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A B S T R A C T

In this study, a series of chiral amido-oxazoline ligands was synthesized with a primary focus on 
immobilizing the most effective ligands on MCM-41 mesoporous material. Following several at
tempts, the para-nitro group of the chiral amido-oxazoline ligands was successfully reduced to 
amino group, enabling their immobilization on MCM-41. The resulting chiral heterogeneous 
amido-oxazoline ligands were characterized using various techniques, including FT-IR, XRD, 
TGA, SEM, TEM, EDX, and BET-BJH, confirming the successful immobilization of the amido- 
oxazoline ligands. A comparison of the efficiency of the homogeneous and heterogeneous 
amido-oxazoline-based ligands in the Kharasch-Sosnovsky and Henry reactions revealed better 
performance of the heterogeneous ligand. The immobilized amido-oxazoline-copper complexes 
exhibited remarkable catalytic activity, achieving excellent yields and enantioselectivities (up to 
88 % ee) in the Kharasch-Sosnovsky reaction, and delivering excellent yields with moderate 
enantioselectivities in the Henry reaction. Notably, the Henry reaction proceeded with moderate 
diastereoselectivity, favoring the syn diastereomer, under solvent-free conditions, highlighting 
the sustainability of the process. The heterogeneous nature of the catalysts facilitated effortless 
recovery and efficient reusability.

1. Introduction

Oxazoline-based ligands have garnered considerable attention in asymmetric transformations due to their significant potential 
advantages, such as easy accessibility, modular nature, and suitability for a broad range of metal-catalyzed reactions. Typically, this 
class of ligands can be prepared from readily available chiral β-amino alcohols and carboxylic acids or nitriles, and can be modified by 
incorporating a diverse range of functional groups. Moreover, the close proximity of the chiral center to the donor nitrogen atom 
creates a well-organized chiral environment at the catalytic center, which greatly enhances asymmetric induction [1–12].

Introducing sustainable, environmentally friendly, and efficient chiral catalytic systems is a central theme in modern synthetic 
chemistry. While homogeneous oxazoline-based ligands often exhibit high reactivity and enantioselectivity, their practical application 
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is mainly hindered by challenges related to separation, recovery, and reuse. The immobilization of oxazoline ligands onto suitable 
supports provides a reasonable approach to overcoming such limitations, aligning with the principles of sustainability and green 
chemistry. Mesoporous silica materials such as MCM-41 have emerged as promising supports due to their high surface area, tunable 
pore size, and ease of functionalization [13–21]. These outstanding features facilitate the immobilization of chiral catalysts, potentially 
enhancing their performance through confinement effects and site isolation, consequently improving the catalysts’ efficiency and 
significantly impacting enantioselectivity [22–31].

The enantioselective Kharasch-Sosnovsky reaction, which involves the enantioselective oxidation of allylic C-H bonds in olefins 
primarily using a perester in the presence of a chiral copper complex, is a powerful and cost-effective approach in organic synthesis. 
This process is distinct from hydroxylation and epoxidation, as a second functional group is formed without altering the C=C bond. 
Additionally, the resulting chiral allylic ester can be further functionalized to produce a diverse range of products [32–55].

The asymmetric Henry reaction, also referred to as the nitroaldol reaction, is a highly atom-economical process that involves the 
enantioselective nucleophilic addition of the α-carbon of a nitroalkane to the carbonyl group of an aldehyde or ketone in the presence 
of a chiral environment, typically involving copper-ligand complexes, resulting in the formation of a C− C bond that consequently 
yields a chiral β-nitroalcohol [56–83]. The newly formed compounds can be readily transformed into other valuable synthetic in
termediates by dehydration to produce nitroalkenes, oxidation of the hydroxy group to produce α-nitro ketones, or reduction of the 
nitro group to generate β-amino alcohols [84–87]. It is noteworthy that β-amino alcohol derivatives have great potential for the 
synthesis of important pharmaceutical compounds, such as sphingosine [88], ephedrine [89], and chloramphenicol [89]. Additionally, 
they have been utilized in the production of β-blockers such as (S)-propranolol [90,91], (S)-pindolol [92], and (S)-metoprolol [93,94], 
as well as β-receptor agonists such as (− )-denopamine and (− )-arbutamine [95].

Building upon our recent success in utilizing amido-oxazoline ligands 1 for the enantioselective Kharasch-Sosnovsky reaction [96], 
we aimed to develop a sustainable and recyclable catalytic system by covalently immobilizing amido-oxazoline ligand derivatives on 
MCM-41. Herein, we report the synthesis and characterization of amido-oxazoline ligands immobilized on MCM-41, and their 
application in two important enantioselective transformations: the Kharasch-Sosnovsky reaction and the Henry reaction.

2. Result and discussion

2.1. Synthesis of chiral homogeneous amido-oxazoline based ligands

In our previous publication, we described the synthesis of amido-oxazoline ligands 1. This process begins with the preparation of 
amino-oxazolines 2 through the reaction of chiral (S)-amino alcohols 3 [97] and cyanogen bromide [3–6,96,98–106]. The 
amino-oxazolines 2 was then reacted with benzoyl chlorides 4 to yield the desired amido-oxazoline ligand derivatives 1. It was proven 
that the main structure is oxazolidine-imine form 1′ (Scheme 1) (Pages S2-S5 and Figs. S1-S10, Supplementary Material).

