calf
and E. coli O157 system in this study, the pathogen behaves as

Table 2 | Baseline scenario of relative area size and daily contact duration in the pen at different bacteria concentration areas

Baseline Scenario

Bacteria concentration level

High (6) Medium (5) Low (4)

Area Water Grain bunk Hay bunk All Others
Area size (m2) 3 7.5 15 283
Area % 1 2.5 5 91.5
Mean duration (min) 11.2 27.6 134.9 1,266.3
Duration percent 0.8 1.9 9.4 87.9

Concentration levels are in log10 CFU/m2 unit. Mean duration is in days (1,440 min).
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commensal, so it does not cause recognizable symptoms in the ani-
mals, and as such, it seems unlikely the calves’ behavior would change
when infected. Future study may consider monitoring the animals’
contact structure during the time surrounding inoculation so as to
provide more detailed information about behavioral change before
and after infection.

In summary, our study is the first of this kind to integrates real-
time contact data and an agent-based modeling framework to
comprehensively investigate temporal-spatial heterogeneity in the
contact structure between animals and their associated environ-
ments, and relate it to environmental pathogen transmission dyna-
mics. Host behavior and pathogen environmental dynamics can
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Figure 2 | Time series of mean prevalence under different conditions. Solid black line: mean prevalence; dashed red line: 25% and 75% quantiles. Four

figures represent condition C1, C2, C3, and H1. Details of these conditions are listed in table 3.

Table 3 | Maximum prevalence and infection probability in each area of the pen

Condition concentration (P:G:H:W)

Conditions

C1 C2 C3 H1

4555556 4555555 4545455 4545454

Max prevalence (%) 84.93 6 0.36 79.86 6 0.41 74.11 6 0.41 69.76 6 0.48
Occurring day 44 46 47 48
Infected in water (%) 42.64 6 1.29 6.92 6 0.34 9.52 6 0.26 0.76 6 0.03
Infected in grain bunk (%) 8.52 6 0.27 13.83 6 0.67 1.90 6 0.05 1.88 6 0.06
Infected in hay bunk (%) 10.23 6 0.28 16.60 6 0.69 2.29 6 0.06 2.51 6 0.09
Infected in all rest (%) 38.61 6 1.14 62.65 6 1.70 86.29 6 2.61 94.85 6 2.52

Numbers are in mean 6 standard deviation (except occurring day, which has no variability).
Concentration is in log10 CFU/m2 scale. C1 to C3 are all heterogeneous conditions, whileH1 is homogenous. P:G:H:W representsPen area: Grain: Hay: Water. The infected probability in each area gives
an estimation of transmission potential.
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generate heterogeneity in pathogen exposure that has implications
for pathogen control.

Methods
Data acquisition and standardization. Animal position data were collected at the
research facilities of Kansas State University, Manhattan, Kansas. All the experiments
were approved by and complied with animal regulation policy of Kansas State
University. Three pens with 21, 21, and 28 calves (approximately 76–78 days of age
and average weight of 76.9 6 11.1 kg at trial initiation), respectively, were monitored.
Each pen was approximately 11.9 m 3 25.6 m (80 ft 3 40 ft) in size (see
supplementary figure 1 for a diagram of pen settings). Calves were continuously
monitored from August 11, 2011, to August 18, 2011. Each calf had an ultra wide-
band tag (Ubisense Series 7000 Compact Tag, Ubisense) attached to its ear. The tags
transmit ultra wide-band signals to 7 receivers around the pens; the receivers then
transmit to a central computer that logs the 2-dimensional (X-Y coordinates) position
data. To save power, the tag did not send data when it did not detect animal
movement. The system has been previously validated and used to describe animal
behavior as well as quantify time spent by the animals near specific pen locations11,17.
All distances between the animal and given areas (e.g. grain, hay, or water) were
computed based on 2-dimensional Euclidean distance.

The original position data, which were reported from each tag, were first stan-
dardized by aggregating to 10-s resolution (time unit was 10 s). That is, if the tag
reported multiple readings of position data (XY coordinates) within the same 10 s, we
averaged all these readings for that 10-s period to get a single position (XY coordi-
nates) representing the location of the animal in that period; if the tag had not updated
the location information for more than 10 s, we used the last known position data to
interpolate the missing readings. After this standardization process, we had 8,640 3 2
data points for each animal in each day (3,600 s/h 3 24 h/day/10 s 5 8,640 data
points/day; 2 columns represent X and Y coordinates). The XY coordinate data for
specific pen areas for watering and feeding animals (grain bunk, water source, and hay
bunk) in each of the 3 pens were also recorded. At each time interval, the animals’
position data were compared with position data of grain bunk, water source, and hay
bunk. If the animal was within approximately 0.3 m (,1 ft) of the threshold outside
the boundary of the grain bunk (or water or hay bunk) then we assigned that time
interval as a (close) contact to the specific area. The total contact duration in each day
around grain bunk, water, and hay bunk were computed by adding all the close
contact intervals together.

