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A B S T R A C T   

Objective: The incidence of Crohn’s disease (CD) and rheumatoid arthritis (RA) co-morbidity, as 
well as the number of individuals affected, is on the rise due to their shared molecular and cellular 
factors. This study aimed to identify potential therapeutic targets and medicines for comorbid CD 
and RA. 
Methods: We integrated single-cell RNA sequencing, Mendelian randomization, and colocalization 
analysis results from public databases to analyse immune cell subgroups in CD and RA patients 
and identify candidate therapeutic targets. We further screened potential medicines for the 
identified candidate targets using the Comparative Toxicogenomics Database (CTD) and molec-
ular docking and molecular dynamics simulations. 
Results: The proportion of CD8 effector memory T cells (Tem) was consistently elevated in the 
peripheral blood mononuclear cells (PBMCs) of both CD and RA patients. MYBL1 had a causal 
effect on the onset of both CD (OR = 1.23; 95 % CI, 1.05–1.45; P = 0.046) and RA (OR = 1.45; 95 
% CI, 1.14–1.85; P = 0.04). Four potential therapeutic molecules were retrieved from the CTD 
database, among which tretinoin (docking score: − 6.3 kcal/mol) showed the best potential. 
Conclusion: Our comprehensive analysis suggests that CD8 Tem cells are a key cell group in co-
morbid RA and CD and that MYBL1 has a causal effect. Tretinoin was identified as a potential 
targeted therapeutic drug, which is of great clinical research value.   

1. Introduction 

Crohn’s disease (CD) and rheumatoid arthritis (RA) are both chronic autoimmune diseases that can result in debilitating 
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complications affecting the gastrointestinal tract and joints, respectively [1,2]. Over the past 30 years, the incidence of both diseases 
has steadily increased with projections for continued rise [3,4]. These diseases share common pathogenic mechanisms, including 
dysregulated immune responses and genetic predisposition. Importantly, a growing body of research indicates a high likelihood of 
comorbidity between these two disorders. Studies have shown that patients with CD demonstrate a 3.35 times higher risk of developing 
RA compared to individuals without CD [5]. Meanwhile, RA is associated with an 11 % increased risk of CD [6]. The increasing 
prevalence and burden of this comorbidity highlight the urgent need for effective therapeutic strategies, which we aim to address in 
this study. 

Abbreviations (if any) 

ANXA1 annexin A1 
BH Benjamini-Hochberg 
CD crohn’s disease 
CI confidence interval 
CT control 
CTD comparative toxicogenomics database 
CTSW contrary cathepsin W 
DC dendritic cell 
DEGs differentially expressed genes 
DMAIDs anti-inflammatory bowel disease medicines 
DMARDs disease-modifying anti-rheumatic medicines 
EBI European Bioinformatics Institute 
eQTL: expression quantitative trait loci 
FKBP11 FK506 binding protein 11 
GBP5 guanylate binding protein 5 
GEO gene expression omnibus 
GO gene ontology 
GWAS genome-wide association study 
GZMB granzyme B 
GZMH granzyme H 
ITGA4 integrin subunit alpha 4 
IVW inverse variance-weighted 
KEGG Kyoto Encyclopedia of Genes and Genomes 
KLRD1 lectin-like receptor D1 
MIAT myocardial infarction-associated transcript 
MIF migration inhibitory factor 
MM/GBSA molecular mechanics/generalized born surface area 
MR mendelian randomization 
MRPL10 mitochondrial ribosomal protein L10 
MYBL1 myb protooncogene like 1 
NK natural killer 
NSAIDs nonsteroidal anti-inflammatory medicines 
OR odds ratio 
PBMCs peripheral blood mononuclear cells 
PCA principal component analysis 
PTPN4 protein tyrosine phosphatase nonreceptor type 4 
RA rheumatoid arthritis 
RMSD root mean square deviation 
RMSF root mean square fluctuation 
RNA-seq transcriptome sequencing 
scRNA-seq single-cell RNA sequencing 
SNP single nucleotide polymorphism 
SUN2 sad1 and UNC84 domain containing 2 
Tef effector T cells 
Tem effector memory T cells 
TIGIT T cell immunoreceptor with Ig and ITIM domains 
Tn naive T cells 
TNFAIP3 tumor necrosis factor alpha-induced protein 3 
UMAP uniform manifold approximation and projection  
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Presently, pharmaceutical interventions serve as the first line of defence against these two diseases, with clinical remission as the 
primary goal. In recent years, the use of anti-inflammatory bowel disease medicines (DMAIDs) and disease-modifying anti-rheumatic 
medicines (DMARDs) has shown favourable outcomes in the treatment of CD and RA [7,8]. However, in populations with comorbid CD 
and RA, there are limited safe and effective therapeutic alternatives. While certain immunosuppressants and biologic agents 
demonstrate therapeutic efficacy in both CD and RA, their long-term use may increase susceptibility to infections and tumors. 
Moreover, despite the significant potency of these biologic agents, they are expensive and also may trigger severe allergic reactions. 
Furthermore, some commonly used medicines for the treatment of RA, such as penicillamine, gold preparations, and nonsteroidal 
anti-inflammatory medicines (NSAIDs), may cause various gastrointestinal complications or even worsen CD [9]. 