Despite this straightforward strategy, the heterogenization of this class of ligand on MCM-41 poses a challenge. Two practical 
approaches to covalently immobilize the ligands on MCM-41 mesoporous materials was considered. One strategy involves the 
introduction of a functional group, such as an amino group, at the para position of benzoic acid. The alternative entails the reduction of 
the nitro group in amido-oxazoline ligands 1 to form an amino group [13–15]. Therefore, to perform the first approach, para-amino 
benzoic acid 5 was chosen as a suitable starting material. Initially, the amino group of benzoic acid 5 was protected using di-tert-butyl 
dicarbonate (Boc2O) [107,108]. In the 1H NMR spectrum, the appearance of a singlet signal at δ = 1.57 ppm corresponds to the 
tert-butyl hydrogens. In the subsequent step, similar to the procedure mentioned earlier, the protected benzoic acid 6 was converted to 
its corresponding benzoyl chloride 7 using oxalyl chloride [96,108]. The resulting benzoyl chloride 7 was then promptly reacted with 
the amino-oxazolines 2 to produce the desired protected amido-oxazolines 8 (Scheme 2) (Pages S5 and S6, and Figs. S11-S19, Sup
plementary Material).

Despite numerous attempts, this method did not yield satisfactory results. Therefore, an alternative strategy was employed, in 
which the protected carboxylic acid 6 was directly reacted with amino-oxazolines 2 using the Appel reagent (PPh3/CCl4) [52,109]. 
This procedure was successful in producing the desired products 8, achieving significantly higher yields than the previous attempt 
(Scheme 3). It is apparent that the in-situ activation of the carboxylic group led to a remarkable decrease in the formation of unwanted 
by-products. The presence of signals for aromatic and oxazoline rings at δ = 7–8 ppm and at δ = 4–5 ppm, respectively, in the 1H NMR 
spectra confirmed the successful formation of the protected amido-oxazolines 8 (Pages S6 and S7, Supplementary Material).

Scheme 1. Synthesis of amido-oxazolines 1.
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In the final step, amido-oxazolines 8 were treated with trifluoroacetic acid (TFA) to remove the Boc protecting group. However, 
despite several attempts, the deprotection process was unsuccessful, which is in contrast to our previous study where we effectively 
eliminated the Boc group [108] (Scheme 4).

As a result of these failures, the second option was explored, involving the reduction of the para-nitro group of the amido-oxazolines 
1 into an amino group. Our previous experiments revealed that the use of hydrogen gas in the presence of a catalytic amount of Pd/C 
(10 %) is the most effective method for reducing nitro groups [109,110] (Scheme 5). This procedure can provide the corresponding 
aniline-oxazoline ligands 9 in 97 % and 93 % yield, respectively (Pages S7 and S8, and Figs. S20-S27, Supplementary Material). In the 
1H NMR spectra of compound 1a, the ortho and meta protons appeared at δ = 8.41 ppm and 8.26 ppm, respectively, while in 9a, these 
protons shift to δ = 6.65 ppm and 8.09 ppm, respectively. In fact, in the 1H NMR spectra of compounds 1a and 1b, the ortho protons 
appeared at downfield values, while in compounds 9a and 9b, the meta protons are observed in downfield regions.

2.2. Heterogenization of the synthesized chiral amido-oxazoline ligands

Based on our previous study [96], which found that the amido-oxazoline ligands 1 containing phenyl and benzyl groups on the 
oxazolidine ring, demonstrated the highest efficiency, we opted to immobilize them on cylindrical MCM-41 mesoporous support. 
Initially, MCM-41 silica was synthesized hydrothermally, utilizing sodium silicate as a silica source and tetradecyl trimethyl ammo
nium bromide (TTAB) as a template agent to regulate pore size [18,108].

To immobilize the aniline-oxazoline ligands 9 on the MCM-41, it is essential to have a linker between the support and the ligand. 
Therefore, the mesoporous silica was reacted with 3-chloropropyltrimethoxysilane (CPTMS) as a linker to create Cl-MCM-41 material. 
In the subsequent step, the prepared aniline-oxazoline ligands 9a and 9b were treated with the Cl-MCM-41 in refluxing toluene (Page 
S8, Supplementary Material). During this process, the chloro group is replaced with the amino group, resulting in the formation of 
heterogeneous oxazoline based ligands 10 (OX-R-MCM-41) [98,108,111] (Scheme 6).

2.3. Characterization of the chiral heterogeneous ligands 10

Various techniques were employed to study the structure of the prepared chiral heterogeneous ligands 10. These methods included 
Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential 

Scheme 2. Preparation of the protected amido-oxazolines 8 from para-amino benzoic acid through benzoyl chloride.

Scheme 3. Preparation of the protected amido-oxazolines 8 from para-amino benzoic acid using Appel reagent.

