il .. | mSphere

MICROBIOLOGY

OBSERVATION
Applied and Environmental Science

L)

Check for
updates

Genetic Evidence for Two Carbon Fixation Pathways (the
Calvin-Benson-Bassham Cycle and the Reverse Tricarboxylic
Acid Cycle) in Symbiotic and Free-Living Bacteria

Maxim Rubin-Blum,>P {2 Nicole Dubilier,2< 2’ Manuel Kleinerd

2Max Planck Institute for Marine Microbiology, Bremen, Germany

blsrael Limnology and Oceanography Research, Haifa, Israel

SMARUM, University of Bremen, Bremen, Germany

dDepartment of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA

ABSTRACT Very few bacteria are able to fix carbon via both the reverse tricarboxy-
lic acid (rTCA) and the Calvin-Benson-Bassham (CBB) cycles, such as symbiotic, sulfur-
oxidizing bacteria that are the sole carbon source for the marine tubeworm Riftia
pachyptila, the fastest-growing invertebrate. To date, the coexistence of these two
carbon fixation pathways had not been found in a cultured bacterium and could
thus not be studied in detail. Moreover, it was not clear if these two pathways were
encoded in the same symbiont individual, or if two symbiont populations, each with
one of the pathways, coexisted within tubeworms. With comparative genomics, we
show that Thioflavicoccus mobilis, a cultured, free-living gammaproteobacterial sulfur
oxidizer, possesses the genes for both carbon fixation pathways. Here, we also show
that both the CBB and rTCA pathways are likely encoded in the genome of the
sulfur-oxidizing symbiont of the tubeworm Escarpia laminata from deep-sea asphalt
volcanoes in the Gulf of Mexico. Finally, we provide genomic and transcriptomic
data suggesting a potential electron flow toward the rTCA cycle carboxylase 2-oxo-
glutarate:ferredoxin oxidoreductase, via a rare variant of NADH dehydrogenase/het-
erodisulfide reductase in the E. laminata symbiont. This electron-bifurcating complex,
together with NAD(P)* transhydrogenase and Na™* translocating Rnf membrane
complexes, may improve the efficiency of the rTCA cycle in both the symbiotic and
the free-living sulfur oxidizer.

IMPORTANCE Primary production on Earth is dependent on autotrophic carbon fix-
ation, which leads to the incorporation of carbon dioxide into biomass. Multiple
metabolic pathways have been described for autotrophic carbon fixation, but most
autotrophic organisms were assumed to have the genes for only one of these path-
ways. Our finding of a cultivable bacterium with two carbon fixation pathways in its
genome, the rTCA and the CBB cycle, opens the possibility to study the potential
benefits of having these two pathways and the interplay between them. Addition-
ally, this will allow the investigation of the unusual and potentially very efficient
mechanism of electron flow that could drive the rTCA cycle in these autotrophs.
Such studies will deepen our understanding of carbon fixation pathways and could
provide new avenues for optimizing carbon fixation in biotechnological applications.

KEYWORDS carbon dioxide assimilation, carbon metabolism, electron transport,
lithoautotrophic metabolism, symbiosis

rimary production by autotrophic organisms drives the global carbon cycle. Cur-
rently, seven naturally occurring pathways for inorganic carbon fixation are known
in autotrophic organisms (1, 2). The dominant carbon fixation pathway used by plants,
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algae, and many bacteria is the Calvin-Benson-Bassham (CBB) cycle. The six alternative
pathways include among others the reverse tricarboxylic acid (rTCA) cycle and the
recently discovered reversed oxidative TCA cycle (roTCA) (1, 3, 4). Only a few au-
totrophic bacteria have more than one carbon fixation pathway (5). These bacteria
include a closely related group of sulfur-oxidizing symbionts of marine tubeworms such
as Riftia, Escarpia, Tevnia, and Lamellibrachia, which have and express both the oxygen-
sensitive ITCA and the oxygen-tolerant CBB cycle (6-11). The only known free-living
bacteria that may have all the genes for both cycles are the large sulfur bacteria
Beggiatoa and Thiomargarita spp. (12-14). The CBB cycle in the symbionts and the large
sulfur bacteria is potentially more energy efficient than the classical version of the CBB
cycle based on the replacement of the fructose-1,6-bisphosphatase with a
pyrophosphate-dependent enzyme (12, 13, 15, 16). In addition, it is likely that the
interplay between the CBB and rTCA cycle under fluctuating redox conditions contrib-
utes to the high efficiency of carbon fixation in tubeworm symbioses (6, 7, 17) and
consequently to the extremely high growth rates of tubeworms, which grow faster than
any other known invertebrate (18).