Peripheral blood mononuclear cells (PBMCs) play a pivotal role in modulating the body’s immune response. Interacting with 
PBMCs can effectively modulate the body’s immune response and inhibit inflammatory responses, making them a highly promising 
therapeutic target. In recent years, an increasing number of studies have focused on investigating the significance of PBMCs in 
diagnosing, monitoring disease activity, and evaluating treatment response [4]. Pu demonstrated that the differentiation and devel-
opment of distinct PBMC subpopulations are crucial for maintaining immunological homeostasis, suppressing inflammatory responses, 
and improving the prognosis of CD [10]. Recent studies have shown that monocytes in PBMCs can migrate to the synovial tissue in 
response to chemokines, differentiate into macrophages, and secrete proinflammatory factors that promote inflammatory responses in 
RA [11]. Therefore, conducting an in-depth examination of the role of PBMCs in CD and RA progression could potentially lead to the 
discovery of more effective interventions aimed at improving patients’ quality of life. 

While traditional methods including observational studies and animal models have been instrumental in disease research, they are 
often limited by confounding factors and lack the capability to address cell heterogeneity. Single-cell RNA sequencing (scRNA-seq) has 
emerged as a potent tool that enables an in-depth exploration of immune cell subpopulations within PBMCs, thereby unveiling the 
complexity of biological systems. When combined with scRNA-seq, several complementary technologies greatly help reveal the mo-
lecular mechanisms of complex diseases. Expression quantitative trait loci (eQTL) analysis aids in understanding the genetic regulation 
of gene expression, while Mendelian randomization helps to determine the causal relationships between genes and diseases [12,13]. 

Fig. 1. Study design for identification of genes causally associated with CD and RA.  
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Colocalization analysis assists in identifying common genetic variants associated with multiple traits or diseases [14]. Transcriptome 
sequencing (RNA-seq) allows for a comprehensive analysis of gene expression patterns. Molecular docking and molecular dynamics 
simulation are helpful in studying the interactions between drug targets and ligands and the resulting conformational changes. Despite 
these advances, comprehensive understanding of comorbidities, particularly between CD and Rheumatoid RA, remains a significant 
gap in literature. This study addresses this issue by integrating advanced technologies to analyse PBMC sequencing data, aiming to 
identify potential therapeutic targets and treatments for comorbid CD and RA. The study workflow is illustrated in Fig. 1. 