Scheme 4. Unsuccessful deprotection of Boc group from the protected amido-oxazolines 8.
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thermal analysis (DTA), CHN elemental analysis, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), 
transmission electron microscopy (TEM), and BET/BJH nitrogen adsorption-desorption methods.

The results of the experimental analysis indicated that the aniline-oxazoline ligands 9 were successfully immobilized on the MCM- 
41. A comparison of the FT-IR spectra of MCM-41, Cl-MCM-41, and the chiral heterogeneous ligands 10 (OX-Ph-MCM-41 10a and OX- 
Bn-MCM-41 10b) showed notable differences in their respective spectra (Fig. 1).

The FT-IR spectrum of MCM-41 exhibited the following spectral characteristics: A broad band observed at 3430 cm− 1 indicated the 
stretching vibration of O-H bonds in adsorbed water, accompanied by O-H bending vibration at 1634 cm− 1. The bands around 1221 
and 1084 cm− 1 were identified as the asymmetric stretching of the Si-O-Si group, while the symmetric stretching modes of the Si-O-Si 
group were observed at 809 and 591 cm− 1. The presence of Si-OH groups was indicated by a band at 956 cm− 1, and an absorption band 
at 451 cm− 1 corresponded to the bending vibration of Si-O-Si groups.

In the FT-IR spectrum of Cl-MCM-41, a distinctive absorption band at 707 cm− 1 indicated the stretching of the C-Cl bond. Ab
sorption bands at about 2953 and 2864 cm− 1 corresponded to the asymmetric and symmetric stretching vibrations of C-H bonds in the 
CH2 groups of the propyl chain. Additionally, the intensity of the broad band at around 3400 cm− 1 is decreased, confirming the 
attachment of CPTMS on the mesoporous MCM-41.

The FT-IR spectra of the chiral heterogeneous ligands 10 exhibit characteristic vibrational bands indicative of the presence of 
functional groups. These bands are typically observed at around 1700 cm− 1 and correspond to the stretching vibrations of C=N and 
C=O groups present in the oxazoline ligands. Broad bands around 3400 cm− 1 correspond to the N-H groups of the oxazoline. These 
bands are a clear indication of the successful immobilization of the oxazoline ligands on the MCM-41. It is worth noting that distinct 
bands in the ranges of 1000–1250 cm− 1 and 450-950 cm− 1 were observed in all of the materials analyzed [108,111].

The powder XRD pattern of the synthesized mesoporous MCM-41 showed the presence of four distinct peaks at low angle of 2θ. The 
peak at (1 0 0) was particularly striking, exhibiting a significantly higher intensity in comparison to the other peaks such as (1 1 0), (2 
0 0), and (2 1 0), which displayed relatively lower intensities [108,111] (Fig. 2).

These characteristic peaks collectively confirm the creation of a well-structured hexagonal mesoporous substance with a p6mm 
space group [112]. The XRD patterns of the Cl-MCM-41 and the chiral heterogeneous ligands 10 displayed a general decrease in 

Scheme 5. Direct conversion of the nitro group of amido-oxazolines 1 into amino group using H2, Pd/C.

Scheme 6. Immobilization of the aniline-oxazoline ligands 9 on mesoporous MCM-41.
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intensity of the peaks, potentially due to the contrast matching between the organic moieties that are integrated into the mesoporous 
channels of MCM-41 and the silica framework. However, the organic functionalization did not significantly alter the hexagonal 
structure of the channels. The lower intensity of OX-Ph-MCM-41 10a compared to OX-Bn-MCM-41 10b is likely attributed to a greater 
quantity of the aniline-oxazoline ligand 9a being immobilized on the MCM-41 than 9b.

The amounts of the immobilized the aniline-oxazoline ligands 9a and 9b on the MCM-41 were determined using thermogravimetric 
analysis (TGA) and CHN elemental analysis. The TGA diagrams showed that the chiral heterogeneous ligands 10a and 10b experienced 
significant weight loss between 150 and 600 ◦C, as illustrated in Fig. 3. Minor weight losses of around 1–2 wt% at temperatures below 
150 ◦C were due to the elimination of physically adsorbed water. Additionally, the DTA analysis revealed a two-step weight loss at 
around 380 ◦C and 555 ◦C as a result of the oxazoline decomposition. The findings confirmed that the aniline-oxazoline ligands 9a and 

Fig. 1. The FT-IR spectra of MCM-41, Cl-MCM-41, and chiral heterogeneous ligands 10.

Fig. 2. The XRD patterns of MCM-41, Cl-MCM-41, and chiral heterogeneous ligands 10.
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9b are covalently bonded to the MCM-41 and demonstrated thermal stability up to 380 ◦C. Furthermore, the CHN elemental analysis 
revealed that the amounts of ligands 9a and 9b attached on the MCM-41 are nearly 0.5 mmol/g and 0.3 mmol/g, respectively.

