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Abstract The giant sarcomere protein titin is a major determinant of cardiomyocyte stiffness and contributor to cardiac
strain sensing. Titin-based forces are highly regulated in health and disease, which aids in the regulation of myocar-
dial function, including cardiac filling and output. Due to the enormous size, complexity, and malleability of the titin
molecule, titin properties are also vulnerable to dysregulation, as observed in various cardiac disorders. This review
provides an overview of how cardiac titin properties can be changed at a molecular level, including the role isoform
diversity and post-translational modifications (acetylation, oxidation, and phosphorylation) play in regulating
myocardial stiffness and contractility. We then consider how this regulation becomes unbalanced in heart disease,
with an emphasis on changes in titin stiffness and protein quality control. In this context, new insights into the key
pathomechanisms of human cardiomyopathy due to a truncation in the titin gene (TTN) are discussed. Along
the way, we touch on the potential for titin to be therapeutically targeted to treat acquired or inherited cardiac
conditions, such as HFpEF or TTN-truncation cardiomyopathy.
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1. Introduction

The heart needs to continually pump throughout a lifetime and meet the
ever-changing requirements of the body. Some changes take place rela-
tively slowly throughout development, ageing, and disease, while others
occur almost on a beat-to-beat basis. How the heart adapts to these
changes continues to be the subject of an entire research field, as many
details remain incompletely understood. For example, increased ventric-
ular filling and pressure induce stretch and stress signalling pathways
within the heart, which are complex, intertwined in many ways, and chal-
lenging to study—notably in vivo.1 At the level of the cardiac cells, a myr-
iad of proteins has been identified which participate in mechanical and
chemical signalling in various ways. The focus of this review is the mecha-
nosensitive protein titin2 in the sarcomeres, the contractile units of the
cardiomyocytes (CMs). We zoom in on titin’s properties as a molecular
spring whose elasticity can be extensively modulated under physiological
and pathophysiological conditions, resulting in larger modulations in car-
diac function, such as diastolic filling or length-dependent activation
(LDA), the basis of the Frank-Starling law. Titin has several mechanisms
it can exploit to physiologically modulate myocardial stiffness and disten-
sibility, including post-translational modifications (PTMs, e.g. acetylation,
oxidation, and phosphorylation) and isoform switch (Figure 1). Other
possibilities to fine-tune the mechanical properties of the cardiac sarco-
mere/CMs/heart involve the binding of specific titin regions to Ca2þ,
chaperones, or protein ligands, such as actin (not reviewed here, but see

Ref.2). However, titin’s giant size and complexity leaves it vulnerable to
dysregulation, which can result in the development of cardiac disease.
To date, the dysregulation of titin, its binding partners, and associated sig-
nalling pathways have been implicated in various forms of heart disease,
such as heart failure (HF) with preserved ejection fraction (HFpEF), HF
with reduced ejection fraction (HFrEF), aortic stenosis, and ischaemic in-
jury (Figure 1). Moreover, next-generation sequencing has revealed path-
ogenic variants in the titin gene (TTN) as a major cause of inherited
cardiomyopathies,3 the pathomechanisms of which have only recently
become clearer,4 as discussed further below in this review. The overall
goal of our review is to explore how cardiac titin properties can be
changed at a molecular level, with an emphasis on titin stiffness and pro-
tein quality control (PQC), and how this regulation becomes unbalanced
in heart disease. We also highlight new insight suggesting that titin can be
therapeutically targeted to help treat acquired or inherited cardiac con-
ditions, such as HFpEF or TTN-truncation cardiomyopathy.

2. Structure, expression, and
isoform diversity of titin

Spanning the half-sarcomere from the Z-disc to the M-band as the ‘third’
sarcomeric filament system (along with myosin and actin filaments), titin
is well placed to assist in the regulation of both passive and, to some ex-
tent, active force development of the heart (Figure 2A).5,6 The intrinsic
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properties of titin vary along its length, depending on the location within
the sarcomere: A-band titin is bound to myosin filaments and is function-
ally inextensible, I-band titin lays slightly oblique between the Z-disc and
the I/A-band junction and is elastic, and the ends of the titin filament are
anchored at the Z-disc (via a-actinin, actin, and telethonin) and M-band
(via myomesin). The specific amino acid sequences and domain struc-
tures in each region determine the structural and functional roles of
these titin segments.2 A-band titin is largely comprised of super-repeats
of relatively stable fibronectin-type 3 and immunoglobulin-like (Ig)
domains7 providing a template for thick-filament assembly and A-band
length,8 while the M-band region engages in protein–protein interactions
that serve structural and regulatory functions.9,10 I-band titin is variable
and contains several extensible elements, such as the PEVK-repeats
(motifs rich in proline, glutamic acid, valine, and lysine), Ig-domain
regions, and unique sequences, notably the N2B-unique sequence
(N2Bus), enabling titin’s spring-like properties.11,12 Unique sequence ele-
ments are also present in Z-disc and M-band titin.

Part of the variability within I-band titin comes from the high degree of
differential splicing that occurs in this region.13 Of note, this continues to
cause inconsistencies with the nomenclature when assigning specific do-
main numbers to I-band titin. Further adding to the confusion is that
commonly referred-to databases for human titin, such as UniProtKB and
NCBI (canonical sequence accession numbers, Q8WZ42-1 and
NP_001243779.1, respectively), falsely recognize some PEVK-repeats or
globular Ig domains as insertion sequences. Human TTN has 364 exons
and the complete meta-transcript 363 exons, from which several com-
mon transcripts (isoforms) are generated (Figure 2B). A good overview is
provided at http://cardiodb.org/titin. Because the frequency at which an
exon is incorporated into the titin molecule varies greatly in the elastic I-
band region, the different isoforms have different spring length and vari-
able compliance.2,13,14

The principal cardiac isoforms are the Z-disc-anchored N2B, N2BA,
and Novex-3 variants,15 as well as the recently identified C-terminal
Cronos isoform driven by an internal promoter (Figure 2B).16 On a

typical Coomassie-stained titin-protein gel of human heart tissue
(Figure 2C), these isoforms appear together with a proteolytic fragment,
T2 (2.4 MDa). The two most common cardiac isoforms, N2B (3 MDa)
and N2BA (3.2–3.8 MDa), determine titin extensibility and myofibrillar
passive stiffness.12,17 The N2BA isoforms exist in many splice variants
that have different I-band length. The N2B isoform (named after the
N2B element coded by TTN exon 49) is shorter and less compliant than
the N2BA isoforms, as its spring segment has only 6 PEVK-repeats, no
‘middle’-Ig domains, and no N2A element (Figure 2B).12–14 The short iso-
form Novex-3 (�650 kDa), which splices-in exon 48 (thus introducing a
stop), does not appear to be relevant for titin stiffness; however, the
exon 48-encoded Novex-3 region may have a role as a structural and
regulatory element, e.g. through its interaction with obscurin.15 Cronos
(2.3 MDa; close in size to the T2 fragment) is more highly expressed in
developing CMs than in adult hearts,18 where it makes up only �10% of
the total titin-protein pool (human adult hearts).4 In human induced plu-
ripotent stem cell-derived cardiomyocytes (hiPSC-CMs), Cronos has
been shown to enable partial sarcomere formation in the absence of full-
length titin.18 However, Cronos failed to rescue cardiac sarcomerogene-
sis in adult mice lacking Z-disc-anchored titin.19 Moreover, Cronos tran-
script and protein content were found to be unaltered in end-stage
failing hearts from dilated cardiomyopathy (DCM) patients vs. non-failing
human donor hearts.4