2. Materials and methods 

2.1. Data source and preparation 

The scRNA-seq data (10X Genomics data) from PBMC of CD (GSE163314) and RA (GSE159117) patients were initially retrieved 
and downloaded from the Gene Expression Omnibus (GEO) database. Detailed information about these datasets can be found in 
Table 1. To analyse the scRNA-seq data, an initial screening process was conducted using the Seurat R package [15]. During this 
screening, only genes expressed in a minimum of 3 cells and cells expressing at least 200 genes were retained. The PercentageFea-
tureSet function was utilized to assess the ratio of mitochondrial DNA to rRNA. Additionally, we selected cells with feature counts 
ranging from 100 to 4000 and excluded cells with mitochondrial gene counts exceeding 10 %. Ultimately, our analysis included a total 
of 35,282 single-cell data points, comprising 7428 from normal controls (CT), 17,690 from CD patients and 10,164 from RA patients. 

The eQTL data used in this study are derived from an extensive dataset made publicly accessible by Vosa et al. [16]. The genetic 
variants that exhibited a substantial association with CD were obtained from a comprehensive genome-wide association study (GWAS) 
carried out by the European Bioinformatics Institute (EBI), involving 5956 CD patients and 14,927 controls (CTs) [17]. Similarly, the 
genetic variants significantly associated with RA were extracted from another large GWAS that was also conducted by the EBI and 
encompassed a cohort of 13,838 individuals diagnosed with RA and 33,742 CTs [18]. To enhance the credibility of our results, we 
performed an external validation utilizing GWAS provided by the University of Bristol, which comprised 17,897 CD patients and 33, 
977 CTs [17]. 

2.2. Sequencing data analysis 

First, we applied log normalization to normalize the gene expression of individual cells. Subsequently, we identified 2000 highly 
variable genes using the FindVariableFeatures function. We then performed principal component analysis (PCA) to downscale the 
data, effectively addressing batch effects between samples by applying the Harmony method. Next, we utilized the uniform manifold 
approximation and projection (UMAP) nonlinear dimensionality reduction technique and visualized the results through the DimPlot 
function. We repeated these steps after extracting T-cell clusters from PBMCs. We employed the Slingshot package to infer cell lineage 
and pseudotemporal relationships [19]. Additionally, the CellChat package was utilized to infer intercellular communication and 
identify significant pathways based on gene expression interactions, signalling ligands, receptors, and cofactors [20]. Then, highly 
differentially expressed genes (DEGs) (at least 2-fold) in CD8 Tem cells relative to other cells were identified using the FindMarkers 
function. Finally, GO and KEGG enrichment analysis of genes specifically highly expressed in the screened CD8 Tem cells was per-
formed using the clusterProfiler package [21]. 

2.3. Mendelian randomization analysis and Bayesian colocalization analysis 

In this study, we conducted MR analysis of the DEGs identified through single-cell analysis using the “TwoSampleMR” package. 
Only genes with significant eQTL associations (P < 5 × 10− 8) were considered, using CD and RA as outcome indicators. Furthermore, 
phenotypic scanning was performed using the “phenoscanner”, and SNPs associated with known risk factors for CD or RA were 
excluded. When a given gene contained only one eQTL, the Wald ratio was employed. Inverse variance-weighted MR (MR-IVW) was 
used as multiple genetic instrumental variables were present, and heterogeneity analysis was performed. SNPs in the exposure and 
outcome GWAS were directionally harmonized and Steiger filtered. Subsequently, common causative genes of CD and RA were 
selected for reverse causality analysis. 

In addition, Bayesian colocalization analysis was employed using the “coloc” package to evaluate the correlation between the two 
traits. And, determined from previous articles, when PPH_4 > 80 % was defined as the evidence of colocalization of genes [12]. 

Table 1 
Detailed information about the data.  