Fig. 4 displays scanning electron micrographs (SEM) of the MCM-41, the Cl-MCM-41 and the chiral heterogeneous ligands 10, 
aiming to examine potential morphological alterations. The analysis of the SEM images reveals that there are no noticeable differences 
in the size and morphology of the material before and after the immobilization of the aniline-oxazoline ligands 9.

Immobilization of the synthesized chiral ligands 9a and 9b on the MCM-41 was also confirmed using the EDX spectrum (Fig. 5). The 
presence of nitrogen and carbon elements serves as confirmation for the efficient immobilization of the ligands. It is worth noting, 
however, that the presence of chlorine suggests that there are still some unreacted linkers remaining.

The TEM micrograph of the chiral heterogeneous ligand 10a revealed the presence of a hexagonal structure, as shown in Fig. 6.
The specific surface areas (SBET) of the chiral heterogeneous ligands 10a and 10b were determined using the BET method. The pore 

diameter at the peaks of the pore size distributions (Dp) was derived from the adsorption branches of the isotherms, employing Barrett- 
Joyner-Halenda (BJH) method; and the total pore volumes (Vp) were obtained based on the nitrogen uptake amount at a p/p0 value of 
0.99.

The summarized data can be found in Table 1. It was observed that all of the parameters decreased from the MCM-41 to the Cl- 
MCM-41 and to the chiral heterogeneous ligands 10, suggesting pore blocking caused by the linker and oxazoline ligands over
loading. The chiral heterogeneous ligand 10a exhibited higher overloading compared to 10b, as previously confirmed through CHN 
and low-angle XRD analysis, which led to a decrease in specific surface area, lower total pore volumes, and narrower pore size 
distributions.

Fig. 7 presents the nitrogen adsorption-desorption isotherms of the chiral heterogeneous ligands 10a and 10b. The isotherms 
demonstrate a type IV behavior with H4 hysteresis loops, indicating the presence of a narrow slit mesoporous structure, as classified by 
IUPAC [113]. The heterogeneous materials 10 display two distinct capillary condensation steps at low and high relative pressures. In 
the case of mesoporous structure 10a, capillary condensation occurs within the range of approximately 0.01 < p/p0 < 0.30, and 
another condensation step is observed around 0.82 < p/p0 < 0.99. This structure exhibits an H4 hysteresis loop spanning from 
approximately p/p0 = 0.25 to 0.95. Conversely, mesoporous structure 10b demonstrates capillary condensations at nearly 0.01 < p/p0 
< 0.25 and another at approximately 0.90 < p/p0 < 0.99. Moreover, it displays an H4 hysteresis loop within the range of approximately 
p/p0 = 0.1 to 0.99. The pore size distribution curve, shown in Fig. 8, demonstrates a narrow distribution of pore sizes for mesoporous 
structure 10a.

2.4. Catalytic activity of the copper complexes of homogenous and heterogeneous amido-oxazoline ligands

2.4.1. Examination of the catalysts in the enantioselective Kharasch-Sosnovsky reaction
Based on our previous studies in the enantioselective Kharasch-Sosnovsky reaction, it has been firmly established that the inclusion 

of mesoporous additives has a profound influence on the overall outcomes, especially in terms of enantioselectivity [108,109,114]. 
Therefore, before studying the catalytic activity of the prepared heterogeneous catalysts, the homogeneous ones were investigated in 
the presence of mesoporous MCM-41 as an additive (Fig. 9).

To carry out the homogeneous reaction, cyclohexene was enantioselectively oxidized using t-butyl p-nitroperbenzoate 11a [96] in 
the presence of oxazoline ligands 1, 8, and 9, Cu(CH3CN)4PF6, a highly effective copper source for this transformation [96,108,109,
114] and a catalytic amount of phenyl hydrazine as a reducing agent to regenerate Cu(I) [96,108,114].

Based on Fig. 9, it can be inferred that the homogeneous catalysts with electron-withdrawing groups (EWG), such as NO2, and Br on 
the phenyl ring, exhibited higher enantioselectivity (Fig. 9, Ligands 1a-e). These results align with our previous research [96], which 
identified amido-oxazoline ligands containing a NO2 group as the most effective. In contrast, the catalysts with NH2, an 
electron-releasing group (ERG), displayed the lowest enantioselectivity and yield (Fig. 9, Ligands 9a and 9b), requiring three times the 
reaction time compared to the NO2-containing catalysts (Fig. 9, Ligands 1a-d). Catalysts with no substituent or an NHBoc group 
demonstrated efficiency lower than those with EWGs but higher than those with an NH₂ group (Fig. 9, Ligands 1f, 1g and 8b-d). It 
should be noted that the catalysts with a phenyl or benzyl group on the oxazoline ring outperformed those with i-propyl or i-butyl 

Fig. 3. The TGA of chiral heterogeneous ligands 10.
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substitutions (Pages S8 and S9, Supplementary Material).
Moreover, the experimental evaluation of other cyclic and acyclic olefins under these conditions provided results similar to our 

prior findings [96,98]. Following the above experiments, the efficacy of the prepared heterogeneous catalysts was evaluated using 
various peresters (as depicted in Fig. 10) under similar conditions.