Given that tubeworm symbionts and large sulfur bacteria could not yet be culti-
vated, it was not possible to investigate the cooccurrence of their two carbon fixation
cycles in detail. In this study, we sequenced a high-quality genome (99.5% complete-
ness as estimated by CheckM) and transcriptome of the symbiont from the tubeworm
Escarpia laminata and compared its genome to those of other tubeworm symbionts
and free-living microbes. These comparisons revealed the cooccurrence of the com-
plete set of genes for the CBB and rTCA cycles in a cultured bacterium. This discovery
will enable future studies of the biochemical and physiological mechanisms that enable
the interplay between these two carbon fixation pathways.

Cooccurrence of rTCA cycle genes with RuBisCO in symbiotic and free-living
Gammaproteobacteria. Genes for enzymes that are specific to the rTCA pathway, that
is, the type Il ATP citrate lyase (ACL, aclAB genes), 2-oxoglutarate:ferredoxin oxidoreduc-
tase (OGOR, korABCD genes), and a putative fumarate reductase (tfrAB genes, homologs
of genes encoding a thiol:fumarate reductase from Methanobacterium thermoau-
totrophicum [19]), were assumed to occur in only a few symbiotic Gammaproteobacte-
ria. We discovered, using comparative genomics, that these rTCA cycle enzymes also
occur in some Chromatiaceae, including the cultivated sulfur oxidizer Thioflavicoccus
mobilis and a gammaproteobacterial metagenome-assembled genome (MAG) from a
subsurface aquifer (Gammaproteobacterium RIFOXYD12_FULL_61_37) (20) (Fig. 1). The
ACLs of tubeworm symbionts and T. mobilis were likely acquired via horizontal gene
transfer from other bacterial clades, because the phylogeny of their aclA genes is not
congruent with their placement in a phylogenomic tree (Fig. 1; see also Fig. S1 in the
supplemental material) (16). The tubeworm symbionts and Thioflavicoccus also encode
either form | or Il RuBisCO or both (Text S1, Note 1).

Presence of the rTCA and CBB pathways in the genome of a single bacterium.
Due to the fragmented nature of the previously available genomes of tubeworm
symbionts, past studies could not determine whether the genes for both pathways are
present in a single genome or if the two pathways are distributed in a strain-specific
manner, i.e., only one of the two pathways is present in the genome of a single cell (4).
Here, we provide two lines of evidence that the two pathways can cooccur in the
genome of a single organism. First, sequencing coverage for the genes of both
pathways in the E. laminata symbiont was similar to that of single-copy marker genes
(Table S1). Since genes that are strain specific are expected to have lower coverage than
the rest of the genome (21), the similar coverage of genes encoding the two pathways
and single-copy genes suggests that in the E. laminata symbiont both pathways are
present in all cells. Second, in the closed genome of the cultured T. mobilis, the genes
encoding the rTCA and the CBB cycle cooccur, providing evidence that these genes
coexist in a single genome.

Our transcriptomic analyses of E. laminata tubeworm symbionts revealed high
expression levels of both the rTCA and the CBB cycle genes (Fig. 2; Table S1). This
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FIG 1 Phylogenomic tree showing occurrence of RuBisCO (CbbM/CbbL), ATP citrate lyase (AclAB), 4-subunit 2-oxoglutarate:ferredoxin
oxidoreductase (KorABCD), putative thiol:fumarate reductase (TfrAB), and 2-subunit 2-oxoglutarate:ferredoxin oxidoreductase (KorAB) in
the genomes of tubeworm symbionts (green), purple sulfur bacteria (purple), and other related bacteria (58 organisms total, alignment
of 2,526 amino acid sites from 23 single-copy markers). The maximum likelihood tree was built with IQ-TREE using the LG+R6 model of
substitution. The tree is unrooted, although the outgroup “thiotrophic symbionts of bathymodiolin mussels and clams” is drawn at the
root. Branch labels are SH-aLRT support (%)/ultrafast bootstrap support (%). Accession numbers are provided in Table S2. *, was not
included in the tree due to several missing single-copy marker genes or multiple versions of these genes, making an accurate
phylogenomic placement challenging. **, only the aclB gene was present.

observation is consistent with previous proteomic analyses of the Riftia symbiont (the
metabolism of the symbionts from these two tubeworms is highly similar) (6, 7). The
high expression levels of genes from the rTCA and the CBB cycle suggest that both
pathways play an important metabolic role in these symbionts. It is, however, not clear
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FIG 2 The rTCA cycle gene clusters in symbiotic and free-living bacteria and the respective transcriptomic gene expression levels in the symbionts of Escarpia
laminata tubeworm [aclA, log(TPM) = 3.6; korA, log(TPM) = 3.3; hdrA, log(TPM) = 2.9; for comparison, atpB, log(TPM) = 2.0; cbbM, log(TPM) = 5.0]. TPM,
transcripts per kilobase million. rbr, rubrerythrin. dsr*, oxidoreductase related to the NADPH-dependent glutamate synthase small chain, clustered with sulfite

reductase. The dotted line is the median expression value for E. laminata genes.

whether these cycles function simultaneously within single symbiont cells or are
differentially expressed within the symbiont population (4).