2.1 Titin splicing regulation and mechanical
consequences
The titin N2B vs. N2BA isoform expression pattern is mediated, at least
in part, by the splicing factor RNA-binding motif protein-20 (RBM20).20

RBM20 suppresses the splicing-in of I-band titin exons,21,22 thereby pro-
moting expression of the shorter, stiffer N2B isoform (Figure 2D, in-
set).20,23 RBM20 is also regulated by titin splicing itself: spliced-out
regions of TTN can form functional motifs of circular RNA, such as
cTTN1, which regulate the activity of RBM20 and that of another splicing

Figure 1 Known changes in cardiac titin properties under physiological stress and as a cause or consequence of heart disease.
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Figure 2 Titin isoforms in cardiac muscle, isoform switch, and consequences for titin-based stiffness. (A) Architecture of cardiac titin N2B and N2BA iso-
forms in the half-sarcomere. Note the abbreviated A-band region (double-line break). (B) Titin isoforms (‘Full length’ is a theoretical variant); only main I-
band segments are shown. Dotted lines indicate alternative splicing. (C) Titin species separated on a typical Coomassie-stained titin gel (1.8% SDS–PAGE) of
adult human heart tissue. (D) The proportion of N2BA (green) vs. N2B (red) titin isoforms can change under numerous conditions. This isoform switch
determines a change in titin spring stiffness. AngII, angiotensin II; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejec-
tion fraction; Ig, immunoglobulin-like domain; PEVK, segment rich in proline (P), glutamic acid (E), valine (V), and lysine (K) residues; RBM20, RNA-binding
motif protein 20; T3, thyroid hormone.
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factor, SRSF10.24 RMB20-deficient rats or mice have been found to pro-
duce aberrantly large N2BA-isoforms and no N2B, resulting in reduced
myocardial passive stiffness and dilated ventricles.20,21,23 In humans,
RBM20 pathogenic variants are associated with the expression of over-
sized N2BA isoforms,4,20,25 greater titin compliance,26 and irregular cal-
cium homeostasis27 leading to the development of DCM.20,26

Interestingly, both insulin and thyroid hormone, T3, modulate RBM20
expression and activity pathways.28,29 This could explain why T330,31 and
insulin32 (and also Angiotensin II) promote the expression of the N2B
titin isoform, e.g. during heart development.30 Long and compliant, foetal
N2BA titin isoforms render titin-based stiffness very low in the embry-
onic heart, but a transition to shorter and less stretchable (adult) N2BA
isoforms and N2B in the pre-/perinatal period greatly increases this stiff-
ness (Figure 2D). Thus, long-term cardiac stiffness regulation can be
achieved by changing the relative abundance of the N2BA and N2B iso-
forms, known as isoform switching.

2.2 Titin–isoform switch in heart disease
Titin–isoform transitions also regulate titin-based stiffness in heart dis-
ease. A healthy adult human heart (left ventricle) has an N2BA: N2B ra-
tio of 30:70 to 40:60,33 and this ratio remains relatively constant during
normal ageing.34 Isoform switching occurs in many forms of HF, including
HFrEF (e.g. DCM or chronic ischaemic heart disease), HFpEF, and aortic
stenosis (Figure 2D). Various studies have found that relatively more
N2BA and less N2B isoform is present in failing vs. non-failing human
hearts, such as in HFrEF,4,33,35,36 HFpEF,37 and aortic stenosis.37,38 An in-
creased proportion of N2BA is correlated with an increased end-
diastolic volume35 and lower titin-based passive stiffness
(Figure 2D).33,35,36 However, earlier studies reported a reduced
N2BA:N2B ratio in aortic stenosis39 and HFpEF patients,40 whereas no
change in titin–isoform composition was found in human hypertrophic
cardiomyopathy and sometimes even in human DCM or aortic steno-
sis.41–44 Conversely, the N2BA:N2B ratio has sometimes (e.g. Refs45,46)
but not consistently been found to be reduced in animal models of HF.
These discrepancies may be related to the stage of the heart disease dur-
ing which the cardiac muscle samples were studied, the type of HF syn-
drome, species characteristics, heart chamber-specific differences,47 and/
or methodological limitations. It is still incompletely understood whether
titin–isoform switch causes or compensates for cardiac stiffness changes
that occur during disease progression.

Our knowledge of the influence titin–isoform switch can have on car-
diac stiffness has made it a potential therapeutic target for the treatment
of HF. Successful attempts have been made to modulate the titin–iso-
form composition in animal models by reducing RBM20 expression, in-
creasing the N2BA to N2B ratio and lowering cardiac stiffness.23,48,49

However, RBM20 is responsible for the splicing of many other cardiac
proteins and the reduction of RBM20 will have consequences for the
function of at least some of them, including crucial Ca2þ-handling pro-
teins.27,50 The lack of titin specificity therefore limits the therapeutic
scope of RBM20 inhibition. Regardless, targeting titin–isoform switching
might improve prognosis and symptoms of some HF patients, potentially
making it a therapeutic approach in the future.

3. Cardiac titin stiffness as a
regulator of active contraction

The mechanical properties of titin not only determine a significant por-
tion of CM passive stiffness but also regulate active contraction.6 A prime

example is LDA, which is characterized by an immediate increase in the
Ca2þ sensitivity of the myofilaments with a CM stretch. A consistent ob-
servation is the correlation between I-band titin length or titin-based
stiffness and LDA: CMs with a short/stiff titin spring show a larger in-
crease in myofilament Ca2þ sensitivity upon cell stretching than those
with a long/soft titin spring.51,52 Similarly, RBM20-deficient rat CMs
expressing long and very compliant N2BA titin have a blunted LDA,53–55

whereas mouse CMs lacking extensible I-band titin regions show in-
creased titin-based stiffness and improved LDA compared to wildtype
(wt) CMs.56 Therefore, the titin–isoform switch towards more compli-
ant N2BA present in failing hearts33 is expected to reduce LDA and (via
the Frank–Starling mechanism) cardiac output. These and other observa-
tions have suggested that stretch effects mediated by titin cause altera-
tions to both thick- and thin-filament properties; however, the
underlying molecular mechanisms remain a matter of debate.6,57–64 Titin
also has the potential to more directly support the work output of the
contractile system by storing and releasing elastic energy via Ig-domain
unfolding–refolding transitions, which occur under physiological (low)
stretch forces.6,65,66 While the magnitude of this contribution remains to
be tested in vivo, the mechanism may be relevant to synchronize the me-
chanical activities of the actomyosin and titin systems.6,66,67 Collectively,
available data leave no doubt that the mechanical design of titin aids ac-
tive contraction of cardiac muscle in multiple ways. It will be worth
studying how the connectivity between titin spring stiffness and cardiac
contractility may change in failing hearts.