It is noteworthy that while the homogeneous catalyst with the NH2 group produced the poorest results (Fig. 9, Ligands 9a and 9b), 
the corresponding immobilized catalysts on the MCM-41 demonstrated outstanding enantioselectivity and yield. Remarkably, the 
heterogeneous catalysts 10a-Cu(I) and 10b-Cu(I) gave even more favorable results than the homogeneous ones (Fig. 9 vs. Fig. 10).

A comparison of the efficiency of the heterogeneous catalysts 10a-Cu(I) and 10b-Cu(I) showed that while the use of heterogeneous 
catalyst 10a-Cu(I), containing phenyl groups at the oxazoline rings, generally gave the best results, it typically required a longer 
reaction time. In general, under optimized conditions, the conversion of cyclohexene to enantioenriched (S)-allylic ester using t-butyl 
p-nitroperbenzoate 11a in the presence of heterogeneous catalyst 10a-Cu(I) led to remarkable enantioselectivity of 86 % and a high 
yield of 92 % within a 48-h timeframe.

Furthermore, in line with our prior researches [96,108,109,114] employing peresters containing EWGs (Fig. 10, Xʹ =NO2, Cl) led to 
the formation of chiral allylic esters with higher enantioselectivity and yield in a shorter time compared to those with ERGs (Fig. 10, Xʹ 
= Me, OMe). In other words, there is a direct relationship between the strength of the EWGs on the perester and the enantioselectivity 
and yield of the reaction, meaning that an increase in the former leads to an improvement in the latter.

With optimized reaction conditions in hand, the generality of this protocol was investigated using other cyclic and acyclic olefins. 
The experimental data presented in Table 2 revealed that, under these conditions, both heterogeneous catalysts (10a-Cu(I) and 10b-Cu 

Fig. 4. SEM images of MCM-41, Cl-MCM-41, and chiral heterogeneous ligands 10.

Fig. 5. The EDX spectra of chiral heterogeneous ligands 10.
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(I)) exhibited good efficiency for the studied substrates. Notably, allylic oxidation of 1,5-cyclooctadiene (1,5-COD) yielded better 
results than other olefins (entries 7 and 8). This reaction proceeded with the shortest reaction time, producing the (S)-enantiomer of 
the allylic ester product with the highest enantioselectivity and yield in comparison to other olefin substrates. This behavior can be 
linked to the catalyst complex cavity, which can effectively accommodate the twist-boat conformation of 1,5-COD [115–117].

Fig. 6. TEM image of chiral heterogeneous ligand 10a.

Table 1 
Textural properties of MCM-41, Cl-MCM-41, and chiral heterogeneous ligands 10.

Sample SBET (m2/g)a Vp (cm3/g)b Dp (nm)c

MCM-41 1105 1.14 4.32
Cl-MCM-41 543 0.623 3.17
10a 229 0.188 2.40
10b 397 0.3903 2.93

a SBET is the surface area calculated from the BET equation.
b Vp is the pore volume determined from the adsorption branch of the isotherm at p/p0 = 0.99.
c Dp represents the pore diameter calculated using the BJH method.

Fig. 7. The nitrogen adsorption–desorption isotherms of chiral heterogeneous ligands 10 at 77 K.
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Additionally, consistent with our expectations [12,96,98,118], the cyclic substrates produced higher enantioselectivity and yield in 
a shorter reaction time compared to the acyclic ones (Table 2, entries 1–8 vs. 9–14). The observed remarkable differences between 
cyclic and acyclic olefins can be attributed to the steric congestion encountered by the cyclic reactants at the key intermediate stage of 

Fig. 8. Pore size distribution curve of chiral heterogeneous ligand 10a.

Fig. 9. Enantioselective allylic oxidation of cyclohexene using the chiral homogeneous oxazoline-copper(I) complexes.
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Fig. 10. Comparison of the efficiency of the chiral heterogeneous catalysts using different peresters in the enantioselective allylic oxidation of 
cyclohexene.

Table 2 
Enantioselective copper catalyzed allylic oxidation of olefins using heterogeneous oxazoline based ligands.

Entry Olefin Heterogeneous Ligand Allylic Ester Time (h) Yield (%) ee (%)

1 Cyclopentene 10a 13 55 84 68
2 Cyclopentene 10b 13 52 77 71
3 Cycloheptene 10a 14 65 86 77
4 Cycloheptene 10b 14 60 90 68
5 Cyclooctene 10a 15 72 72 62
6 Cyclooctene 10b 15 72 65 65
7 1,5-COD 10a 16 34 95 88
8 1,5-COD 10b 16 34 95 83
9 1-Hexene 10a 17 132 42 28
10 1-Hexene 10b 17 108 35 33
11 1-Octene 10a 18 148 30 27
12 1-Octene 10b 18 148 33 22
13 1-Allyl benzene 10a 19 156 37 32
14 1-Allyl benzene 10b 19 156 29 26
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the reaction. In contrast, acyclic olefins exhibit higher flexibility, allowing them to easily overcome the steric hindrance caused by the 
oxazoline ring by adopting a wide range of geometries [12].