ID Type Descriptive 

GSM4976997 scRNA-seq scRNA-seq for PBMC from healthy control 
GSM4977001 scRNA-seq scRNA-seq for PBMC from healthy control 
GSM4976999 scRNA-seq scRNA-seq for PBMC from CD patient 
GSM4977003 scRNA-seq scRNA-seq for PBMC from CD patient 
GSE159117 scRNA-seq scRNA-seq for PBMC from RA patient 
ebi-a-GCST003044 GWAS Including 5956 CD cases and 21,770 population controls of European descent with 110,583 SNPs. 
ebi-a-GCST005569 GWAS Including 11,475 RA cases and 15,870 controls of European descent with 129,464 SNPs.  
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2.4. Role of pathogenic genes at the scRNA-seq 

To investigate the involvement of pathogenic genes in T cells, we initially conducted weighted kernel density estimation using the 
Nebulosa package. This analysis allowed us to determine the densities and weights of disease-causative genes across different T cell 
subpopulations. Subsequently, GeneSwitches was employed to calculate the switching probabilities of genes over pseudo time, which 
provided insights into the activation and repression patterns of genes over their developmental trajectories. Based on the above an-
alyses, T cell subpopulations exhibiting elevated levels of pathogenic genes in both CD and RA were classified according to the 
switching behaviour of the pathogenic genes as positive gene populations or negative cell populations. Subsequently, the intercellular 
communication and metabolic activities between these cell populations were further investigated with the aim of revealing their 
functional interactions. 

2.5. Drug prediction 

We used MYBL1, CD, and RA as keywords to construct the disease–gene–drug linkage network using the Comparative Tox-
icogenomics Database (CTD) and screened for drugs targeting candidates that play key roles in disease development [22]. Further-
more, the structures of small molecule drugs and targets were retrieved from the PDB and AlphaFold protein structure database, and 
molecular docking between the two was performed using AutoDock software [23,24]. Subsequently, molecular dynamics simulation of 
the small molecule–protein complexes was carried out using GROMACS software with energy minimization and simulation times up to 
100 ns, and the root mean square deviation (RMSD), root mean square fluctuation (RMSF), and binding free energy between the 
protein and the small molecule were calculated [25,26]. 

2.6. Statistical analysis 

All statistical analyses were executed in R (version 4.3.0). The Wilcoxon test was employed as the primary method for assessing 
differences in gene expression of sequencing data. In MR studies, multiple comparisons were rigorously controlled using the 
Benjamini-Hochberg (BH) procedure. The MR effect size was expressed using odds ratio (OR) with a 95 % confidence interval (95 % 
CI). 

3. Results 

3.1. Screening unique cell populations and DEGs in scRNA-seq 

First, we identified five major cell types from the PBMCs of CT, CD, and RA patients based on marker genes such as MS4A1, PPBP, 

Fig. 2. scRNA-seq analysis in the PBMC of CT, RA and CD patients. (A) UMAP plot and proportion of distinct cell subsets in PBMC; (B) UMAP plot 
and proportion of various T cell subgroups; (C) Pseudotime analysis of T cells inferred by Slingshot; (D) Intercellular ligand–receptor prediction 
among CD8 Tem and other PBMC cells revealed by CellChat in CD patient; (E) Intercellular ligand–receptor pre-diction among CD8 Tem and other 
PBMC cells revealed by CellChat in RA patient; (F) GO enrichment analysis of specifically highly expressed genes in CD8 Tem; (G) KEGG pathway 
enrichment of specifically highly expressed genes in CD8 Tem. 
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FCER1A, GNLY, CD3E, and CD14: natural killer (NK) cells, T cells, monocytes, B cells, and dendritic cells (DCs). Among them, T cells 
were the most prevalent in PBMCs, and their proportion increased significantly in the disease groups (Fig. 2A). Therefore, we focused 
on T cells for further classification. According to previous research by Zhang Zemin’s team, T cells can be categorized into CD4 naive T 
cells (Tn), CD4 effector T cells (Tef), CD8 Tn cells, CD8 effector memory T cells (Tem), and NK and T cells [27]. We found that the 
proportion of CD8 Tem cells was significantly increased in both diseases (Fig. 2B). The results of T cell lineage analysis and pseudotime 
inference are depicted in Fig. 2C, where all trajectories pass through CD8 Tem cells, suggesting an active proliferation phase of CD8 
Tem cells during the development of both diseases. As shown in Fig. 2D, CD8 Tem cells interact with four other cell types via four 
signalling pathways, with macrophage migration inhibitory factor (MIF) exhibiting the strongest outward signalling in CD patients. 
Fig. 2E illustrates that CD8 Tem cells interact with five other cell types in RA patients through five signalling pathways, again with 
strong outward signalling via the MIF pathway. However, compared to those in CD patients, CD8 Tem cells in individuals with RA did 
not show an association with CD8 Tn cells but could regulate NK cells as well as their own population. We collected and organized a 
total of 138 DEGs in CD8 Tem cells (Supplementary Table 1). Subsequently, we conducted GO and KEGG pathway enrichment analyses 
of the DEGs. The GO enrichment analysis revealed significant involvement in various biological processes, including lymphocyte 
differentiation, T cells differentiation, and immune activation. Cellular components included the plasma membrane signalling receptor 
complex, cytoplasmic side of the membrane, and cytoplasmic side of the plasma membrane. The associated molecular functions 
included protein self-association, protein tyrosine phosphatase activity, and MHC protein binding, as shown in Fig. 2F. Furthermore, 
the KEGG pathway enrichment analysis indicated strong associations with pathways such as the T cell receptor pathway, NK cell 
receptor pathway, and MHC protein binding. Notably, the analysis revealed enrichment in the inflammatory bowel disease-related 
pathway, aligning with the purpose of our research (Fig. 2G). 