4. Titin PTMs

Cardiac filling and output are optimized according to the actual demands
of the body, and these adjustments also employ changes to titin stiffness.
The question is how do you fine-tune stiffness in such a large protein po-
tentially on almost a beat-to-beat basis? One of the quickest ways to ad-
just protein activity is through PTMs. For titin, phosphorylation,
oxidation, and more recently acetylation have been shown to modulate
its spring stiffness. Differences in these modifications have also been
detected under pathophysiological conditions, giving rise to novel treat-
ment strategies aiming at reversing pathological passive stiffness of pa-
tient hearts.

4.1 Acetylation–deacetylation
Lysine acetylation/deacetylation has traditionally been studied as a
modification of histones and a regulator of transcription but it is in-
creasingly becoming recognized as a modulator of cytoplasmic pro-
teins, particularly relating to cellular metabolism.68 Acetylation
regulation has become of interest to the cardiac community, not least
because of its association with obesity,69 a worsening global burden of
disease and a major comorbidity in HF. Acetylation has been abun-
dantly detected along the length of titin (Figure 3A);70 however, both
the native acetylation state of titin and how it changes in CMs require
additional studies, especially on human hearts. Proteomic analysis has
revealed an increase in titin acetylation in obese mice69 but no signifi-
cant difference in acetylation levels in HFpEF models compared with
the experimental controls.70,71

Proposed treatments targeting acetylation pathways have also uncov-
ered changes to titin acetylation, which may play a role in the modulation
of cardiac stiffness. The caloric restriction mimetic, nicotinamide (NAM),
is a precursor of nicotinamide adenine dinucleotide (NADþ), which is
required for the activation of deacetylase enzymes, such as sirtuin-1

Titin 2907
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(SIRT1). NADþ has been suggested as a potential therapeutic for
HFpEF.70 Direct application of SIRT1 on skinned rat CMs was found to
reduce their stiffness.70 This was suggested to be a contributing factor of
improved diastolic function in HFpEF after treatment with NAM.70

However, conflicting results in similar animal models have shown that
the use of histone deacetylase inhibitors can also ameliorate diastolic
dysfunction and increase myofibril relaxation.71,72 although changes in
the acetylation state of titin after treatment were not assessed.

Another open question is how deacetylation causes a decrease in titin
stiffness. The additional negative charge added to positively charged
lysines during acetylation has been shown to stabilize enzymes and de-
crease the rate of unfolding.68,73 Based on our findings,70 we propose
that the increased acetylation of the titin spring, e.g. in HFpEF due to re-
duced SIRT1 activity, promotes intramolecular interactions within elastic
titin via addition of negative charges in a positively charged environment;
as a consequence, titin becomes stiffer (Figure 3B). Conversely, the in-
creased deacetylation of titin, e.g. by elevated SIRT1 activity following
NADþ/NAM treatment,70 partially reverses this stiffening (Figure 3B).
Additionally, titin acetylation may play a role in competitive PTM cross-
talk with titin ubiquitination as both occur on lysine residues.68 The exact
role acetylation plays in titin regulation and its association with cardio-

metabolic disorders provides some exciting prospects for future re-
search and therapeutics.

4.2 Oxidation–reduction
Oxidative stress is a generalized term for an imbalance between reactive
oxygen species (ROS) and antioxidants. While low levels of ROS are re-
quired for normal cellular function and regulation, higher levels are asso-
ciated with the pathogenesis of many diseases including cardiovascular
disorders.74 Excess ROS leads to the modification of various cellular pro-
cesses including modifications of amino acids containing thiol groups
(commonly cysteines) in either a reversible or irreversible manner. Titin
is a prime target of oxidation and I-band titin oxidation–reduction modu-
lates titin-based stiffness.75

Mass spectrometric analyses of cardiac titin have detected oxidation
sites along the entire molecule (Figure 4A).76 In mouse hearts exposed to
oxidative stress, the highest relative increase in titin oxidation was found
within I-band ‘hotspots’, specifically, the N2Bus and Ig domains of the dis-
tal I-band region.76 However, both the location of oxidation site and the
type of oxidation are critical in determining the consequence on titin
stiffness: titin domains can undergo either S-glutathionylation, which
leads to an increase in titin compliance, or disulphide bonding, which
causes increased titin stiffness (Figure 4B). These modifications are re-
versible, e.g. under the influence of reductants like dithiothreitol or gluta-
thione.76–78

Mechanistically relevant is that titin oxidation within Ig domains may
rarely occur spontaneously but may rather require cysteines buried
within the Ig domains (cryptic cysteines) to be exposed through domain
unfolding77,78—a process we have coined UnDOx (unfolded domain ox-
idation).76 If UnDOx occurs, these domains cannot refold back to their
native state, which affects titin-based stiffness. Importantly, the type of
oxidation that occurs at the cryptic cysteines determines the effect on
stiffness.76 UnDOx, through S-glutathionylation, prevents the Ig domain
from refolding, thereby maintaining a longer contour length and lowering
titin stiffness (Figure 4B, left).76–78 Additionally, this unfolded oxidized
state allows for the controlled homotypic interactions and in-register ag-
gregation of the distal I-band region (Figure 4C), which may aid stiffness
regulation and force propagation.76 Alternatively, UnDOx can involve
disulphide bond formation (Figure 4B, top right). A disulphide bridge can
arise between any two (of a diad, triad, or quadripartite group of) cys-
teines within an unfolded Ig domain and prevent the extension of the do-
main to its full contour length,78 therefore increasing the passive stiffness
of titin.76 It has been suggested that the formation of disulphide bonds in
titin may fine-tune muscle work production by providing additional
power during Ig-domain refolding under a (low) stretch force.65 The for-
mation of disulphide bonds in Ig domains may also be aided by interme-
diatory S-sulfenylation,79 but due to the highly volatile nature of S-
sulphenylation, there is yet to be any evidence showing that this occurs
in vivo. On the other hand, disulphide bond formation also occurs within
the N2Bus region of I-band titin (Figure 4B, bottom right) and contributes
to increased titin stiffness by producing additional scaffolding to this nor-
mally disordered I-band region and preventing it from full extension.80,81