The rTCA gene clusters are conserved among the tubeworm symbionts and
some Chromatiaceae bacteria. In the tubeworm symbionts, the cultivated T. mobilis,
and the gammaproteobacterial MAG from a subsurface aquifer, there was a consider-
able level of conservation of the ITCA gene clusters, at the sequence and synteny levels
(Fig. 2). The aclAB genes that encode the two subunits of the ACL were accompanied
by those that encode bidirectional TCA cycle enzymes, including acn (aconitase), idh
(isocitrate dehydrogenase), and mdh (malate dehydrogenase). The other rTCA-specific
genes korABCD (four-subunit OGOR) and tfrAB (putative thiol:fumarate reductase) were
also present in the rTCA gene cluster. Similar to the ACL, the four-subunit OGOR and the
thiol:fumarate reductase are very rare among Gammaproteobacteria and were probably
acquired via a single horizontal gene transfer event from a distant bacterial clade (Fig. 1;
Fig. S2 and S3). A dimeric OGOR (korAB genes), more common than the four-subunit
enzyme among gammaproteobacterial autotrophs, yet absent in T. mobilis, was located
elsewhere in the genome of the E. laminata symbiont. The korAB genes were colocal-
ized with genes that encode other well-expressed TCA cycle enzymes (Text S1, Note 2;
Fig. S4). These well-expressed genes included the citrate synthase (g/tA) gene, which
could indicate its use in the catabolic oxidative TCA cycle. Alternatively, strong expres-
sion of citrate synthase could also indicate autotrophic CO, fixation via the recently
discovered ACL-independent reverse oxidative TCA (roTCA) cycle (1, 22).

An array of genes that encode several electron-translocating complexes were
integrated into the rTCA cycle gene clusters. These complexes included an electron-
bifurcating NADH dehydrogenase/heterodisulfide reductase complex (fixABCD-hdrABC
genes [Text S1, Note 3] [23]), an NAD(P)* transhydrogenase (24) and Na"-translocating
Rnf membrane complex (pntAB and rnfABCDGE genes [Text S1, Note 4] [25]). Most
interestingly, the conserved interspersing of the korABCD and tfrAB genes with the
fIXABCD-hdrABC genes hints at the possibility that these proteins form a complex that
efficiently shuttles electrons directly to the OGOR and the thiol:fumarate reductase
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(Text S1, Note 3, and Fig. S5). If this is the case, the carbon fixation efficiency of the rTCA
cycle would be most likely considerably higher than the canonical rTCA cycle.

Conclusions. Until now, the only bacteria known to possess both the CBB and rTCA
pathways were sulfur-oxidizing, tubeworm symbionts, and possibly also large sulfur
bacteria, all of which are currently not amenable to cultivation-based studies. Experi-
mental studies are now feasible in the cultivable T. mobilis, in which the genes for the
CBB and rTCA cycles coexist. Such studies would reveal if these pathways are expressed
under different physicochemical conditions and potentially allow the biotechnological
optimization of efficiency and yield in production processes that rely on autotrophic
carbon fixers. To our knowledge, the use of organisms with multiple carbon fixation
pathways has not been used as a design principle for these applications.

Methods. (i) Comparative genomics and transcriptomics. Publicly available ge-
nomes from the NCBI and JGI-IMG collections, as well as de novo-assembled genomes
of Escarpia laminata symbionts (estimated completeness 99.5%), were used for
genomic comparison (see Text S1). To verify presence/absence of target gene ho-
mologs in sequenced organisms, we used NCBI's BLAST against the nucleotide collec-
tion and nonredundant protein database (26). E. laminata symbiont genomes were
used as a template for genome-centered transcriptomics.

(ii) Phylogenetic and phylogenomic analyses. Phylogenomic treeing was per-
formed using scripts available at phylogenomics-tools (https://doi.org/10.5281/zenodo
A46122). Twenty-three marker proteins that are universally conserved across the bac-
terial domain were extracted from genomes using the AMPHORA2 pipeline (27).
Twenty-three single-copy markers were used for alignment with MUSCLE (28). The
marker alignments were concatenated into a single partitioned alignment, and poorly
aligned regions were removed. Functional protein sequences were aligned with MAFFT
(29). Maximum likelihood trees were calculated with IQ-TREE (30) and MEGA7 (31),
using the best-fitting model.

Data availability. Sequences are available under the BioProject accession number
PRINA471406.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/
mSphere.00394-18.
TEXT S1, DOCX file, 0.1 MB.
FIG S1, EPS file, 2.3 MB.
FIG S2, EPS file, 2.4 MB.
FIG S3, EPS file, 2.1 MB.
FIG S4, EPS file, 2.5 MB.
FIG S5, EPS file, 2.2 MB.
FIG S6, EPS file, 2.6 MB.
FIG S7, EPS file, 2.5 MB.
TABLE S1, DOCX file, 0.02 MB.
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