3.2. Screening the DEGs for comorbidity-causing genes 

The results of the genetic variation instrument variables for DEGs, variable harmonization, and Steiger filtering are presented in 
Supplementary Table 2, ensuring alignment between the exposure and outcome instrumental variables. After performing BH 
correction, a total of 12 gene-CD pairs were obtained (Fig. 3A, Fig. 4A and Supplementary Table 3). Of these, four demonstrated a 
protective effect on disease development, including annexin A1 (ANXA1, OR = 0.53; 95%CI, 0.43–0.66; P = 5.39E− 07), granzyme H 
(GZMH, OR = 0.53; 95%CI, 0.41–0.68; P = 1.20E− 05), myocardial infarction-associated transcript (MIAT, OR = 0.43; 95%CI, 
0.31–0.58; P = 1.49E− 06), and T cell immunoreceptor with Ig and ITIM domains (TIGIT, OR = 0.63; 95%CI, 0.48–0.82; P = 0.004). 
Conversely, the remaining eight exacerbate disease progression, including guanylate binding protein 5 (GBP5, OR = 1.43; 95%CI, 
1.26–1.62; P = 5.39E− 07), integrin subunit alpha 4 (ITGA4, OR = 1.14; 95%CI, 1.03–1.27; P = 0.046), mitochondrial ribosomal 
protein L10 (MRPL10, OR = 1.11; 95%CI, 1.03–1.19; P = 0.022), myb proto-oncogene like 1 (MYBL1, OR = 1.23; 95%CI, 1.05–1.45; P 
= 0.046), protein tyrosine phosphatase non-receptor type 4 (PTPN4, OR = 2.07; 95%CI, 1.58–2.71; P = 1.49E− 06), sad1 and UNC84 
domain containing 2 (SUN2, OR = 1.07; 95%CI, 1.02–1.13; P = 0.04), syne-2 (SYNE2, OR = 2.37; 95%CI, 1.72–3.26; P = 1.49E− 06) 
and tumor necrosis factor alpha-induced protein 3 (TNFAIP3, OR = 1.41; 95%CI, 1.15–1.72; P = 0.06). Additionally, the P values of 
the MR analysis results for RA were also adjusted, and 5 causal genes remained (Figs. 3B and 4B and Supplementary Table 3), among 
which overexpression of FK506 binding protein 11 (FKBP11, OR = 5.01; 95%CI, 2.95, 8.5; P = 1.67E− 07) and MYBL1 (OR = 1.45; 
95%CI, 1.14–1.85; P = 0.04) increased the risk of RA, while on the contrary cathepsin W (CTSW, OR = 0.33; 95%CI, 0.21–0.52; P =
6.57E-05), granzyme B (GZMB, OR = 0.44; 95%CI, 0.29, 0.69; P = 0.005) and killer cell lectin-like receptor D1 (KLRD1, OR = 0.35; 
95%CI, 0.22–0.57; P = 0.001) reduced the associated risk. Both MR results revealed that MYBL1 is a pathogenic gene shared between 
CD and RA. Meanwhile, no heterogeneity was detected for the genes analysed in the primary analysis (Supplementary Table 4). 