Both S-glutathionylation and disulphide bonding are a natural conse-
quence of exertion and increased metabolism. Therefore, low levels are
detected in cardiac titin under healthy conditions, but they rise with an
increase in cardiac preload or afterload (Figure 4C).76 However, in the
case of cardiac ischaemia or chronic HF due to metabolic syndrome (e.g.
HFpEF), there is a loss in the balance of these oxidative modifications
and what was once a normal short-term regulatory process becomes an
extensive modification and marker of disease (Figure 4C).76 Targeting titin

Figure 3 Locations and proposed mechanism of titin acetylation. (A)
Titin acetylation sites detected in rat heart tissue by mass spectrometry
(data obtained from Ref.70). (B) Locally increased acetylation of elastic
titin in HFpEF may be due to reduced deacetylase activity of SIRT1; this
increases titin-based stiffness. Treatment with NADþ/NAM restores
SIRT1 activity to reverse this process. Brown arches depict titin spring
stiffness. aa, amino acid.
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..oxidation therapeutically could be useful in the treatment for these car-
diac conditions to modulate myocardial stiffness.

4.3 Phosphorylation–dephosphorylation
Phosphorylation is a well-established PTM in many cellular processes. In
the heart, it regulates cardiac output on multiple levels. Phosphorylation
is also the best-studied titin PTM, modulating the molecule’s stiffness.82

Over 300 titin phosphorylation sites have been detected using proteo-
mic (mass spectrometric) techniques, with some phosphosites consis-
tently being identified in multiple studies (Figure 5A).83 At this stage, it
appears that the titin phosphorylation-dependent changes in CM stiff-
ness are related to where the titin spring becomes phosphorylated and
the net protein charge present in that titin region (Figure 5B). Caution
needs to be taken with this assumption, however, due to the bias in
where along the titin molecule phosphorylation has been assessed
historically.

The gigantic size of titin currently makes it impossible to recombi-
nantly express the whole protein. Therefore, small regions of titin in spe-
cific locations, such as the Z-disc or M-band, or with unique mechanical
properties, such as the PEVK and N2Bus regions, have been the focus of

most low-throughput approaches (e.g. antibody-specific targeting or mu-
tagenesis of phosphosites). Initial studies determined that phosphoryla-
tion within the Z-disc region could be attained by cyclin-dependent
kinase (cdc2) and extracellular signal-regulated kinase (ERK)284 and simi-
larly, cdc2 could also phosphorylate the M-band titin region.85

Additionally, early studies showed that the titin kinase domain (TK) also
required phosphorylation of tyrosine residue 32341, as well as the bind-
ing of Ca2þ/calmodulin, to enable activation (Figure 5B, right);86 however,
TK currently is considered an inactive pseudo-kinase.87 Since then, two
main regions, the N2Bus and PEVK segments, have been the focus of
most titin phosphorylation studies. There is much compelling evidence
to suggest that phosphorylation at these regions plays a crucial role in
titin-stiffness regulation.

Interestingly, the phosphorylation of the N2Bus and PEVK regions has
opposing effects (Figure 5B). Increased phosphorylation of the N2Bus
causes increased titin compliance through an increase in persistence
length, as determined by single molecule atomic force microscopy
stretch experiments.88,89 Conversely, phosphorylation of the PEVK re-
gion leads to increased titin stiffness.90,91 The mechanisms behind this
change in stiffness are still not completely clear; however, we have

Figure 4 Titin oxidation sites and mechanisms of how S-glutathionylation and disulphide bonding alter titin stiffness in health and disease. (A) Titin oxida-
tion sites detected in mouse heart tissue by mass spectrometry (data obtained from Ref.76). (B) Changes in titin stiffness are dependent on whether more S-
glutathionylation or more disulphide bonding occurs in unfolded I-band titin domains. Increased compliance is mediated via the S-glutathionylation mecha-
nism involving Ig domains and increased stiffness via the disulphide bonding mechanism involving Ig domains or the N2Bus. Brown arches depict titin spring
stiffness. (C) Observed changes in I-band titin oxidation under cardiac stress (increased preload/afterload) or in diseased states (ischaemia, HFpEF) modulate
titin stiffness in a complex manner. S-glutathionylation under cardiac stress can cause controlled in-register aggregation of distal I-band titin, whereas disease
states can be associated with a general increase in titin oxidation. aa, amino acid; HFpEF, heart failure with preserved ejection fraction; Ig, immunoglobulin-
like; UnDOx, unfolded domain oxidation.
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Figure 5 Where and how titin becomes phosphorylated, how this affects titin stiffness, and the role titin phosphorylation changes play in heart disease.
(A) The number of times a titin phosphorylation site has been referenced (ref.) in the literature from either high-throughput (mass spectrometry; blue) or
low-throughput, site-specific (antibody detection, mutagenesis; red) detection in human heart tissue. Data obtained from www.phosphosite.org.83 Note
that phosphosite S4062 is currently not detected in this database but has been added based on the publication by Ref.95 (B) Specific phosphorylation sites
detected in different regions of titin, known PKs/phosphatases involved, and differential effects of I-band titin phosphorylation on titin stiffness. (C) Hypo-
phosphorylation of the N2Bus and hyper-phosphorylation of constitutively expressed PEVK titin are thought to increase titin stiffness in HF. (D) Proposed
treatment strategies in pre-clinical tests aimed at correcting titin phosphorylation in animal models of heart disease, to reduce titin-based cardiac stiffness.
‘Trial’ highlights results of large clinical trials on human HF patients using the respective drugs. Brown arches depict titin spring stiffness. aa, amino acid; BNP,
B-type natriuretic peptide; CaM, calmodulin; CaMKIId, Ca2þ/calmodulin-dependent protein kinase IId; cGMP, cyclic guanosine monophosphate; ERK, extra-
cellular signal-regulated kinase; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; Ig, immunoglobulin-like; LV, left ventricular; NRG1,
neuregulin 1; PDE-5, phosphodiesterase type 5; PKA, protein kinase A; PKCa, protein kinase Ca; PKD, protein kinase D; PKG, protein kinase G; PP5, serine/
threonine protein phosphatase 5; sGC, soluble guanylyl cyclase; TK, titin kinase domain; UnDOx, unfolded domain oxidation.
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previously suggested that the difference may be due to the N2Bus region
and the PEVK having different localized net charges.82 The N2Bus has a
net negative charge and therefore, the introduction of additional negative
phosphate groups could cause electrostatic repulsion within the N2Bus
region, leading to improved extensibility and a decrease in titin-based
force. Conversely, the positive net charge of the PEVK region (notably:
only the constitutively expressed and not the differentially spliced seg-
ment, which has a net negative charge!) would see increased intramolec-
ular interactions, reduced extensibility, and increased force (Figure 5B).
Firm experimental proof for this ‘charge theory’ is still lacking.