Based on literature [119–127], the proposed mechanism of the reaction involves the complexation of the heterogeneous oxazoline 
based ligands 10 with Cu(I) to form a chiral catalyst. It is hypothesized that the chiral catalyst predominantly coordinates with 
cyclohexene, resulting in the formation of complex I (Scheme 7) [128].

The addition of perester 11 initiates the reaction through a catalytic cycle that induces changes in the copper oxidation state. In the 
first step, cyclohexene undergoes substitution by perester 11. Subsequently, an oxidative-addition step occurs where the concerted 
cleavage of the oxygen-oxygen bond in perester 11 generates a crypto-tert-butoxyl radical and oxidizes Cu(I) to Cu(III). Following this, 
cyclohexene once again coordinates with the Cu(III). Then, in the rate-determining step, an intramolecular process takes place wherein 
the tert-butoxy group bonded to the copper complex selectively removes a prochiral allylic hydrogen from cyclohexene. Consequently, 
the elimination of tert-butyl alcohol leads to the formation of a key intermediate. A subsequent attack by carboxyl on the Si-face of 
cyclohexenyl triggers a pericyclic rearrangement involving the migration of the π-bond and stereospecific reductive-elimination step. 
Eventually, upon substitution with cyclohexene, Cu(I)-cyclohexene is regenerated, resulting in the release of the enantioenriched (S)- 
allylic ester 12.

2.4.2. Examination of the catalysts in the enantioselective Henry reaction
To further investigate the effectiveness of the prepared heterogeneous catalysts, they were also examined in the enantioselective 

Henry reaction (Table 3) [77,129,130]. Initially, the reaction between p-chloro benzaldehyde and nitromethane was conducted at 
room temperature in toluene, using Et3N as a base, in the presence of a catalytic amount of the heterogeneous ligand containing phenyl 
group (10a) and Cu(CH3CN)4PF6 (Table 3, entry 1). The reaction under these conditions resulted in the production of enantioenriched 
(S)-β-nitroalcohol 20a with low yield and enantioselectivity, and the reaction time was lengthy, taking 40 h to complete (Pages S9 and 
S10, and Figs. S28-S32, Supplementary Material).

To improve the yield and enantioselectivity of the product, various factors were investigated in this reaction, including the effects 
of solvent, base, temperature, Cu salt, and the heterogeneous ligand. By testing the reaction in polar and non-polar solvents, it was 
found that protic solvents, especially EtOH, enhanced both enantioselectivity and yield (Table 3, entries 1–7). However, the most 
favorable results were obtained under solvent-free conditions, where the reaction time decreased, and the enantioselectivity and yield 
of the chiral product were significantly improved (Table 3, entry 8).

When testing various bases, including tetramethylguanidine, N, N-dimethylaniline, N-methyl piperazine, piperazine, and pyridine, 
it was found that employing Et3N as the base yielded the most favorable results [131] (Table 3, entries 9–13). Subsequently, different 
quantities of Et3N were used in the reaction to ascertain the optimal amount (Table 3, entries 14–19). The experimental data revealed 
that decreasing the amount of Et3N to 0.05 mmol had a significant positive impact on the reaction. Under these conditions, the reaction 
achieved a substantial increase in the yield, up to 90 %, along with an improvement in the enantioselectivity, which rose to 44 %. 
Additionally, the reaction time was notably shortened to just 10 h (Table 3, entry 17).

Further investigation revealed that the reaction temperature also has a significant impact on the outcomes of the reaction. While 
decreasing the temperature resulted in a slight improvement in enantioselectivity, it also led to reduced yield and a longer reaction 
time. Conversely, increasing the temperature of the reaction resulted in a shorter reaction time but, unfortunately, at the expense of a 
noticeable decrease in both yield and enantioselectivity (Table 3, entries 20–22).

Testing different copper salts showed that Cu(CH3CN)4PF6 was the most effective (Table 3, entries 17 vs 23–28). Other Cu (I) and 
Cu (II) salts resulted in a slight decrease in yield, along with poor enantioselectivity and longer reaction times. It is worth noting that, in 
the absence of a Cu salt, the enantioselectivity was very low, while the yield and reaction time remained acceptable (Table 3, entry 29). 
It was found that increasing the ratio of the ligand to Cu(CH3CN)4PF6 had a marginal positive effect on the enantioselectivity (Table 3, 
entry 30). However, this improvement came at the cost of a lower yield and a longer time. Experimental outcomes were inferior when 
the ratio of ligand to Cu salt was reduced (Table 3, entries 31–33).

Utilizing various aromatic aldehyde derivatives under optimal conditions indicated that the presence of an electron-withdrawing 
group on the aromatic aldehyde improved the results, whereas electron-donating groups greatly diminished the results (Table 3, 
entries 17, 36 vs. 34, 35). It should be noted that neither the utilization of the heterogeneous catalyst containing a benzyl group nor the 
homogeneous catalysts containing nitro groups led to any significant enhancement in the yield or enantioselectivity of the corre
sponding product (Table 3, entries 37–41).