Subsequently, since MYBL1 is a common causative gene for both CD and RA, bidirectional MR analysis was conducted for MYBL1 

Fig. 3. MR results for DEGs and the risk of CD and RA. Volcano plots of the MR results for DEGs on the risk of CD (A) and RA (B), re-spectively. The 
size of the points on the graph is determined by the PVE value. Dashed horizontal black line corresponded to ad just P = 0.05 (BH). ln: natural 
logarithm; PVE: proportion of variance explained. 
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individually and in relation to comorbidities, revealing no evidence of a causal effect between disease and MYBL1 (Supplementary 
Table 5). However, phenotypic scanning identified a between MYBL1 (rs1060242) and daytime napping (Supplementary Table 6). 
Unexpectedly, however, the Bayesian colocalization analysis showed that MYBL1 did not share genetic variants with CD (PPH_4 =
0.199) and RA (PPH_4 = 0.384), as detailed in Fig. 5 and Supplementary Table 7. 

3.3. Role of MYBL1 in CD8 Tem 

As shown in Fig. 6A, MYBL1 gene expression in PBMCs occurs predominantly in CD8 Tem cells. During the maturation process of 
CD8 Tem cells, MYBL1 gradually becomes downregulated, leading us to categorize them into MYBL1+ and MYBL1- CD8 Tem sub-
populations (Supplementary Table 8 and Supplementary Fig. 1). In CD patients, MYBL1- CD8 Tem cells exhibited stronger interactions 
with other cell types than did MYBL1+ CD8 Tem cells. MYBL1-cells achieved these interactions primarily through MIF, while MYBL1+
cells utilized IL16–CD4 (Fig. 6B). On the other hand, in RA patients, we observed similar intercellular interactions between the 
MYBL1+ and MYBL1-cell populations, both mediated by MIF. However, the MYBL1+ cell population was capable of interacting with 

Fig. 4. Forest Plots of the results of the MR analysis for CD (A) and RA (B), respectively. The P values were adjusted by the BH method. SNP: single 
nucleotide polymorphism. 
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both the MYBL1+ and MYBL1-cell populations (Fig. 6C). In terms of cellular metabolic activities, the MYBL1+ cell population dis-
played heightened activity in drug metabolism involving other enzymes, whereas the MYBL1-cell population exhibited increased 
vigour in xenobiotic metabolism mediated by cytochrome P450 (Fig. 6D and E). 

3.4. Molecular docking and dynamics simulatuons 

Four potential drug treatments, namely, arsenic trioxide, azathioprine, cyclosporine, and tretinoin, were screened from the CTD 
database as candidate inhibitors of MYBL1 expression in both CD and RA (Supplementary Table 9). Subsequently, two of these small 
molecule medicines, azathioprine (PubChem CID: 2265, docking score: − 5.5 kcal/mol) and Tretinoin (PubChem CID: 444795, binding 
energy: − 6.3 kcal/mol), were selected for molecular docking with MYBL1 individually (Supplementary Fig. 2 and Fig. 7A). The results 
revealed that of these two drugs, tretinoin exhibited a stronger affinity towards MYBL1. Molecular dynamics simulations were then 
employed to validate the binding capability of tretinoin with MYBL1. 