To complicate matters further, there is an array of protein kinases
(PKs) that can phosphorylate multiple sites in titin. At least four main
phosphoserines have been identified in the human N2Bus region
(Figure 5B): S4010, S4062, S4099, and S4185 (according to human titin
consensus sequence, UniProKB #Q8WZ42-1). The first three are evo-
lutionary conserved (mouse equivalents S3991, S4043, and S4080, re-
spectively). These phosphosites have been identified using site-specific
methods, such as mutagenesis of phosphorylated residues or antibody-
specific targeting. The N2Bus sites have been determined to be phos-
phorylated by various PKs, such as PKA and PKG,44,46,88,92 PKD,93

ERK2,89,94 and/or CaMKIId.95,96 These phosphosites have also been
shown to be dephosphorylated by serine/threonine protein phosphatase
5,97 a highly regulated protein phosphatase with low basal activity.98

Similarly, within titin’s PEVK region, several sites have been detected,
which are phosphorylated by PKCa, CaMKIId, and/or PKD, in particular
conserved phosphoserines S11878 and S12022 (mouse equivalents
S12742 and S12884).44,46,90,91,93,95 In part, this would imply conflicting
signalling as both PKD and CaMKIId phosphorylate N2Bus and PEVK
titin—which in theory should have opposite effects on titin stiffness
(Figure 5B). However, both kinases cause a decrease in titin-based force
of isolated cardiac preparations,89,93,95 suggesting the effect on N2Bus
dominates. However, caution is required when interpreting these
results, considering the number of phosphorylation sites that have been
detected but not yet thoroughly investigated in titin (Figure 5A). Indeed,
at least one of the above PKs, CaMKIId, can also phosphorylate Ig
domains in I-band titin, but only after domain unfolding, and the process
is further promoted by UnDOx through S-glutathionylation
(Figure 5B).76 This additional possibility for titin regulation by phosphory-
lation may aid in stabilizing the unfolded state of the domain and support
mechano-chemical signalling events. In summary, titin-stiffness regulation
by phosphorylation is complex and involves several signalling hotspots
within I-band titin and various PKs/phosphatases; currently, it is the best-
understood mode of titin regulation by PTMs backed by a large body of
evidence.

4.3.1 Titin phosphorylation in heart disease
Irregular phosphorylation of titin is also highly implicated in HF.
Frequently, HF is associated with pathologically increased myocardial
and CM passive stiffness, at least in HFpEF patients.40 Some of this stiff-
ness increase can be explained by hypo-phosphorylation of phosphoser-
ines within the N2Bus region of titin and hyper-phosphorylation of
select sites within the PEVK region, e.g. S11878 (Figure 5C).44,46,97

However, exceptions exist depending on the form of human HF and
specific heart chamber investigated, or the animal model used.44,82,95,99

A detailed review of this topic has recently been compiled.82 Generally,
it is more informative to determine site-specific titin phosphorylation
rather than global titin phosphorylation, considering the huge number of
potential phosphosites in the full-length titin protein.82 However, given

where phosphorylation occurs affects how titin stiffness is modulated,
more site-specific information on titin phosphorylation is needed to bet-
ter understand the diseased state. Altogether, reduced phosphorylation
of titin’s N2Bus region appears to be a frequent alteration in various HF
types, and this alteration may be an important contributor to increased
CM stiffness in disease.

4.3.2 Titin phosphorylation as a therapeutic target
Disruption in phosphorylation regulation is a common feature in cardiac
diseases not only affecting titin but also many other cardiac proteins.
This makes phosphorylation regulation an attractive target for therapeu-
tic treatment. Pathologically increased myocardial passive stiffness is a
sign of diastolic dysfunction often seen in HF patients when associated
with comorbidities, including diabetes mellitus.43,100 Interestingly, con-
ventional therapeutics for diabetes, including metformin and insulin, have
been found to improve diastolic function in these patients. Specifically,
metformin and insulin increased the activity of titin-targeting PKs (ERK1/
2; PKCa; PKA), improving phosphorylation of the N2Bus (while margin-
ally increasing PEVK phosphorylation) and causing a reduction in titin-
based stiffness (Figure 5D).100,101 Similarly, chronic admission of the car-
diac growth factor neuregulin-1 was shown to activate ERK1/2 and PKG
while suppressing PKCa, resulting in hyper-phosphorylation of N2Bus
and hypo-phosphorylation of PEVK titin, both of which are conducive in
reducing titin stiffness (Figure 5D).100

In this context, a main focus has been on the cyclic guanosine mono-
phosphate (cGMP)-PKG pathway, because dysregulation of this pathway
is strongly associated with cardiac remodelling and HF. There are now
multiple substances available which stimulate this pathway (see Ref.102
for a recent, comprehensive review on the role cGMP plays in the heart).
Phosphodiesterase-5A inhibitors (such as sildenafil) and B-type natri-
uretic peptide (BNP), which boost cGMP levels, showed promise as a
potential treatment for diastolic dysfunction in pre-clinical tests
(Figure 5D). In regards to titin, both sildenafil and BNP increased (total)
titin phosphorylation, reduced CM stiffness and increased left ventricular
(LV) distensibility in a dog model of diastolic dysfunction.46,103 However,
the use of PDE5 inhibitors in the RELAX trial failed to show significant
improvement of diastolic function in HFpEF patients that received the
treatment (Figure 5D).104 Similar trials are underway with PDE9A inhibi-
tors, which also aim to increase the cGMP concentration in the heart
and benefit cardiac function.105 In mouse models of diastolic function,
PDE9A inhibition reduced LV diastolic stiffness through reduction of CM
stiffness; however, titin phosphorylation was not measured.106

Furthermore, soluble guanylyl cyclase (sGC) activators/stimulators are
considered a promising treatment for HFpEF, having been found to raise
cGMP levels leading to increased PKG (and also PKA and ERK2) activity,
while reducing PKCa and CaMKIId activity.107,108 This again resulted in
increased N2Bus and total titin phosphorylation, reduced CM stiffness
and reduced LV stiffness (Figure 5D). However, these results were not
replicated in either the VITALITY or the SOCRATES clinical trials where
no improvement in diastolic function was seen in HFpEF patients treated
with sGC-stimulator.109,110

Although these treatments showed promise in the laboratory setting,
discrepancies between dosages and metabolic differences in animals vs.
humans may in part be the cause of clinical trial failures.102 This highlights
one of the many barriers in finding effective new treatments for HF.
Additionally, the complexity of pathways, such as cGMP-PKG, means
that the regulation of intermediate steps in the pathway can also be unin-
tentionally changed and counteract the desired effect of the
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treatment.102 Therefore, increasing local cGMP levels within titin micro-
domains by exploiting compartmentalization might prove more useful,
but such microdomains are yet to be determined. Regardless, these
treatments may still be successful for a subset of patients with only mod-
estly impaired cGMP-PKG signalling.