Considering the aforementioned optimal results, the nitroethane substrate was also investigated in the asymmetric Henry reaction 
utilizing both chiral homogeneous and heterogeneous ligands, Cu(CH3CN)4PF6 and Et3N (Table 4). It is worth noting that this reaction 
yielded two diastereomeric mixtures, syn (1S, 2S) and anti (1S, 2R), with the resulting products obtained in high yield, moderate 
enantioselectivity, and diastereoselectivity (de = syn:anti), with the predominant syn diastereomer [6,30,31,132–137].

Similar to the nitromethane reaction, the heterogeneous catalysts showed better results than the homogeneous ones. Moreover, 
among the homogeneous catalysts, 1a exhibited the best efficiency. (Table 4, entries1-4). Regarding the heterogeneous catalysts, while 
the use of the heterogeneous catalyst containing a benzyl group resulted in the corresponding product in a slightly shorter reaction 
time and favorable enantioselectivity, the yield and diastereoselectivity were actually better when the heterogeneous catalyst con
taining a phenyl group was used (Table 4, entry 5 vs. 6).

Lowering the temperature could improve both de and ee; however, this improvement comes at the expense of a decrease in the yield 
and a longer reaction time (Table 4, entries 7 and 8). Conversely, increasing the temperature had an inverse effect (Table 4, entry 9).

Furthermore, similar to the above results, examination of different substituted aromatic aldehydes revealed that products with 
electron-withdrawing groups could be obtained with higher yields, ees and des (Table 4, entries 11–13).
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The catalytic cycle of the enantioselective Henry reaction, as proposed in Scheme 8, begins with the deprotonation of the nitro
alkane by Et3N at the α-carbon position, resulting in the formation of a nitronate anion, which then coordinates to the oxazoline copper 
complex.

Subsequently, the aldehyde coordinates to the copper atom, and in a rationalized transition state based on the obtained products 
(TS1), the nitronate attacks the aldehyde on the re face, predominantly leading to the formation of the chiral syn-(1S, 2S)-β-nitro
alcohol isomer. The increased syn:anti ratio of the products can be attributed to the steric hindrance between the methyl group in the 
nitronate anion and the aromatic group of the aldehyde in the transition state (TS1 vs. TS2) [77,79,94,136,137].

Scheme 7. Proposed mechanism of the enantioselective allylic oxidation of cyclohexene.
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3. Catalyst reusability

The reusability of chiral heterogeneous catalyst 10a in both asymmetric reactions was evaluated under optimal conditions. After 
completion, the catalyst was filtered, washed with CH2Cl2, and the resulting precipitate was dried at 50 ◦C. The recovered catalyst was 
then used for the next run of the same reaction under similar conditions. Repeating this process revealed that the activity and 
enantioselectivity of the heterogeneous catalyst remained relatively constant even after four consecutive cycles, demonstrating its 
potential for long-term application and reduced environmental impact.

Fig. 11 depicts the results for the enantioselective allylic oxidation of cyclohexene in the optimum conditions over five sequential 
cycles. Moreover, the XRD pattern (Fig. S33, Supplementary Material) of the catalyst after four cycles showed that the structure of the 
recycled catalyst did not change noticeably.

Table 3 
Optimizing the enantioselective Henry reaction of nitromethane under various conditions.

Entry X Base (mmol) Ligand Cu salt Solvent T (◦C) Time (h) Yield (%) ee (%)

1 Cl Et3N (1) 10a (25) Cu(CH3CN)4PF6 Toluene r.t. 40 42 20
2 Cl Et3N (1) 10a (25) Cu(CH3CN)4PF6 CH2Cl2 r.t. 33 53 13
3 Cl Et3N (1) 10a (25) Cu(CH3CN)4PF6 THF r.t. 22 58 22
4 Cl Et3N (1) 10a (25) Cu(CH3CN)4PF6 Dioxane r.t. 20 63 27
5 Cl Et3N (1) 10a (25) Cu(CH3CN)4PF6 MeCN r.t. 48 20 16
6 Cl Et3N (1) 10a (25) Cu(CH3CN)4PF6 EtOH r.t. 32 71 35