As shown in Fig. 7B, over the initial 100 ns of the simulation, the RMSD value between the Tretinoin/MYBL1 complexes gradually 
stabilized within a narrow range, indicating a more stable binding interaction. The RMSF values, shown in Fig. 7C illustrates the 
flexibility of each residue within the molecule. Moreover, the MM/GBSA analysis yielded an average binding free energy value of 
− 25.56 ± 2.68 kcal/mol, suggesting that tretinoin can form a stable binding complex with MYBL1, thereby exerting pharmacological 
effects. 

4. Discussion 

To the best of our knowledge, this is the first study to explore the comorbidity of CD and RA by integrating scRNA-seq data from 
PBMCs with eQTL, MR, and colocalization analyses. Importantly, we identified MYBL1 as a critical pathogenic target, which is highly 
expressed in CD8 Tem cells. To substantiate our findings, we employed molecular docking, and molecular dynamics simulation, which 
further corroborated the reliability of the identified potential targets and therapeutic agents. This comprehensive and integrative 
approach not only enhances our understanding of the shared pathogenesis of CD and RA but also paves the way for the development of 
novel therapeutic strategies for these debilitating diseases. 

T cells, a critical component of PBMCs, play an essential role in maintaining immune homeostasis and combating various diseases. 
Notably, the dysfunction of T cells is associated with numerous diseases, including autoimmune disorders, infectious diseases, and 
cancer, underscoring their crucial role in immune balance and disease development [28]. Our study aligns with previous research 
indicating an elevated trend of CD8 Tem in various diseases, underscoring their pivotal role in adaptive responses and long-term 
immunity [29]. Moreover, we found that both CD4 Tn and CD8 Tn cells can be converted to CD8 Tem cells through a series of reg-
ulatory mechanisms involving antigen expression, activation, differentiation, contraction, and survival. Interestingly, our study 
highlights the significant role of the MIF pathway in the interaction between CD8 Tem cells and multiple other immune cell types, 
which expands previous research finding that CD8 Tem cells can interact with multiple immune cell types [30]. GO and KEGG 
enrichment analyses of DEGs specifically overexpressed in CD8 Tem cells showed that these DEGs were mainly involved in pathways 
related to lymphocyte cell differentiation, regulation, migration, apoptosis, autophagy, and inflammatory diseases, which is consistent 
with their biological significance. 

Future research on CD8 Tem cells could pave the way for novel diagnostic and therapeutic strategies targeting these cells, 
potentially expanding treatment options in clinical settings. In addition, DEGs in CD8 Tem cells are expected to be new therapeutic 
targets, so we combined MR and colocalization approaches to comprehensively analyse the causal proteins of CD and RA comorbidity 

Fig. 5. Regional association plots of MYBL1 and CD (A) and RA (B), respectively. Diamond purple points represented the SNP that with the minimal 
sum of P value in corresponded gene GWAS and disease GWAS. 
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towards a clinical translation of previous GWAS findings. To avoid genetic confounding due to reverse causality and linkage 
disequilibrium inherent in MR, we employed Steiger directionality filtering and reverse MR analysis. We identified MYBL1 as a causal 
gene in the comorbidity of CD and RA, with colocalization results supporting this genetic variation as shared by both disorders. 
Phenotypic scanning revealed an association between an MYBL1-related SNP (rs1060242) and daytime napping, a seemingly unre-
lated trait. 

However, recent prospective cohort studies have linked daytime napping with inflammatory bowel disease [31]. Furthermore, 
daytime napping has been associated with pain, depression, anxiety, fatigue, memory difficulties, and insomnia, all of which are 
relevant to CD and RA [32,33]. MYBL1, a member of the MYB transcription factor family, plays crucial roles in cell cycle progression, 
differentiation, and apoptosis. Its aberrant expression is closely associated with human cancers, and it has been proposed as a novel 
therapeutic target in renal cancer through remodelling of the tumour microenvironment [34]. However, the role of MYBL1 in auto-
immune diseases has been largely overlooked. 