5. Titin-PQC

Maintaining a protein as large as titin over a lifetime requires a sophisti-
cated PQC system. Titin is thought to be turned over at least every
�3 days in cell culture,111 but the protein’s half-life in adult mice is
2–3 weeks.19,112 This enables sarcomere maintenance and CM remodel-
ling during development and repair of stress-related protein damage in
adulthood.113 However, with advancing age, the cellular PQC machinery,
including the titin-directed PQC systems, may slow down.34

Consequently, defective titin protein could accumulate intracellularly
and form cytoplasmic aggregates that are cytotoxic. As shown for other
proteins, this may be one of the contributing factors to the development
of cardiac disease in the elderly.113

An initial step in PQC is to stabilize or repair (refold) damaged (un-
folded) proteins under stress with the aid of chaperones.114 This appears
to be particularly important for the elastic I-band titin as it contains many
regions that unfold during a stretch. Small heat shock proteins (sHSPs) are
chaperones that protect unfolded proteins from permanent damage but
do not necessarily mediate the refolding (which requires an ATP-
dependent chaperone).115 The sHSPs alpha-B-crystallin (HSPB5) and
HSP27 (HSPB1) are abundant in the cytosol of CMs and are also present
at the Z-disc under physiological conditions.115,116 Upon physiological
stretch, as well as in failing hearts (e.g. ischaemia; cardiomyopathy), these
chaperones are up-regulated and play a protective role by translocating to
the N2Bus, N2A, and proximal/middle I-band Ig-domain regions of titin
(Figure 6A and B).117–119 There, they stabilize unfolded segments and pre-
vent aggregation.117,118,120 Moreover, the ATP-dependent HSP90 associ-
ates with titin’s N2B region97 and also with the N2A element if first
methylated by the co-chaperone and methyltransferase Smyd2, a direct
N2A ligand (Figure 6A).121,122 This interaction protects I-band integrity.121–

124 The protective roles of HSPs on titin may include the prevention of
pathological stiffening;117 however, their stabilizing function could also im-
pede the elastic properties of titin and contribute to increased stiffness.123

If chaperones fail to protect the protein, it then becomes marked for
degradation and turnover.125 For titin turnover to occur, this large pro-
tein likely needs to be (partially) released from its binding partners within
the sarcomere.34 Proteases, such as calpain-1 and matrix-
metalloproteinase (MMP)-2 can bind to the proximal I-band and Z-disc
or M-band regions of titin (Figure 6A) and aid in the pre-digestion of
titin.126–128 Under ischaemic conditions or in the presence of anthracy-
clines used in cancer treatment (e.g. doxorubicin), there is an increase in
the expression and activity of these proteases leading to increased titin
breakdown and cardiac remodelling (Figure 6B).129–131 Protection from
titin degradation by these proteases would be possible by using protease
inhibitors, as is known from in vitro work.

Protease pre-digestion of titin is thought to further expose binding
sites for targeted degradation. Two interlinked pathways, the ubiquitin-
proteasome (UPS) and autophagy-lysosomal systems, regulate the sub-
sequent degradation steps.132 Through the UPS, damaged or aged titin
molecules can become ubiquitinated by ubiquitin E3 ligase(s) and thus
marked for proteasomal degradation. The E3 ligase mouse-double-
minute 2 homolog interacts with the titin-capping protein telethonin,133

but it is unknown whether it ubiquitinates titin. Other E3 ligases, the
muscle ring-finger proteins (MuRF)-1 and -2, bind in the titin A-/M-band
transition zone and to the TK (Figure 6A).87,134–138 They preferentially
ubiquitinate A-band proteins, including the TK.137,138 In diseased states,
protective effects on sarcomere proteins (including titin?) and contractile
improvements have been observed with MuRF1-interfering small mole-
cules as a potential therapeutic approach.139 It is likely that one or more
other, not yet identified, E3 ligase ubiquitinate titin. The TK is a well-
established hub for protein–protein interactions as it binds the Nbr1/
SQSTM1(p62) complex (Figure 6A),140 which acts as an autophagy re-
ceptor for ubiquitinated proteins.141 Autophagosome activity reduces
with age; however, the role of autophagy in heart disease is incompletely
understood:142 both increased and reduced activities have been
reported (Figure 6B). A more common finding is that the activity of the
UPS is reduced in HF and cardiomyopathy, resulting in the accumulation
of ubiquitinated but not degraded proteins.143 These alterations also in-
clude titin (Figure 6B).4,144,145 In end-stage failing human DCM hearts due
to a TTN-truncating variant (TTNtv), increased ubiquitination of wt-titin
was found, whereas truncated (tr-)titin proteins were barely ubiquiti-
nated and stably expressed (Figure 6B).4 Truncated titin accumulated in
cytoplasmic aggregates.4 Thus, titin-degradation pathways appeared to
be deregulated in TTNtv hearts. The changes observed in TTNtv-DCM
patient hearts also included reduced MuRF1 expression, whereas
autophagy was not impaired or even activated.4 Taken together, despite
recent advances, many details of the titin turnover and degradation pro-
cesses are still poorly understood.

5.1 PQC as a therapeutic point of influence
Several approaches have been made to target the PQC machinery thera-
peutically in cardiac diseases, which may also work for disorders related
to titin dysfunction. Chaperone induction in mice has been shown to im-
prove cardiomyopathy associated with muscular dystrophy146 and per-
haps can also be employed to enhance titin protection against ischaemia
or DCM (Figure 6B).117 Moreover, autophagy activators, such as spermi-
dine, have been shown to be protective against age-related cardiovascu-
lar disease, including animal models of diastolic dysfunction.147 Further,
the inhibition of MMP-2 or calpain proteases might be advantageous as a
prophylactic therapy during cancer treatment, e.g. to reduce
doxorubicin-induced cardiotoxicity (Figure 6B). Given the dysfunction of
the UPS in several forms of heart disease, modulators of the UPS may
show promise as a potential treatment, as demonstrated for UPS inhibi-
tors.148 However, the toxicity of proteasome inhibitors may limit their
therapeutic value.143 Interestingly, in hiPSC-CMs with a TTNtv, UPS-
inhibition raised wt-titin-protein expression (as well as tr-titin-protein
content) and boosted contractility.4 Increased wt-titin levels may be ben-
eficial as they promote the formation of sarcomeres.4,19 At this stage,
caution needs to be taken with any speculations on the therapeutic ben-
efit of protease or UPS inhibitors, due to their unspecific nature and our
limited understanding of their complex cellular interactions.