7 Cl Et3N (1) 10a (25) Cu(CH3CN)4PF6 MeOH r.t. 37 55 30
8 Cl Et3N (1) 10a (25) Cu(CH3CN)4PF6 – r.t. 15 70 40
9 Cl TMG (1)a 10a (25) Cu(CH3CN)4PF6 – r.t. 20 68 24
10 Cl DMA (1)b 10a (25) Cu(CH3CN)4PF6 – r.t. 14 23 32
11 Cl Piperazine (1) 10a (25) Cu(CH3CN)4PF6 – r.t. 36 32 13
12 Cl NMPZ(1)c 10a (25) Cu(CH3CN)4PF6 – r.t. 30 25 20
13 Cl Pyridine (1) 10a (25) Cu(CH3CN)4PF6 – r.t. 48 43 32
14 Cl Et3N (0.5) 10a (25) Cu(CH3CN)4PF6 – r.t. 16 72 36
15 Cl Et3N (0.25) 10a (25) Cu(CH3CN)4PF6 – r.t. 12 80 33
16 Cl Et3N (0.1) 10a (25) Cu(CH3CN)4PF6 – r.t. 12 83 38
17 Cl Et3N (0.05) 10a (25) Cu(CH3CN)4PF6 – r.t. 10 90 44
18 Cl Et3N (0.025) 10a (25) Cu(CH3CN)4PF6 – r.t. 18 65 40
19 Cl Et3N (0.01) 10a (25) Cu(CH3CN)4PF6 – r.t. 30 48 33
20 Cl Et3N (0.05) 10a (25) Cu(CH3CN)4PF6 – 0 41 53 51
21 Cl Et3N (0.05) 10a (25) Cu(CH3CN)4PF6 – 40 8 50 8
22 Cl Et3N (0.05) 10a (25) Cu(CH3CN)4PF6 – Reflux 8 10 0
23 Cl Et3N (0.05) 10a (25) Cu2O – r.t. 24 70 20
24 Cl Et3N (0.05) 10a (25) CuCl – r.t. 16 75 18
25 Cl Et3N (0.05) 10a (25) Cu(OAc)2 – r.t. 12 86 32
26 Cl Et3N (0.05) 10a (25) Cu(NO3)2 – r.t. 12 78 26
27 Cl Et3N (0.05) 10a (25) CuSO4 – r.t. 24 82 12
28 Cl Et3N (0.05) 10a (25) CuCl2 – r.t. 10 85 15
29 Cl Et3N (0.05) 10a (25) – – r.t. 14 70 6
30 Cl Et3N (0.05) 10a (30) Cu(CH3CN)4PF6 – r.t. 13 79 48
31 Cl Et3N (0.05) 10a (20) Cu(CH3CN)4PF6 – r.t. 10 85 33
32 Cl Et3N (0.05) 10a (15) Cu(CH3CN)4PF6 – r.t. 20 72 15
33 Cl Et3N (0.05) 10a (10) Cu(CH3CN)4PF6 – r.t. 24 66 5
34 H Et3N (0.05) 10a (25) Cu(CH3CN)4PF6 – r.t. 20 60 21
35 OMe Et3N (0.05) 10a (25) Cu(CH3CN)4PF6 – r.t. 27 57 23
36 NO2 Et3N (0.05) 10a (25) Cu(CH3CN)4PF6 – r.t. 5 95 50
37 NO2 Et3N (0.05) 10b (25) Cu(CH3CN)4PF6 – r.t. 5 95 43
38 NO2 Et3N (0.05) 1a (0.055) Cu(CH3CN)4PF6 – r.t. 2.5 85 35
39 NO2 Et3N (0.05) 1b (0.055) Cu(CH3CN)4PF6 – r.t. 2.5 90 30
40 NO2 Et3N (0.05) 1c (0.055) Cu(CH3CN)4PF6 – r.t. 4 85 25
41 NO2 Et3N (0.05) 1d (0.055) Cu(CH3CN)4PF6 – r.t. 4 80 28

a Tetramethylguanidine.
b N,N-dimethylamine.
c N-methyl piperazine.
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4. Conclusions

In summary, we successfully prepared and characterized a class of recyclable heterogeneous oxazoline-based ligands by immo
bilizing synthesized chiral amido-oxazoline on MCM-41 mesoporous silica. The performance of these chiral heterogeneous ligands was 

Table 4 
Effect of reaction conditions on ee and de in the enantioselective Henry reaction of nitroethane.

Entry X Ligand T (◦C) T (h) Yield (%) syn:anti (%) ee (%)

1 Cl 1a rt 24 85 60:40 27:22
2 Cl 1b rt 20 77 63:37 17:25
3 Cl 1c rt 30 75 43:57 11:23
4 Cl 1d rt 30 88 50:50 19:14
5 Cl 10a rt 12 92 70:30 30:25
6 Cl 10b rt 10 83 67:33 42:33
7 Cl 10a 0 27 70 73:27 40:33
8 Cl 10a − 10 45 46 76:24 50:43
9 Cl 10a 40 8 95 50:50 13:8
10 Cl - rt 36 75 35:65 0
11 OMe 10a rt 18 75 62:38 17:23
12 H 10a rt 20 80 70:30 29:20
13 NO2 10a rt 5 95 78:22 43:37

Scheme 8. Plausible mechanism of the enantioselective Henry reaction.
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evaluated in two enantioselective reactions: the allylic oxidation of olefins and the Henry reaction. In both cases, heterogeneous 
catalyst outperformed their homogeneous counterparts in terms of enantioselectivity. Significantly, the enantioselective Henry re
action proceeded efficiently under solvent-free conditions, aligning with green chemistry principles. Additionally, the use of nitro
ethane in the Henry reaction yielded predominantly the syn diastereomer. Future investigations will explore immobilization on 
alternative supports such as SBA-15 and MOFs, with the aim of optimizing reaction conditions and broadening the scope of these 
heterogeneous catalysts.
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