Modeling procedure. Identifying spatial and temporal heterogeneity in the contacts
between hosts and specific environments. We quantitatively examined and identified
spatial and temporal heterogeneity from the original animal position and contact data
described in the data acquisition and preparation section. We expected animals might
visit some areas more frequently and with longer duration than other areas in the
environment. We specifically investigated whether the contact between calves and 3
specific areas (grain bunk, water source, and hay bunk) varied across the observation
period (8 days, from August 11 to August 18, 2011) and across the 3 pens by
conducting an analysis of variance (ANOVA). The model was specified with equation
(1):

Tijk~uzalzbjzabijzck=jzeijk

In this model, T was the daily contact duration in day i for animal k in the pen j; u
was the mean daily contact duration of all counts in the entire period for all animals in
all 3 pens; aI was effect of day and was treated as a fixed effect; bj was the effect of pen
and treated as random effect; abij was the random effect of interaction between day
and pen; ckjj was the random individual effect nested within each pen, and eijk was
random error. We ran the ANOVA test for grain bunk, water, and hay bunk.

The sources of variation (e.g. at pen, day, and/or individual level) that were found
to be significant were incorporated into the model simulations (see next section).

Modeling environmental transmission with spatial and temporal exposure heterogen-
eity. To evaluate the effects of contact structure heterogeneity on the exposure and
transmission of an environmentally transmitted pathogen, we modified our previous
agent-based model for the transmission of the zoonotic pathogen E. coli O157 in the
cattle reservoir by including spatial and contact heterogeneity in the model. In our
previous approach23, the infectious agents shed the bacteria into the surrounding
environment, and susceptible agents were colonized by contact with the bacteria in
the environment. There were 4 epidemiological states for the animal: primary sus-
ceptible, primary infectious, secondary susceptible, and secondary infectious. After
animals recover from the primary infection, they acquire partial immunity.
Secondary susceptible individuals require a higher dose of bacteria to become re-
infected. If infected again, secondary infectious individuals are assumed to shed lower
bacteria concentrations. Given contact between the animal and environment, the
daily transmission probability depends on the environmental concentration of E. coli,
which was assumed to be homogeneous in our previous study. A more detailed
description of the original modeling system is provided23.

In this study, we incorporated spatial and temporal heterogeneity in the envir-
onment. The overall pen environment was disaggregated into 4 main areas that differ
in the duration of time spent by the animals and in bacterial concentration. These
areas are the water source, grain bunk, hay bunk, and the remaining pen floor. The

bacteria concentrations in these areas were 106 CFU/m2, 105 CFU/m2, 105 CFU/m2,
and 104 CFU/m2, respectively26–30. Based on these numbers, we considered water as a
high bacteria concentration level area, grain bunk and hay bunk as medium
concentration, and the rest of the pen floor as low concentration. A detailed deriva-
tion of these concentrations can be found in supplementary section 2.

In order to introduce variability in the contact between animals and environment,
we applied bootstrapping methods from the observed mean contact duration and its
variance (aggregated by all the 21 1 21 1 27 5 69 animals) to generate a time series of
daily contact duration for each individual throughout the entire simulation period. As
shown later in the results section, there was significant day-to-day variability in
animal contact structure; therefore, in each day of the simulation, we sampled one
mean contact duration from 8 observations of contact duration (August 11–18 data),
and used its associated variance in that day to generate contact durations for all 100
animals. We repeated this process 200 times to construct the 200-day time series.
Here, we assumed the contact duration was independent from day to day and was
population density independent (population size did not affect contact duration at
each area).

Another source of individual variability (besides contact duration) was duration of
the infectious period. The animals had a mean primary infectious period of 48 days
and standard deviation of 5 days, and secondary period mean of 16 days with
standard deviation of 3 days, according to the data of oral challenge studies used
previously23.

We simulated the duration of time a calf was around the grain bunk, hay bunk,
water, and the rest of the pen floor in each day for each animal. We determined the
probability of infection given contact in each of these 4 areas using a logistic dose-
response curve23, and then averaged the probabilities of infection at these areas
(weighted to the percent of duration of contact at each area by total time in a day) to
get daily effective probability of transmission. We also determined whether a trans-
ition from susceptible to infected occurred around the grain bunk, hay bunk, water, or
the rest of pen area, by comparing the probability of infection from these areas. In this
study, we did not track the shedding amount of pathogen (which is infeasible due to
lack of observation data as well as computational burden) and assumed the bacteria
concentration reached the environmental carrying capacity so that daily total new
shedding of bacteria equaled the total loss, and the concentration of bacteria remained
constant for each of the 4 areas. Supplementary section 3 describes the overview-
design-details protocol for describing agent-based models24. We monitored and
aggregated individual animal epidemiological states by day, tracked the prevalence
dynamics in the population for the entire simulation period (200 days), and replicated
the simulation 100 times.

We evaluated 4 scenarios representing likely environmental concentrations. The
baseline scenario (C1) is described in Table 2. Bacteria concentration levels were low,
medium, and high at 104, 105, and 106 CFU/m2 (as shown in the results section) in the
general pen area, grain bunk, hay bunk, and water, respectively. We further simulated
3 other scenarios: C2 had bacteria concentration in water reduced from 106 to
105 CFU/m2 while the other concentrations remained the same as C1; C3 had bacteria
concentration as 104, 104, 104, and 105 CFU/m2 for the general pen area, grain bunk,
hay bunk, and water. Besides all these heterogeneous conditions, we also simulated a
homogenous condition (H1) where bacteria concentration was 104 CFU/m2 for all
areas. In this condition, we did not have to consider any spatial or temporal hetero-
geneity caused by animal contact pattern.

All the data analysis and simulations were written and run in R 2.1525 on Newton, a
high-performance computing server at the University of Tennessee.
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