5.2 PQC and pathomechanisms of
TTN-truncation cardiomyopathy
Importantly, deregulated PQC of titin is central to the pathomechanisms
of TTN-truncation cardiomyopathy.4 Earlier, groundbreaking work estab-
lished a titin truncation as the most frequent genetic cause of human
DCM: 15–25% of most DCM patient cohorts studied carry a heterozy-
gous TTNtv—by far the largest share among all cardiomyopathy gene
variants known.3,149,150 Similarly, a TTNtv is the most common genetic
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.predisposition in other types of inherited cardiac disorders, including re-
strictive, non-compaction, and peripartum cardiomyopathy, but also in ac-
quired cardiomyopathies, such as those induced by alcohol abuse or
cancer treatment.151 Heterozygous TTNtv can occur anywhere along titin;
however, the prevalence of having a TTN truncation and the odds of getting
DCM from a TTNtv vary depending on the location of the pathogenic vari-
ant (Figure 7A and B). The odds ratio is highest if the truncation is in the A-
band segment (prevalence in DCM 10.74% vs. control 0.24%, odds ratio
49.8), followed by truncations in constitutive exons of I-band TTN
(Figure 7B).3,149,150 In contrast, the odds ratio is lowest for central I-band
titin (prevalence in DCM 0.24% vs. control 0.17%, odds ratio 1.5).150 This
is a consequence of the extensive alternative splicing of I-band TTN, where
exon usage is low for all regions not expressed in the N2B titin isoform
(Figure 7A). Thus, while TTNtv are found in 0.5–3% of the healthy (control)
population, many of these variants occur in I-band titin exons with low per-
centage spliced-in (PSI) and do not cause DCM (Figure 7B).3,149,150

Previous suggestions about the possible pathomechanisms of TTNtv-
DCM included sarcomere insufficiency,152 modest nonsense-mediated
decay of TTNtv-mRNA,150 or translational deregulation,153 whereas a
poison-peptide (dominant-negative) mechanism was considered unlikely
because truncated titin proteins were detected only in hiPSC-CMs152 but
not in adult heart tissue.149–151 However, recent studies have unequivo-
cally shown that tr-titin proteins are stably expressed in human end-stage

failing, adult TTNtv-DCM hearts.4,154 Their concentration reaches up to
50% of the total titin-protein pool but is highly variable. Strikingly, the
higher the tr-titin-protein content of a TTNtv-heart, the younger the
(adult) patients at the time of transplantation, suggesting that these pro-
teins are disease-relevant.4 The tr-titin proteins (unlike the wt-titin pro-
teins) are not built into the sarcomeres at meaningful amounts but are
sequestered in aggregates.4 Thus, a poison-peptide mechanism is likely
part of the pathomechanisms of TTNtv-DCM (Figure 7C).

Apart from a dominant-negative mechanism, TTNtv-DCM patient
hearts contain less wt-titin protein than DCM hearts without TTNtv or
non-failing (donor) hearts, which demonstrates titin haploinsuffi-
ciency.4,154 However, nonsense-mediated decay of TTNtv-mRNA is not
a prominent feature of TTNtv-DCM patient hearts (Figure 7C).4,150,153

With wt-titin being lost, the CMs of TTNtv-DCM hearts also have fewer
sarcomeres per unit area than non-TTNtv-DCM hearts,4 confirming sar-
comere insufficiency152 and explaining chronic contractile deficiency.4,152

Recent findings4,154 underscored that TTNtv-DCM hearts have a
problem with intracellular PQC (Figure 7C; cf. section above). With
increasing patient age, the UPS may be overwhelmed by the large
amounts of tr-titin protein produced and partially shut down, whereas
E3-ubiquitin ligases, such as MuRF1 become down-regulated.4

Conversely, the intracellular aggregate formation may promote autoph-
agy. Interestingly, disease modelling in hiPSC-CMs with a TTNtv

Figure 6 Titin-PQC pathways. (A) Interaction of different regions in cardiac titin (N2BA isoform) with components of the PQC machinery: UPS, ubiquitin-
proteasome system (purple), proteases (blue), chaperones (green), and autophagy-lysosomal pathways (yellow). (B) Heart disease-related changes in PQC
pathways, effects on titin, and suggestions for therapeutic approaches that could be taken to improve titin properties but are still speculative. CRYAB, alpha-B-
crystallin; HSP27, heat shock protein 27; HSP90, heat shock protein 90; Ig, immunoglobulin-like domain; Mdm2, mouse-double-minute 2 homolog; MMP2, ma-
trix metalloproteinase-2; MuRF1/2, muscle RING-finger protein-1/2; Nbr1, neighbor-of-BRCA1-gene-1; PEVK, segment rich in proline (P), glutamic acid (E),
valine (V), and lysine (K) residues; Smyd2, SET and MYND domain containing protein 2; SQSTM1/p62, sequestosome 1; T-CAP, telethonin; Ub, ubiquitin.
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..demonstrated that UPS-inhibition, but not autophagy-modulation, in-
creased both tr- and wt-titin-protein content, with larger effects on tr-
titin.4 Reversal of the titin haploinsufficiency by UPS-inhibition improved
TTNtv-hiPSC-CMs contractility, despite the raised tr-titin-protein con-
tent. If the TTNtv was repaired by CRISPR/Cas9 gene-editing, the titin
haploinsufficiency was corrected, tr-titin proteins were absent, and con-
tractility was fully recovered.4 These findings can be exploited for new
therapies of TTNtv-related cardiomyopathies (Figure 7D).

In summary, several key pathomechanisms come together in TTNtv-
patient hearts, providing a rationale for phenotypic diversity. Disease
mechanisms include titin haploinsufficiency as a life-long condition and
truncated titin-protein enrichment with aggregate formation, as well as
aberrant PQC, presumably both as additional late-onset pathomechan-
isms. Having a TTNtv may represent a major risk factor to get DCM later
in life, especially when other stressors hit.