We further investigated the role of MYBL1 in T cells. Utilizing a gene-weighted 2D kernel density plot, we observed a distinct 
overexpression of MYBL1 in CD8 Tem cells, with its regulation in these cells negatively correlated with developmental time. Based on 
the regulatory status of MYBL1, we stratified CD8 Tem cells into MYBL1+ and MYBL1-subgroups. We hypothesized that MYBL1+ CD8 
Tem cells could be the pathogenic cell subgroup involved in this comorbidity. Cell interaction analysis revealed reduced interactions 
between MYBL1+ CD8 Tem cells and other immune cells, and distinct metabolic activities were observed between the MYBL1+ and 
MYBL1-subgroups. Subsequent whole-blood transcriptomic analysis showed a significant overexpression of MYBL1 in the disease 
group, indirectly supporting our hypothesis. However, it is worth noting that although we identified MYBL1 as a potential therapeutic 

Fig. 6. The role of MYBL1 in T cells. (A) Nebulosa expression density for MYBL1 in T cells. (B) Intercellular ligand–receptor prediction among 
MYBL1(±) CD8 Tem and other PBMC cells revealed by CellChat in CD patient. (C) Intercellular ligand–receptor prediction among MYBL1(±) CD8 
Tem and other PBMC cells revealed by CellChat in RA patient. (D)The metabolic activity of PBMC in CD patients. (E)The metabolic activity of PBMC 
in RA patients. 
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target for comorbidity, its role in the development or maintenance of these disorders requires further interpretation. 
After identifying this potential target, we mined four potentially valuable medicines from the CTD database. Based on the com-

pounds’ biological activity, safety, reuse potential, and molecular binding energy, we selected tretinoin for further analysis. Tretinoin, 
a derivative of vitamin A, is clinically used for the treatment of acne and acute promyelocytic leukemia [35]. However, emerging 
evidence suggests that it may have broader potential applications. Studies have indicated that tretinoin can modulate T cell function 
and differentiation, playing a potential role in various diseases [36]. However, its precise mechanisms of action remain unclear. In our 
study, we attempted to elucidate these mechanisms using molecular docking and dynamic simulations. We propose that tretinoin may 
exert its therapeutic effects in comorbid conditions by inhibiting the expression of MYBL1, thereby regulating the function of CD8 Tem 
cells. Future work will involve biological experiments to further validate these findings. Additionally, we plan to rationally modify the 
structure of tretinoin or design suitable drug carriers to enhance its efficacy and minimize side effects. 

5. Limitations 

This study had some limitations that should be acknowledged. First, our PBMC scRNA-seq data were obtained from public data-
bases, which were of limited sample size and lacked data from patients codiagnosed with CD and RA. Second, both the eQTL and GWAS 
data were based on studies conducted in populations of European ancestry, limiting the generalizability of our findings to other ethnic 
groups. Further research in non-European populations is warranted to facilitate the clinical translation of these findings. Last, although 
our results suggest that tretinoin could be a potential therapeutic agent for comorbidity, the molecular docking and molecular dy-
namics simulation results are suggestive rather than conclusive. Further in-depth studies are needed to validate these preliminary 
findings. In the future, conducting additional animal studies and preclinical trials based on the findings of this study will aid in further 
elucidating the pathogenesis and therapeutics of RA and CD comorbidity. 

6. Conclusions 

In conclusion, our comprehensive analysis indicates that CD8 Tem cells play a role in the pathogenesis of comorbid CD and RA. 
Specifically, the MYBL1 gene is causally associated with the risk of comorbid CD and RA and represents a potential drug target. 
Moreover, tretinoin shows promise as a potential treatment for comorbid CD and RA. This study contributes to laying the groundwork 
for a more profound understanding of comorbid CD and RA by offering a unique and comprehensive perspective into the sequencing 
data of PBMCs, as well as potential therapeutic avenues. 

Fig. 7. Molecular docking (A) and dynamics simulation between tretinoin and MYBL1. RMSD (B) of the tretinoin and MYBL1. RMSF (C) of the 
MYBL1 in the complex. RMSD: root mean square deviation; RMSAF: root mean square fluctuation. 
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