6. Conclusion and outlook

New technologies emerging over the last decade (e.g. next-generation
sequencing, 2D and 3D culture of hiPSC-CMs, gene-editing, or ‘omics’)
have allowed amazing progress to made also in the titin field. This has
greatly improved our understanding of the role titin plays in HF and the

disease mechanisms of TTN-truncation cardiomyopathy. However,
much work still lies ahead of us. For example, TTN pathogenic variants in-
clude not only truncations but also missense variants whose pathophysi-
ological relevance is only slowly evolving.155 Missense and truncation
variants can occur together in the same patient, typically amplifying the
pathophenotype.155 Moreover, the role of titin–isoform switch and titin
PTMs in HF (notably HFpEF) remains fuzzy, as it is not yet clear whether
these changes are a cause or consequence of the disease, and whether
targeting these titin properties specifically (if possible) could improve the
syndrome. The ageing population is also highlighting the importance of
proteostasis regulated by PQC, and we are only just starting to appreci-
ate how deregulated PQC in ageing and disease may affect titin. Similarly,
the discovery that circular RNA of titin can also play a regulatory role in
cellular function potentially opens the door to a whole new relevance of
titin. Finally, this giant protein may still carry more molecular mysteries
awaiting discovery. Perhaps we will know soon, how titin processes a
stretch signal to boost active myocardial contraction and support in-
creased cardiac output.
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Figure 7 Pathomechanisms observed in human cardiomyopathy due to a TTNtv. (A) Titin domain architecture (according to human titin meta-transcript)
and TTN exon usage in adult human hearts.150 PSI above 90% indicates (nearly) constitutive expression, lower PSI values are due to differential splicing. (B)
Location of heterozygous TTNtv detected by next-generation sequencing in the general population and in DCM patients, and odds ratio indicating the
chance to get DCM if the TTNtv is in a specific titin region (marked by red boxes).150 (C) Recently identified pathomechanisms of human TTNtv-DCM.4 (D)
Specific treatment strategies suggested.4
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dos Remedios CG, Reinecke H, Knöll R, van Heesch S, Hubner N, Zimmermann
WH, Milting H, Linke WA. Truncated titin proteins and titin haploinsufficiency are
targets for functional recovery in human cardiomyopathy due to TTN mutations.
Sci Transl Med 2021, in press.

5. Granzier HL, Hutchinson KR, Tonino P, Methawasin M, Li FW, Slater RE, Bull MM,
Saripalli C, Pappas CT, Gregorio CC, Smith JE. Deleting titin’s I-band/A-band junc-
tion reveals critical roles for titin in biomechanical sensing and cardiac function. Proc
Natl Acad Sci USA 2014;111:14589–14594.

6. Linke WA. Titin gene and protein functions in passive and active muscle. Annu Rev
Physiol 2018;10:389–411.

7. Labeit S, Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and
elasticity. Science 1995;270:293–296.

8. Tonino P, Kiss B, Strom J, Methawasin M, Smith JE III, Kolb J, Labeit S, Granzier H.
The giant protein titin regulates the length of the striated muscle thick filament. Nat
Commun 2017;8:1041.

9. Gautel M, Djinovi�c-Carugo K. The sarcomeric cytoskeleton: from molecules to mo-
tion. J Exp Biol 2016;219:135–145.

10. Lange S, Pinotsis N, Agarkova I, Ehler E. The M-band: the underestimated part of
the sarcomere. Biochim Biophys Acta Mol Cell Res 2020;1867:118440.

11. Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Rüegg JC, Labeit S. Towards a mo-
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Mügge A, Baba HA, Skryabin BV, Hamdani N, Kuhn M. C-type natriuretic peptide
moderates titin-based cardiomyocyte stiffness. JCI Insight 2020;5:e139910.
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Schröder R, Fürst DO, Vorgerd M, Linke WA. Translocation of molecular chaper-
ones to the titin springs is common in skeletal myopathy patients and affects sarco-
mere function. Acta Neuropathol Commun 2017;5:72.

124. Munkanatta Godage DNP, VanHecke GC, Samarasinghe KTG, Feng HZ, Hiske M,
Holcomb J, Yang Z, Jin JP, Chung CS, Ahn YH. SMYD2 glutathionylation contributes
to degradation of sarcomeric proteins. Nat Commun 2018;9:4341.

125. Bozaykut P, Ozer NK, Karademir B. Regulation of protein turnover by heat shock
proteins. Free Radic Biol Med 2014;77:195–209.

126. Raynaud F, Fernandez E, Coulis G, Aubry L, Vignon X, Bleimling N, Gautel M,
Benyamin Y, Ouali A. Calpain 1-titin interactions concentrate calpain 1 in the Z-
band edges and in the N2-line region within the skeletal myofibril. Febs J 2005;272:
2578–2590.

127. Coulis G, Becila S, Herrera-Mendez CH, Sentandreu MA, Raynaud F, Richard I,
Benyamin Y, Ouali A. Calpain 1 binding capacities of the N1-line region of titin are
significantly enhanced by physiological concentrations of calcium. Biochemistry 2008;
47:9174–9183.

128. Ali MA, Cho WJ, Hudson B, Kassiri Z, Granzier H, Schulz R. Titin is a target of ma-
trix metalloproteinase-2: implications in myocardial ischemia/reperfusion injury.
Circulation 2010;122:2039–2047.

129. Neuhof C, Neuhof H. Calpain system and its involvement in myocardial ischemia
and reperfusion injury. World J Cardiol 2014;6:638–652.

130. Chan BYH, Roczkowsky A, Cho WJ, Poirier M, Sergi C, Keschrumrus V, Churko JM,
Granzier H, Schulz R. MMP inhibitors attenuate doxorubicin cardiotoxicity by prevent-
ing intracellular and extracellular matrix remodelling. Cardiovasc Res 2021;117:188–200.

131. Lim CC, Zuppinger C, Guo X, Kuster GM, Helmes M, Eppenberger HM, Suter TM,
Liao R, Sawyer DB. Anthracyclines induce calpain-dependent titin proteolysis and
necrosis in cardiomyocytes. J Biol Chem 2004;279:8290–8299.

132. Kocaturk NM, Gozuacik D. Crosstalk between mammalian autophagy and the
ubiquitin-proteasome system. Front Cell Dev Biol 2018;6:128.

133. Tian L-F, Li H-Y, Jin B-F, Pan X, Man J-H, Zhang P-J, Li W-H, Liang B, Liu H, Zhao J,
Gong W-L, Zhou T, Zhang X-M. MDM2 interacts with and downregulates a sarco-
meric protein. TCAP. Biochem Biophys Res Commun 2006;345:355–361.

134. Pizon V, Iakovenko A, van der Ven PF, Kelly R, Fatu C, Fürst DO, Karsenti E, Gautel
M. Transient association of titin and myosin with microtubules in nascent myofibrils
directed by the MURF2 RING-finger protein. J Cell Sci 2002;115:4469–4482.

135. Gregorio CC, Perry CN, McElhinny AS. Functional properties of the titin/
connectin-associated proteins, the muscle-specific RING-finger proteins (MURFs),
in striated muscle. J Muscle Res Cell Motil 2005;26:389–400.

136. Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, Trombitas
K, Granzier H, Gregorio CC, Sorimachi H, Labeit S. Identification of muscle specific

Titin 152917



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol
2001;306:717–726.

137. Witt SH, Granzier H, Witt CC, Labeit S. MURF-1 and MURF-2 target a specific sub-
set of myofibrillar proteins redundantly: towards understanding MURF-dependent
muscle ubiquitination. J Mol Biol 2005;350:713–722.

138. Bogomolovas J, Fleming JR, Franke B, Manso B, Simon B, Gasch A, Markovic M,
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